# A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Distributed Photovoltaic Configuration

- The decentralized architecture of the PV system is divided into multiple subsystems, each individual subsystem is connected to a converter and controlled by a set of sensors and controllers. The block diagram for this system architecture is shown in Figure 2a.
- The centralized architecture of PV system consists of multiple subsystems connected to a single converter and controlled by a centralized controller. Figure 2b shows the block diagram for this centralized architecture.

## 3. Radial Movement Optimization

#### 3.1. Random Initialization of the Search Space

#### 3.2. Exploration Pattern of the Particles

## 4. RMO-Based MPPT

## 5. Implementation of the Proposed Radial Movement Optimization – MPPT Technique for Distributed PV Configuration

## 6. Results and Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

PV | Photo-voltaic |

MW | Megawatts |

MPPT | Maximum power point tracking |

PSC | Partial shading condition |

ACO | Ant colony optimization |

FLC | Fuzzy logic control |

ANN | Artificial neural network |

PSO | Particle swarm optimization |

DE | Differential evolution |

InC | Incremental conductance |

GA | Genetic algorithm |

LMPP | Local maximum power point |

GMPP | Global maximum power point |

BIPV | Building integrated photo-voltaic |

RMO | Radial movement optimization |

## References

- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev.
**2011**, 15, 1777–1790. [Google Scholar] [CrossRef] - Mekhilef, S.; Safari, A.; Mustaffa, W.; Saidur, R.; Omar, R.; Younis, M. Solar energy in Malaysia: Current state and prospects. Renew. Sustain. Energy Rev.
**2012**, 16, 386–396. [Google Scholar] [CrossRef] - Solangi, K.; Islam, M.; Saidur, R.; Rahim, N.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev.
**2011**, 15, 2149–2163. [Google Scholar] [CrossRef] - Byrnes, L.; Brown, C.; Foster, J.; Wagner, L.D. Australian renewable energy policy: Barriers and challenges. Renew. Energy
**2013**, 60, 711–721. [Google Scholar] [CrossRef] - Zheng, H.; Li, S.; Challoo, R.; Proano, J. Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations. Renew. Energy
**2014**, 68, 58–66. [Google Scholar] [CrossRef] - Mahmodian, M.S.; Rahmani, R.; Taslimi, E.; Mekhilef, S. Step by step analyzing, modeling and simulation of single and double array PV system in different environmental variability. In Proceedings of the International Conference on Future Environment and Energy, Singapore, 26–28 February 2012; pp. 37–42. [Google Scholar]
- Seyedmahmoudian, M.; Horan, B.; Soon, T.K.; Rahmani, R.; Oo, A.M.T.; Mekhilef, S.; Stojcevski, A. State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems—A review. Renew. Sustain. Energy Rev.
**2016**, 64, 435–455. [Google Scholar] [CrossRef] - Ahmed, N.A.; Miyatake, M. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electr. Power Syst. Res.
**2008**, 78, 777–784. [Google Scholar] [CrossRef] - Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron.
**2010**, 26, 1022–1030. [Google Scholar] [CrossRef] - Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids. IEEE Trans. Ind. Electron.
**2011**, 60, 1596–1606. [Google Scholar] [CrossRef] - Bazzi, A.M.; Karaki, S.H. Simulation of a new maximum power point tracking technique for multiple photovoltaic arrays. In Proceedings of the 2008 IEEE International Conference on Electro/Information Technology, Ames, IA, USA, 18–20 May 2008; pp. 175–178. [Google Scholar]
- Yahyaoui, I.; Chaabene, M.; Tadeo, F. Evaluation of Maximum Power Point Tracking algorithm for off-grid photovoltaic pumping. Sustain. Cities Soc.
