Ultra-Processed Foods and Food System Sustainability: What Are the Links?
Abstract
:1. Introduction
2. Which Are the Ingredients/Additives Characteristic of Ultra-Processing, and What Is Their Origin?
3. Ultra-Processing, Environment, Biodiversity and Animal Welfare
3.1. General Considerations
3.2. Food Processing and Carbon/Water Footprint
3.2.1. Discretionary Foods
3.2.2. Ultra-Processed Food-Like Products within Dietary Patterns
3.2.3. What to Do When Ultra-Processed/Discretionary Foods Are Not Available?
3.3. Ultra-Processed Foods and Intensive Agriculture and Livestock
3.3.1. Industrial Farming/Agriculture
3.3.2. Intensive Livestock
3.3.3. Loss of Farming Animal Biodiversity
3.3.4. Plastic Pollution
3.4. Energy Consumption in Food Manufacturing, Packaging and Transport
3.4.1. Energy by Food Groups and Processes
3.4.2. Packaging and Transport
3.4.3. Ultra-Processing?
3.4.4. Emerging Techniques
- -
- Their capacity to preserve foods by avoiding successive conditions of severe heating/cooling, which contribute to considerable water and heat consumption minimization; and
- -
- Electricity as the basis of the energy consumption source of such techniques, with an important contribution of renewable resources instead of the direct combustion of fossil fuels required for heat generation in conventional thermal treatments [100].
3.5. Partial Conclusions
4. Ultra-Processed Foods, and Cultural and Socio-Economic Dimensions
4.1. Ultra-Processed Foods and Culinary Traditions
4.2. Ultra-Processed Foods and Socioeconomics
4.2.1. The Socioeconomic Profiles of the High UPF Consumers
- -
- In France, a higher consumption of UPFs was independently associated with being male, being younger, having a lower income level, smoking, being overweight, being obese, and having a lower level of education [114].
- -
- The Spanish SUN cohort of young university graduates, who have a high level of education, revealed other associated factors, including sedentary activities (computer, television) and a high total fat intake together with a low protein and carbohydrate intake [115].
- -
- In the USA, the highest consumers of UPFs (NHANES cohort, 1988–1994) are more likely to be younger, male, non-Hispanic White and current smokers and are less likely to have less than a high school level of education or to have a household income of more than 350% of the poverty level [116]. Similar results in the USA were obtained in the NHANES cohort (2009–2014), showing that subjects who have an income-to-poverty ratio <3.5, 12 years of education, and low physical activity and who are current smokers present the highest UPF consumption [117].
- -
- In South Korea, energy drink intake in Korean adolescents, in isolation or in combination with junk food consumption, was shown to have detrimental effects related to stress, sleep dissatisfaction, mood, and suicidality [118]. Concerning social isolation, Bae et al. showed that adolescent female rats’ body weight gain and daily chow intake were significantly increased by this stress, suggesting that social isolation during adolescence may increase food intake, perhaps preferentially towards palatable food [119]. This result was confirmed in mice that become obese under social isolation stress [120]. Surprisingly, however, although social isolation generally increases the risk of type 2 diabetes, socially connected obese participants pose a higher risk of type 2 diabetes than socially isolated obese participants, potentially because the stigmatization of obesity leads to negative social interactions [121]. Indeed, overweight youth are more likely to experience verbal victimization, feel less supported by their peers, and are less likely to date than youth who are not overweight from mid-adolescence into early young adulthood [122].
