A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels
Abstract
:1. Introduction
1.1. Photovoltaic Types
1.2. Micro-Cracks
1.3. Litrature Review
1.3.1. Analysis of µcracks
1.3.2. The Effect of Environmental Factors on µcracks Development
1.3.3. µcrack Detection Methods
2. Materials and Methods
3. Results
3.1. Category 1: µcracks before Installation (Last Stage of the Production Line) before Being Delivered to the Site
3.2. Category 2: µcracks after Installation
3.2.1. Group 1: Poly-Crystalline 3BB
3.2.2. Group 2: Poly-Crystalline 5BB
3.2.3. Group 3: Mono-Crystalline 4BB
3.2.4. Group 4: Mono-Crystalline 5BB
3.3. Discussion of µcracks Influence on Payback Period
4. Conclusions and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El hendouzi, A.; Bourouhou, A.; Ansari, O. The Importance of Distance between Photovoltaic Power Stations for Clear Accuracy of Short-Term Photovoltaic Power Forecasting. J. Electr. Comput. Eng. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Almeshaiei, E.; Al-Habaibeh, A.; Shakmak, B. Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems’ manufacturers. J. Clean. Prod. 2020, 244, 118788. [Google Scholar] [CrossRef]
- Mathias, N.; Shaikh, F.; Thakur, C.; Shetty, S.; Dumane, P.; Chavan, S. Detection of Micro-Cracks in Electroluminescence Images of Photovoltaic Modules. SSRN J. 2020. [Google Scholar] [CrossRef]
- Bekkelund, K. A Comparative Life Cycle Assessment of PV Solar Systems. Master’s Thesis, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- Ghazi, S.; Ip, K. The effect of weather conditions on the efficiency of PV panels in the southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Al-Addous, M.; Dalala, Z.; Alawneh, F.; Class, C.B. Modeling and quantifying dust accumulation impact on PV module performance. Sol. Energy 2019, 194, 86–102. [Google Scholar] [CrossRef]
- Abu-Rumman, G.; Khdair, A.I.; Khdair, S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef] [PubMed]
- NEPCO. National Electric Power Company Annual Report 2018; NEPCO: Amman, Jordan, 2018. [Google Scholar]
- PI Berlin, Industry Trends in PV Module Quality from over 250 Factory Audits; PI Photovoltaik-Institut Berlin AG: Berlin, Germany, 2019.
- Bagher, M.A. Types of Solar Cells and Application. AJOP 2015, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Fraunhofer, I.S.E. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2019. [Google Scholar]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Köntges, M.; Kajari-Schröder, S.; Kunze, I.; Jahn, U. Crack Statistic of Crystalline Silicon Photovoltaic Modules. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Berlin/Heidelberg, Germany, 5–9 September 2011; pp. 3290–3294. [Google Scholar] [CrossRef]
- Bdour, M.; Al-Sadi, A. Analysis of Different Microcracks Shapes and the Effect of Each Shape on Performance of PV Modules; ICEEESM: Barcelona, Spain, 2020. [Google Scholar]
- Spataru, S.; Hacke, P.; Sera, D. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; IEEE: Portland, OR, USA, 2016; pp. 1602–1607. [Google Scholar]
- Gu, X.; Liu, Z.; Qiu, Y.; Cao, C.; Lim, M.T. An Effective Method On Evaluating Photovoltaic Module Snail Trail. Energy Procedia 2018, 150, 58–65. [Google Scholar] [CrossRef]
- Peshek, T.J.; Fada, J.S.; Martin, I.T. Degradation Processes in Photovoltaic Cells. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 97–118. ISBN 978-0-12-811545-9. [Google Scholar]