**2016**, 25, 65–73. [Google Scholar] [CrossRef] - Seyedmahmoudian, M.; Horan, B.; Rahmani, R.; Maung Than Oo, A.; Stojcevski, A. Efficient photovoltaic system maximum power point tracking using a new technique. Energies
**2016**, 9, 147. [Google Scholar] [CrossRef] - Pathy, S.; Subramani, C.; Sridhar, R.; Thentral, T.; Padmanaban, S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies
**2019**, 12, 1451. [Google Scholar] [CrossRef][Green Version] - Islam, H.; Mekhilef, S.; Shah, N.B.M.; Soon, T.K.; Seyedmahmousian, M.; Horan, B.; Stojcevski, A. Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies
**2018**, 11, 365. [Google Scholar] [CrossRef][Green Version] - Carannante, G.; Fraddanno, C.; Pagano, M.; Piegari, L. Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans. Ind. Electron.
**2009**, 56, 4374–4380. [Google Scholar] [CrossRef] - Chao, K.H.; Li, C.J. An intelligent maximum power point tracking method based on extension theory for PV systems. Expert Syst. Appl.
**2010**, 37, 1050–1055. [Google Scholar] [CrossRef] - Hsieh, G.C.; Hsieh, H.I.; Tsai, C.Y.; Wang, C.H. Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking. IEEE Trans. Power Electron.
**2012**, 28, 2895–2911. [Google Scholar] [CrossRef] - Kobayashi, K.; Takano, I.; Sawada, Y. A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. In Proceedings of the 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), Toronto, ON, Canada, 13–17 July 2003; Volume 4, pp. 2612–2617. [Google Scholar]
- Kobayashi, K.; Takano, I.; Sawada, Y. A study of a two-stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Electr. Eng. Jpn.
**2005**, 153, 39–49. [Google Scholar] [CrossRef] - Tey, K.S.; Mekhilef, S. Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron.
**2014**, 61, 5384–5392. [Google Scholar] - Lei, P.; Li, Y.; Seem, J.E. Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Trans. Sustain. Energy
**2011**, 2, 348–358. [Google Scholar] - Seyedmahmoudian, M.; Jamei, E.; Thirunavukkarasu, G.; Soon, T.; Mortimer, M.; Horan, B.; Stojcevski, A.; Mekhilef, S. Short-term forecasting of the output power of a building-integrated photovoltaic system using a metaheuristic approach. Energies
**2018**, 11, 1260. [Google Scholar] [CrossRef][Green Version] - Seyedmahmoudian, M.; Kok Soon, T.; Jamei, E.; Thirunavukkarasu, G.; Horan, B.; Mekhilef, S.; Stojcevski, A. Maximum power point tracking for photovoltaic systems under partial shading conditions using bat algorithm. Sustainability
**2018**, 10, 1347. [Google Scholar] [CrossRef][Green Version] - Seyedmahmoudian, M.; Mekhilef, S.; Rahmani, R.; Yusof, R.; Asghar Shojaei, A. Maximum power point tracking of partial shaded photovoltaic array using an evolutionary algorithm: A particle swarm optimization technique. J. Renew. Sustain. Energy
**2014**, 6, 023102. [Google Scholar] [CrossRef] - Shaiek, Y.; Smida, M.B.; Sakly, A.; Mimouni, M.F. Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Sol. Energy
**2013**, 90, 107–122. [Google Scholar] [CrossRef] - Taheri, H.; Salam, Z.; Ishaque, K. A Novel Maximum Power Point Tracking Ccontrol of Photovoltaic System under Partial and Rapidly Fluctuating Shadow Conditions Using Differential Evolution. In Proceedings of the 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA), Penang, Malaysia, 3–5 October 2010; pp. 82–87. [Google Scholar]
- Nguyen, T.L.; Low, K.S. A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans. Ind. Electron.
**2010**, 57, 3456–3467. [Google Scholar] [CrossRef] - Liu, Y.H.; Huang, S.C.; Huang, J.W.; Liang, W.C. A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers.
**2012**, 27, 1027–1035. [Google Scholar] [CrossRef] - Miyatake, M.; Veerachary, M.; Toriumi, F.; Fujii, N.; Ko, H. Maximum power point tracking of multiple photovoltaic arrays: A PSO approach. IEEE Trans. Aerosp. Electron. Syst.
**2011**, 47, 367–380. [Google Scholar] [CrossRef] - Mäki, A.; Valkealahti, S. Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans. Energy Convers.
**2011**, 27, 173–183. [Google Scholar] [CrossRef] - Wang, Y.J.; Hsu, P.C. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy
**2011**, 36, 3069–3078. [Google Scholar] [CrossRef] - Chao, R.M.; Ko, S.H.; Lin, H.K.; Wang, I.K. Evaluation of a distributed photovoltaic system in grid-connected and standalone applications by different MPPT algorithms. Energies
**2018**, 11, 1484. [Google Scholar] [CrossRef][Green Version] - Rahmani, R.; Yusof, R. A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: Radial movement optimization. Appl. Math. Comput.
**2014**, 248, 287–300. [Google Scholar] - Seyedmahmoudian, M.; Soon, T.K.; Horan, B.; Ghandhari, A.; Mekhilef, S.; Stojcevski, A. New ARMO-based MPPT Technique to Minimize Tracking Time and Fluctuation at Output of PV Systems under Rapidly Changing Shading Conditions. IEEE Trans. Ind. Inform.
**2019**. [Google Scholar] [CrossRef]