4.2.2. Ultra-Processed Foods and Small Farmers
4.3. Partial Conclusions
5. Conclusions
5.1. A Global Synthesis from Published Data
5.2. Non-UPF Versus UPF?
6. Perspectives: What Measures to Take?
6.1. Better Consideration of the Degree of Processing in Science and Food Policy
6.2. The 3V’s RULE Proposal to Counteract Excess UPF Consumption
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADEME | French Environment & Energy Management Agency |
FAO | Food and Agriculture Organization of the United Nations |
GHGE | Green House Gas Emission |
LCA | Life Cycle Assessment |
PAHO | Pan American Health Organization |
UNICEF | United Nations Children’s Fund |
UPF | Ultra-Processed Food |
WHO | World health Organization |
References
- Keding, G.B.; Schneider, K.; Jordan, I. Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. Food Secur. 2013, 5, 825–846. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Fulgoni, V.L., III; Clemens, R.A.; Schmidt, D.B.; Freedman, M.R. Is “processed” a four-letter word? The role of processed foods in achieving dietary guidelines and nutrient recommendations. Adv. Nutr. 2012, 3, 536–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becquey, E.; Savy, M.; Danel, P.; Dabiré, H.B.; Tapsoba, S.; Martin-Prével, Y. Dietary patterns of adults living in Ouagadougou and their association with overweight. Nutr. J. 2010, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, M.I.; Ricketts, K.D. Food value chain transformations in developing countries: Selected hypotheses on nutritional implications. Food Policy 2013, 42, 139–150. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity and Overweight. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 May 2020).
- WHO. World Report on Diabetes; WHO: Genève, Switzerland, 2016. [Google Scholar]
- The Lancet Commission. The Global Syndemic of Obesity, Undernutrition and Climate Change: The Lancet Commission Report; Lancet: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- PAHO; WHO. Ultra-Processed Food and drink Products in Latin America: Sales, Sources, Nutrient Profiles, and Policy Implications; PAHO, WHO: Washington, DC, USA, 2019; pp. 1–72. [Google Scholar]
- FAO; Monteiro, C.A.; Cannon, G.; Lawrence, M.; Louzada, M.L.d.C.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019; pp. 1–48. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health of Brazil. Dietary Guidelines for the Brazilian Population; Ministry of Health of Brazil, Secretariat of Health Care, Primary Health Care Department: São Paulo, Brazil, 2014; pp. 1–80. [Google Scholar]
- Fardet, A.; Rock, E. Ultra-processed foods: A new holistic paradigm? Trends Food Sci. Technol. 2019, 93, 174–184. [Google Scholar] [CrossRef]
- Davidou, S.; Christodoulou, A.; Fardet, A.; Frank, K. The holistico-reductionist Siga classification according to degree of food processing: An evaluation of ultra-processed foods in French supermarkets. Food Funct. 2020, 11, 2026–2039. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. Saude Publica 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.L.; Fanzo, J.C.; Cogill, B. Understanding Sustainable Diets: A Descriptive Analysis of the Determinants and Processes That Influence Diets and Their Impact on Health, Food Security, and Environmental Sustainability. Adv. Nutr. 2014, 5, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Luiten, C.M.; Steenhuis, I.H.; Eyles, H.; Ni Mhurchu, C.; Waterlander, W.E. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr. 2016, 19, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Hawk, T.; Aggarwal, A.; Drewnowski, A. Characterizing ultra-processed foods by energy density, nutrient density and cost. Front. Nutr. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, P.P.; Claro, R.M.; Canella, D.S.; Sarti, F.M.; Levy, R.B. Price and convenience: The influence of supermarkets on consumption of ultra-processed foods and beverages in Brazil. Appetite 2017, 116, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.R.P.A. The partnership between the Brazilian School Feeding Program and family farming: A way for reducing ultra-processed foods in school meals. Public Health Nutr. 2018, 21, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Pan American Health Organization. Ultra-Processed Food and Drink Products in Latin America: Trends, Impact on Obesity, Policy Implications; Pan American Health Organization: Washington, DC, USA, 2015; pp. 1–76. [Google Scholar]
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef]
- Maillot, M.; Darmon, N.; Vieux, F.; Drewnowski, A. Low energy density and high nutritional quality are each associated with higher diet costs in French adults. Am. J. Clin. Nutr. 2007, 86, 690–696. [Google Scholar] [PubMed]
- Monteiro, C.; Cannon, G.; Levy, R.; Moubarac, J.C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Chazelas, E.; Deschasaux, M.; Srour, B.; Kesse-Guyot, E.; Julia, C.; Alles, B.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Food additives: Distribution and co-occurrence in 126,000 food products of the French market. Sci. Rep. 2020, 10, 3980. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B. Ultra-processed foods’ impacts on health. In 2030/Food, Agriculture and Rural Development in Latin America and the Caribbean; No. 34; Food and Agriculture Organization of the United Nation: Santiago, Chile, 2019. [Google Scholar]
- Fanzo, J.; Davis, C. Can Diets Be Healthy, Sustainable, and Equitable? Curr. Obes. Rep. 2019, 8, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Synthesis of Guiding Principles on Agriculture Programming for Nutrition; FAO: Rome, Italy, 2013; pp. 1–93. [Google Scholar]
- Agriculture-Nutrition Community of Practice Key Recommendations for Improving Nutrition through Agriculture. Available online: http://unscn.org/files/Agriculture-Nutrition-CoP/Agriculture-Nutrition_Key_recommendations.pdf (accessed on 11 May 2020).