- Papargyri, L.; Theristis, M.; Kubicek, B.; Krametz, T.; Mayr, C.; Papanastasiou, P.; Georghiou, G.E. Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: A review. Renew. Energy 2020, 145, 2387–2408. [Google Scholar] [CrossRef]
- Köntges, M.; Kunze, I.; Kajari-Schröder, S.; Breitenmoser, X.; Bjørneklett, B. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells 2011, 95, 1131–1137. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. The impact of cracks on photovoltaic power performance. J. Sci. Adv. Mater. Devices 2017, 2, 199–209. [Google Scholar] [CrossRef]
- Dhimish, M. Micro cracks distribution and power degradation of polycrystalline solar cells wafer: Observations constructed from the analysis of 4000 samples. Renew. Energy 2020, 145, 466–477. [Google Scholar] [CrossRef]
- Kajari-Schršder, S.; Kunze, I.; Kšntges, M. Criticality of Cracks in PV Modules. Energy Procedia 2012, 27, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Santhakumari, M.; Sagar, N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renew. Sustain. Energy Rev. 2019, 110, 83–100. [Google Scholar] [CrossRef]
- Ustun, T.S.; Nakamura, Y.; Hashimoto, J.; Otani, K. Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan. Renew. Energy 2019, 136, 159–178. [Google Scholar] [CrossRef]
- Paggi, M.; Sapora, A. Numerical Modelling of Microcracking in PV Modules Induced by Thermo-mechanical Loads. Energy Procedia 2013, 38, 506–515. [Google Scholar] [CrossRef]
- Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F.; Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 2019, 185, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhao, H.; Han, D.; Liu, K. Accurate and robust crack detection using steerable evidence filtering in electroluminescence images of solar cells. Opt. Lasers Eng. 2019, 118, 22–33. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, L. Crystalline Silicon PV Module Field Failures. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–216. ISBN 978-0-12-811545-9. [Google Scholar]
- Liu, D. (Ed.) Lecture Notes in Computer Science. In Proceedings of the Advances in Neural Networks--ISNN 2007: 4th International Symposium on Neural Networks, ISNN 2007, Nanjing, China, 3–7 June 2007; Springer: Berlin, Germany; New York, NY, USA, 2007; ISBN 978-3-540-72382-0. [Google Scholar]
- Dhimish, M.; Holmes, V.; Mather, P. Novel Photovoltaic Micro Crack Detection Technique. IEEE Trans. Device Mater. Relib. 2019, 19, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Spataru, S.; Hacke, P.; Sera, D.; Glick, S.; Kerekes, T.; Teodorescu, R. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; IEEE: New Orleans, LA, USA, 2015; pp. 1–6. [Google Scholar]
- IEC. Photovoltaic Devices–Part 9: Solar Simulator Performance Requirements; IEC: Geneva, Switzerland, 2006. [Google Scholar]
- IEC. Terrestrial Photovoltaic (PV) Modules–Design Qualification and Type Approval; IEC: Geneva, Switzerland, 2016. [Google Scholar]
Groups (Based on BB Numbers) | Number of Samples | Location | Year |
---|---|---|---|
Category 1 | |||
Mixed | 27 | After production | 2019 |
Category 2 | |||
1 (3 BB-Poly) | 2 | Dabouq and Al-Qastal (both in Amman) | 2016 |
2 (5 BB-Poly) | 8 * | Ein Al-Basha | 2019 |
3 (4 BB-Mono) | 2 | Al-Mafrag | 2016 |
4 (5 BB-Mono) | 5 | Al-Qastal | 2019 |
IEC904-9 ed.2 Compliance | |||
---|---|---|---|
Spectrum < ±25% | A | A | A |
Non-Uniformity < ±2% | A | A | A |