**Figure 2.**Photovoltaic (PV) system architectures: (

**a**) Decentralized architecture of solar PV systems. (

**b**) Centralized architecture of solar PV systems.

**Figure 4.**Operational flow of Radial Movement Optimization [34].

**Figure 5.**Exploration pattern of particles along the radii in RMO techniqueue [34].

**Figure 6.**Vector diagram representing the center update process [34].

**Figure 7.**Updating process of the center point in two consecutive iterations [34].

**Figure 9.**Photovoltaic system configuration and shading patterns of each module under testing scenario 1.

**Figure 10.**Three-dimensional power–voltage characteristics of a distributed PV system (

**a**) and output performance of the radial movement optimization (RMO) MPPT technique under testing scenario 1 (

**b**).

**Figure 11.**Photovoltaic system configuration and shading patterns of each module under testing scenario 2.

**Figure 12.**Three-dimensional power–voltage characteristics of a distributed PV system (

**a**) and output performance of the RMO MPPT technique under testing scenario 2 (

**b**).

**Figure 13.**Photovoltaic system configuration and shading patterns of each module under testing scenario 3.

**Figure 14.**Three-dimensional power–voltage characteristics of a distributed PV system (

**a**) and output performance of the RMO MPPT technique under testing scenario 3 (

**b**).

**Figure 15.**Photovoltaic system configuration and shading patterns of each module under testing scenario 4.

**Figure 17.**Photovoltaic system configuration and shading patterns of each module under testing scenario 5.

S. No. | Type of Optimization | System Architecture | Year of Publication | Reference |
---|---|---|---|---|

1 | Fibonacci search algorithm | Decentralised | 2008 | Ahmed et al., [8] |

2 | Fuzzy logic-based hill climbing search method | Decentralised | 2011 | Alajmi et al., [9] |

3 | Modified fuzzy logic control | Centralised | 2013 | Alajmi et al., [10] |

4 | Petrub and Observe (P&O) or ripple correlation control method | Centralised | 2008 | Bazzi et al., [11]; Yahyaoui et al.,[12] |

5 | Improved P&O | Decentralised | 2009 | Carannante et al., [16] |

6 | Extension theory | Centralised | 2010 | Chao at al., [17] |

7 | Power increment aidedincremental conductance | Decentralised | 2013 | Hsieh et al., [18] |

8 | Two-state MPPT | Decentralised | 2006 | Kobayashi et al., [19,20] |

9 | Modified incremental conductance | Decentralised | 2014 | Tey et al., [21] |

10 | Extremum seeking control | Decentralised | 2011 | Lei et al., [22] |

11 | Radial movement optimization | Decentralised | 2016 | Seyedmahmoudian et al., [13] |

12 | DEPSO | Decentralised | 2018 | Seyedmahmoudian et al., [23] |

13 | BAT | Decentralised | 2018 | Seyedmahmoudian et al., [24] |

14 | PSO | Decentralised | 2014 | Seyedmahmoudian et al., [25] |

15 | GA | Decentralised | 2013 | Shaiek et al., [26] |

16 | DE | Decentralised | 2010 | Taheri et al., [27] |

17 | Direct Search Algorithm | Decentralised | 2010 | Nguyen et al., [28] |

18 | PSO | Centralised | 2012 | Liu et al., [29] |

S. No. | Centralized | Decentralized |
---|---|---|

1 | MPPT is moderate | MPPT is accurate |

2 | High control dynamics | Medium control dynamics |

3 | Clear and dynamic system performance | Maximum flexibility in plant design with clear system performance |

4 | Low system price due to the smaller number of sensors and controllers required | Low installation cost, but the system cost is high due to the larger number of sensors and converters in the system architecture |

5 | Efficiency of the system under PSC is low | Power loss due to PSC is reduced |

PV-System Architectures | Cost | Efficiency | MPPT Tracking Under PSC | Reliability | Scalability |
---|---|---|---|---|---|

Centralized | Low | Very Low | No | Low | High |

Decentralized | High | High | Yes | Moderate | Moderate |

Distributed | Moderate | High | Yes | High | High |

Evaluated Parameter | InC | PSO | MPSO | GWO | RMO |
---|---|---|---|---|---|

MPPT tracking under PSC | No | Yes | Yes | Yes | Yes |

Simplicity | High | Moderate | Moderate | Moderate | High |

Efficiency | Low | High | High | High | Very High |

Reliability | Low | Moderate | Moderate | Moderate | High |

Initial location dependency | Yes | Yes | No | Yes | No |

Tracking Speed | High | Moderate | Moderate | Moderate | High |

Steady state oscillation | Yes | No | No | No | No |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Seyedmahmoudian, M.; Thirunavukkarasu, G.S.; Jamei, E.; Soon, T.K.; Horan, B.; Mekhilef, S.; Stojcevski, A.
A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller. *Sustainability* **2020**, *12*, 6687.
https://doi.org/10.3390/su12166687

**AMA Style**

Seyedmahmoudian M, Thirunavukkarasu GS, Jamei E, Soon TK, Horan B, Mekhilef S, Stojcevski A.
A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller. *Sustainability*. 2020; 12(16):6687.
https://doi.org/10.3390/su12166687

**Chicago/Turabian Style**

Seyedmahmoudian, Mehdi, Gokul Sidarth Thirunavukkarasu, Elmira Jamei, Tey Kok Soon, Ben Horan, Saad Mekhilef, and Alex Stojcevski.
2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller" *Sustainability* 12, no. 16: 6687.
https://doi.org/10.3390/su12166687