- FAO. Strengthening Sector Policies for Better Food Security and Nutrition Results. Food Systems for Healthy Diets; FAO: Rome, Italy, 2019; pp. 1–48. [Google Scholar]
- Comité de la Sécurité Alimentaire Mondiale/Groupe d’Experts de Haut Niveau (HLPE-FAO). Approches Agroécologiques et Autres Approches Innovantes Pour Une Agriculture Durable et des Systèmes Alimentaires qui Améliorent la Sécurité Alimentaire et la Nutrition; Extrait du Rapport; HLPE-FAO: Rome, Italy, 2019; pp. 1–16. [Google Scholar]
- Solagro. Afterres2050: Un Scénario Soutenable Pour L’agriculture et L’utilisation des Terres en France à L’horizon 2050; Solagro: Toulouse, France, 2014; pp. 1–63. [Google Scholar]
- Le Mouël, C.; de Lattre-Gasquet, M.; Mora, O. Land Use and Food Security in 2050: A Narrow Road (Agrimonde-Terra); Quaé: Versailles, France, 2018; pp. 1–403. [Google Scholar]
- Monteiro, C. The big issue is ultra-processing. World Nutr. 2010, 1, 237–269. [Google Scholar]
- Clarke, B. High-Hopes for Post-Harvest—A New Look at Village-Scale Crop Processing; FAO: Roma, Italy, 2004; pp. 1–36. [Google Scholar]
- Riegel, M.; Schneider, K.; Zach, K.; Hoffmann, I. Nutrition ecological assessment of processed foods. In Proceedings of the International Sustainability Conference, Basel, Switzerland, 13–14 October 2005; p. 1. [Google Scholar]
- Combe, M. L’empreinte Carbone et Energétique de L’alimentation Décortiquée. Techniques de L’ingenieur. 2019. Available online: https://www.techniques-ingenieur.fr/actualite/articles/lempreinte-carbone-et-energetique-de-lalimentation-decortiquee-64142/ (accessed on 1 August 2019).
- Van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020. [Google Scholar] [CrossRef]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of Energy and Excessive Discretionary Food Intake Inflates Dietary Greenhouse Gas Emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardet, A.; Rock, E. Reductionist nutrition research has meaning only within the framework of holistic thinking. Adv. Nutr. 2018, 9, 655–670. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Anastasiou, K.; Hendrie, G.A. Diet Quality and Water Scarcity: Evidence from a Large Australian Population Health Survey. Nutrients 2019, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Hadjikakou, M. Trimming the excess: Environmental impacts of discretionary food consumption in Australia. Ecol. Econ. 2017, 131, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Reusser, D.E.; Kropp, J.P. Embodied Greenhouse Gas Emissions in Diets. PLoS ONE 2013, 11, e0159285. [Google Scholar] [CrossRef] [Green Version]
- Barré, T.; Perignon, M.; Gazan, R.; Vieux, F.; Micard, V.; Amiot, M.J.; Darmon, N. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: How low should we reduce meat consumption? PLoS ONE 2018, 13, e0191767. [Google Scholar] [CrossRef] [Green Version]
- Masset, G.; Soler, L.G.; Vieux, F.; Darmon, N. Identifying Sustainable Foods: The Relationship between Environmental Impact, Nutritional Quality, and Prices of Foods Representative of the French Diet. J. Acad. Nutr. Diet. 2014, 114, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Seconda, L.; Baudry, J.; Alles, B.; Boizot-Szantai, C.; Soler, L.G.; Galan, P.; Hercberg, S.; Langevin, B.; Lairon, D.; Pointereau, P.; et al. Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions. Clim. Chang. 