Short term instability (STI) < 0.5% | A | A | A |
Sample Nr. | Analysis | Number of Broken Cells | Category | Actual Power | Nameplate Label (0 + 3%) | Drop in Power (Watt) | % Power Drop |
---|---|---|---|---|---|---|---|
1 | Dendritic in 1 cell and 4 diagonal to bus bars and 1 vertical. | 6 | dendritic, vertical, diagonal | 333.303 | 330 | N/A | N/A |
2 | 3 diagonal, 3 vertical and 5 dendritic with no dark areas. | 11 | vertical | 330.255 | 330 | N/A | N/A |
3 | 2 dendritic and 1 vertical | 3 | Dendritic and vertical | 332.291 | 330 | N/A | N/A |
4 | * 5 dendritic and 5 Parallel to bus bars (vertical). | 10 | dendritic and vertical | 326.297 | 330 | At least 3.703 | 1.12 |
5 | * V shape on one bus bar (Other) | 1 | vertical and others | 336.293 | 330 | No drop | N/A |
6 | parallel to bus bar (vertical) | 11 | vertical | 330.327 | 330 | No drop | N/A |
7 | broken cell from edge (others) | 1 | others | 331.778 | 330 | No drop | N/A |
8 | dendritic | 1 | dendritic | 331.464 | 330 | No drop | N/A |
9 | Vertical with dark areas | 3 | vertical | 331.464 | 330 | No drop | N/A |
10 | broken cell from edge | 1 | others | 334.898 | 330 | No drop | N/A |
11 | broken cell on busbar/vertical | 1 | vertical | 334.693 | 330 | No drop | N/A |
12 | Dendritic with dark area | 1 | dendritic | 333.974 | 330 | No drop | N/A |
13 | vertical | 4 | vertical | 333.974 | 330 | No drop | N/A |
14 | vertical | 4 | vertical | 333.899 | 330 | No drop | N/A |
15 | diagonal on 4 cells 2 cells have dark impurities on wafers (others) | 4 | others | 332.057 | 330 | No drop | N/A |
16 | dendritic | 1 | dendritic | 332.091 | 330 | No drop | N/A |
17 | Diagonal | 14 | diagonal | 332.301 | 330 | No drop | N/A |
18 | Diagonal | 2 | diagonal | 332.301 | 330 | No drop | N/A |
19 | dendritic | 2 | dendritic | 332.022 | 330 | No drop | N/A |
20 | dendritic | 1 | dendritic | 335.468 | 330 | No drop | N/A |
21 | impact crack (others) | 1 | others | 332.476 | 330 | No drop | N/A |
22 | horizontal crack | 4 | horizontal | 331.508 | 330 | No drop | N/A |
23 | horizontal crack | 5 | horizontal | 330.6 | 330 | No drop | N/A |
24 | 1 dendritic 1 horizontal | 2 | dendritic and horizontal | 330.315 | 330 | No drop | N/A |
25 | broken cell on busbar (vertical with dark area) | 1 | vertical | 330.49 | 330 | No drop | N/A |
26 | * 4 diagonal and 1 dendritic | 5 | Dendritic and vertical | 329.051 | 330 | At least 0.949 | 0.28 |
27 | * Dendritic with dark areas | 4 | dendritic | 325.786 | 330 | At least 4.214 | 1.27 |
Sample Nr. | Analysis | Number of Broken Cells | Category | Actual Power | Nameplate Label (0 + 3%) | Drop in Power (Watt) | % Power Drop (after Discarding LID) |
---|---|---|---|---|---|---|---|
1 (Installed for 4 months in Amman-Dabouq from June–November 2016) | Parallel to busbar (vertical) with dark areas in 9 cells and 2 without dark areas | 11 | Vertical and dark areas | 241 | 250 | 8 | 3.21 |
2 (Installed for 2 months in Amman-Al-Qastal from February–March 2016) | Parallel (vertical) to the bus bar with dark areas in 8 cells and 3 without dark areas. (Backsheet scratch detected in the first string). | 11 | Vertical and dark areas | 245.8 | 250 | 3.405 | 1.36 |
Analysis | Dendritic and Vertical (after Exposed on Site for Two Weeks Then Shipped to Jordan) |
---|---|
Number of µcracks | 31 |
Category | dendritic and vertical |
Actual Power | 321 |
Nameplate label (0 + 3%) | 330 |