2018, 148, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E. Greenhouse gas emissions of self-selected diets in the UK and their association with diet quality: Is energy under-reporting a problem? Nutr. J. 2018, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, K.K.; Rayner, M.; Goldacre, M.; Townsend, N.; Scarborough, P. Contribution of healthy and unhealthy primary school meals to greenhouse gas emissions in England: Linking nutritional data and greenhouse gas emission data of diets. Eur. J. Clin. Nutr. 2016, 70, 1162–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Ma, C.B.; Schilizzi, S.; Zhang, F. China’s changing diet and its impacts on greenhouse gas emissions: An index decomposition analysis. Aust. J. Agric. Resour. Econ. 2018, 62, 45–64. [Google Scholar] [CrossRef]
- Green, R.F.; Joy, E.J.M.; Harris, F.; Agrawal, S.; Aleksandrowicz, L.; Hillier, J.; Macdiarmid, J.I.; Milner, J.; Vetter, S.H.; Smith, P.; et al. Greenhouse gas emissions and water footprints of typical dietary patterns in India. Sci. Total Environ. 2018, 643, 1411–1418. [Google Scholar] [CrossRef]
- Green, R.; Milner, J.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Markandya, A.; Spadaro, J.; Wilkinson, P. The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim. Chang. 2015, 129, 253–265. [Google Scholar] [CrossRef]
- Kanemoto, K.; Moran, D.; Shigetomi, Y.; Reynolds, C.; Kondo, Y. Meat Consumption Does Not Explain Differences in Household Food Carbon Footprints in Japan. One Earth 2019, 1, 464–471. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Haines, A.; Green, R. Sustainable Diet Studies Show Co-Benefits for Greenhouse Gas Emissions and Public Health. Adv. Nutr. 2015, 6, 282–283. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Baiocchi, G.; Feng, K.; Hubacek, K.; Yu, Y. Environmental impacts of dietary quality improvement in China. J. Environ. Manag. 2019, 240, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M. Linkages between trace elements in food crops and human health. In Micronutrient Deficiencies in Global Crop Production; Alloway, I.B.J., Ed.; Springer: London, UK, 2008; pp. 287–309. [Google Scholar]
- Dinham, B.; Hines, C. Agribusiness in Africa—A Study of the Impact of Big Business on Africa’s Food and Agricultural Production; Earth Resources Research Ltd.: London, UK, 1983. [Google Scholar]
- Lall, S. Understanding Technology Development. Dev. Chang. 1993, 24, 719–753. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicago Council on Global Affairs. Bringing agriculture to the table. In How Agriculture and Food Can Play a Role in Preventing Chronic Disease; The Council: Chicago, IL, USA, 2011; pp. 1–88. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin Iii, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472. [Google Scholar] [CrossRef] [PubMed]
- Gold, K.; McBurney, R.P.H. Conservation of plant biodiversity for sustainable diets. In Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action; Burlingame, B.D.S., Ed.; Food and Agriculture Organization: Rome, Italy, 2012; pp. 108–115. [Google Scholar]
- FAO. Agricultural biotechnology in developing countries: Options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change (ABDC-10). In Current Status and Options for Biotechnologies in Food Processing and in Food Safety in Developing Countries; Food and Agriculture Organization of the United Nations: Roma, Italy, 2010; pp. 1–53. Available online: http://www.fao.org/3/mb384e/mb384e.pdf (accessed on 11 May 2020).
- FAO. Soil Pollution, a Hidden Reality; FAO: Roma, Italy, 2018; pp. 1–156. [Google Scholar]
- Amis de la Terre Europe (Friends of the Earth Europe). L’atlas de la Viande—La Réalité et les Chiffres sur les Animaux que nous Consommons; Friends of the Earth Europe: Brussels, Belgique, 2015; pp. 1–68. [Google Scholar]
- FAO. Principles for the Assessment of Livestock Impacts on Biodiversity; FAO: Rome, Italy, 2015; pp. 1–150. [Google Scholar]
- FAO. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; FAO: Roma, Italy, 2013; pp. 1–139. [Google Scholar]
- FAO. Biodiversity and the Livestock Sector Guidelines for Quantitative Assessment; FAO: Rome, Italy, 2019; pp. 1–117. [Google Scholar]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livestock Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Wilkes, A.; Solymosi, K.; Tennigkeit, T. Options for Support to Grassland Restoration in the Context of Climate Change Mitigation; UNIQUE Forestry and Land Use: Freiburg, Germany, 2012; pp. 1–60. [Google Scholar]
- Hitaj, C.; Rehkamp, S.; Canning, P.; Peters, C.J. Greenhouse Gas Emissions in the United States Food System: Current and Healthy Diet Scenarios. Environ. Sci. Technol. 2019, 53, 5493–5503. [Google Scholar] [CrossRef]
- Li, G.Q.; Geng, Y.H.; Pang, H.M. Study on Animal Environmental Welfare in the Intensive Livestock and Poultry Farms. In Proceedings of the 2015 International Conference on Economics, Social Science, Arts, Education and Management Engineering, Xi’an, China, 12–13 December 2015; Yao, Z.L., Chen, Y., Eds.; Atlantis Press: Beijing, China, 2015; Volume 38, pp. 284–289. [Google Scholar]
- Caulfield, M.P.; Cambridge, H. The questionable value of some science-based ’welfare’ assessments in intensive animal farming: Sow stalls as an illustrative example. Aust. Vet. J. 2008, 86, 446–448. [Google Scholar] [CrossRef]
- Gade, P.B. Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production. Meat Sci. 2002, 62, 353–358. [Google Scholar] [CrossRef]
- FAO. L’état des Ressources Zoogénétiques Pour L’alimentation et L’agriculture Dans le Monde—En Bref; Commission des Ressources Génétiques Pour L’alimentation et L’agriculture: Roma, Italy, 2007; pp. 1–577. [Google Scholar]
- Chapelle, S. Élevage Industriel: La Biodiversité Animale Sous Contrôle des Multinationales. Available online: https://multinationales.org/Elevage-industriel-la-biodiversite-animale-sous-controle-des-multinationales#nb1 (accessed on 11 May 2020).
- Gura, S. Livestock breeding in the hands of corporations. Seedling 2008, 1, 1–9. [Google Scholar]
- Barnes, S.J. Understanding plastics pollution: The role of economic development and technological research. Environ. Pollut. 2019, 249, 812–821. [Google Scholar] [CrossRef]
- Plastics Europe. Données du Marché Pour le Secteur Européen des Plastiques—The Facts 2016 an Analysis of European Plastics Production, Demand and Waste Data; Bruxelles, Belgium, 2016; Available online: https://www.plasticseurope.org/fr/resources/market-data (accessed on 11 May 2020).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bulletin 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Baldridge, A.S.; Huffman, M.D.; Taylor, F.; Xavier, D.; Bright, B.; Van Horn, L.V.; Neal, B.; Dunford, E. The Healthfulness of the US Packaged Food and Beverage Supply: A Cross-Sectional Study. Nutrients 2019, 11, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean-Pierre, S.; Susanna, G.; Mia, P.; David, M.; Emma, W.; Foivos, P.; Patrick ten, B.; Emilia, P.; Lacey, C.; Janssens, C. Gaspillage Alimentaire en Europe: Le Plastique à Usage Unique ne Résout pas le Problème. Comment Mieux Faire ? Une Etude de Zero Waste Europe et des Amis de la Terre Europe pour L’alliance Rethink Plastic; Zero Waste Europe et les Amis de la Terre Europe pour L’alliance Rethink Plastic: Brussels, Belgium, 2018; pp. 1–28. [Google Scholar]
- Ladha-Sabur, A.; Bakalis, S.; Fryer, P.J.; Lopez-Quiroga, E. Mapping energy consumption in food manufacturing. Trends Food Sci. Technol. 2019, 86, 270–280. [Google Scholar] [CrossRef]
- Andersson, K.; Ohlsson, T.; Olsson, P. Screening life cycle assessment (LCA) of tomato ketchup: A case study. J. Cleaner Prod. 1998, 6, 277–288. [Google Scholar] [CrossRef]