Actual power once sold | 330 |
Drop in power per (W) | 4.05 |
Power drop in (%) after discarding LID | 1.22 |
Analysis | Number of µcracks | Category | Actual Power | Nameplate Label (0 + 3%) | Power Drop (W) | Power Drop in % after Removing LID |
---|---|---|---|---|---|---|
Impact crack, vertical besides some dark areas in some cells | 2 | Impact and vertical | 320.6 | 325 | 2.52 | 0.78 |
Original power | ||||||
328.06 | ||||||
Parallel on all bus bars-4 cells/vertical | 4 | Vertical | 316.946 | 325 | 4.51 | 1.4 |
Original power | ||||||
326.36 | ||||||
dendritic-1 cell and vertical 3 | 4 | Dendritic and Vertical | 316.341 | 325 | 5.9 | 1.8 |
Original power | ||||||
327.15 | ||||||
* parallel to bus bar 4 and 5 dendritic | 9 | Dendritic and Vertical | 316.345 | 325 | 6.54 | 2.02 |
Original power | ||||||
327.806 | ||||||
horizontal and vertical | 5 | horizontal and vertical | 316.301 | 325 | 3.28 | 1.01 |
Original power | ||||||
324.452 | ||||||
vertical to bus bar | 5 | vertical | 316.926 | 325 | 5.31 | 1.64 |
Original power | ||||||
327.145 | ||||||
vertical to bus bar | 4 | vertical | 319.8 | 325 | 2.8 | 0.86 |
Original power | ||||||
327.609 |
Analysis | Number of µcracks | Category | Actual Power | Nameplate Label (0 + 3%) | Drop in Power (W) | Power Drop in % after Discarding LID |
---|---|---|---|---|---|---|
Dark cell, dendritic vertical and other * plus 24 Light cells | 6 | Dendritic, vertical, dark cell and tangent Micro cracks | 324.4 | 360 | 31.202 | 8.77 |
Originally it was 366.6 W | ||||||
Vertical, dendritic with the dark area and tangent micro cracks | 5 | Dendritic with the dark area, vertical and tangent micro cracks | 345 | 360 | 8.565 | 2.42 |
Originally it was 364.5 W |
Analysis | Number of µcracks | Category | Actual Power | Nameplate Label (0 + 3%) | Power Drop (W) | Power Drop in % after Discarding LID |
---|---|---|---|---|---|---|
* Vertical micro cracks | 2 | vertical | 359.026 | 370 | 3.22 | 0.89 |
S.N: | original power | |||||
PS170219553493 | 373.454 W | |||||
Impact crack | 1 | Impact (others) | 358.485 | 370 | 0.80 | 0.22 |
S.N: | original power | |||||
PS170219555091 | 370.405 W | |||||
Vertical micro cracks | 2 | vertical | 358.709 W | 370 | 1.94 | 0.53 |
S.N: | original power | |||||
PS170219566646 | 371.805 W | |||||
Vertical | 1 | Vertical | 359.441 | 370 | 1.36 | 0.37 |
S.N: | original power | |||||
PS170219550530 | 371.959 W | |||||
Others (dark areas) | Not counted | Others | 360.048 | 370 | 2.7 | 0.74 |
S.N: | original power | |||||
PS170219596750 | 373.985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bdour, M.; Dalala, Z.; Al-Addous, M.; Radaideh, A.; Al-Sadi, A. A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels. Sustainability 2020, 12, 6416. https://doi.org/10.3390/su12166416
Bdour M, Dalala Z, Al-Addous M, Radaideh A, Al-Sadi A. A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels. Sustainability. 2020; 12(16):6416. https://doi.org/10.3390/su12166416
Chicago/Turabian StyleBdour, Mathhar, Zakariya Dalala, Mohammad Al-Addous, Ashraf Radaideh, and Aseel Al-Sadi. 2020. "A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels" Sustainability 12, no. 16: 6416. https://doi.org/10.3390/su12166416
APA StyleBdour, M., Dalala, Z., Al-Addous, M., Radaideh, A., & Al-Sadi, A. (2020). A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels. Sustainability, 12(16), 6416. https://doi.org/10.3390/su12166416