- Davis, J.; Sonesson, U. Life cycle assessment of integrated food chains—A Swedish case study of two chicken meals. Int. J. Life Cycle Assess. 2008, 13, 574. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; pp. 1–180. [Google Scholar]
- U.S. Energy Information Administration (EIA). International Energy Outlook Executive Summary; U.S. Department of Energy: Washington, DC, USA, 2017; pp. 1–14. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Energy-smart Food for People and Climate; Issue Paper; FAO: Roma, Italy, 2011; pp. 1–78. [Google Scholar]
- Sims, R.; Flammini, A.; Puri, M.; Bracco, S. Opportunities for Agri-Food Chains to Become Energy-Smart; FAO: Roma, Italy, 2015; pp. 1–212. [Google Scholar]
- Aguilera, J.; Simpson, R.; Welti-Chanes, J.; Aguirre, D.; Barbosa-Cánovas, G. Food Engineering Interfaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wu, H.; Tassou, S.A.; Karayiannis, T.G.; Jouhara, H. Analysis and simulation of continuous food frying processes. Appl. Thermal Eng. 2013, 53, 332–339. [Google Scholar] [CrossRef]
- Therkelsen, P.; Masanet, E.; Worrell, E. Energy efficiency opportunities in the U.S. commercial baking industry. J. Food Eng. 2014, 130, 14–22. [Google Scholar] [CrossRef]
- Briam, R.; Walker, M.E.; Masanet, E. A comparison of product-based energy intensity metrics for cheese and whey processing. J. Food Eng. 2015, 151, 25–33. [Google Scholar] [CrossRef]
- Foster, C.; Green, K.; Bleda, M.; Dewick, P.; Evans, B.; Flynn, A.; Mylan, J. Environmental Impacts of Food Production and Consumption: A Report to the Department for Environment; Food and Rural Affairs; Manchester Business School: Manchester, UK, 2006; pp. 1–199. [Google Scholar]
- European Commision. Integrated Pollution Prevention and Control—Reference Document of Best Available Techniques in the Food, Drink and Milk Industries; European Commision: Seville, Spain, 2006; pp. 1–682. [Google Scholar]
- Pardo, G.; Zufía, J. Life cycle assessment of food-preservation technologies. J. Clean. Prod. 2012, 28, 198–207. [Google Scholar] [CrossRef]
- Almena, A.; Lopez-Quiroga, E.; Theodoropoulos, C.; Fryer, P.J.; Bakalis, S. Modelling, Simulation and Economical Evaluation of Dry Food Manufacture at Different Production Scales. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 40, pp. 787–792. [Google Scholar]
- Sobal, J.; Khan, L.K.; Bisogni, C. A conceptual model of the food and nutrition system. Soc. Sci. Med. 1998, 47, 853–863. [Google Scholar] [CrossRef]
- Fardet, A.; Méjean, C.; Labouré, H.; Andreeva, V.A.; Féron, G. The degree of processing of foods which are most widely consumed by the French elderly population is associated with satiety and glycemic potentials and nutrient profiles. Food Funct. 2017, 8, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, B.; Villamor, E.; Mora-Plazas, M.; Marin, C.; Monteiro, C.A.; Baylin, A. Processed and ultra-processed foods are associated with lower-quality nutrient profiles in children from Colombia. Public Health Nutr. 2018, 21, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louzada, M.L.; Martins, A.P.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Cannon, G.; Monteiro, C.A. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev. Saude Publica 2015, 49, 1–8. [Google Scholar] [CrossRef]
- Alpha, A. Les ravages de la standardisation des produits et des goûts. Econ. Humanism 2007, 380, 36–39. [Google Scholar]
- Fumey, G. La mondialisation de l’alimentation. L’Information Géographique 2007, 71, 71–82. [Google Scholar] [CrossRef]
- Filgueiras, A.R.; Pires de Almeida, V.B.; Koch Nogueira, P.C.; Alvares Domene, S.M.; Eduardo da Silva, C.; Sesso, R.; Sawaya, A.L. Exploring the consumption of ultra-processed foods and its association with food addiction in overweight children. Appetite 2018, 135, 137–145. [Google Scholar] [CrossRef]
- Bonaccio, M.; Bonanni, A.E.; Di Castelnuovo, A.; De Lucia, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Moli-sani Project, I. Low income is associated with poor adherence to a Mediterranean diet and a higher prevalence of obesity: Cross-sectional results from the Moli-sani study. BMJ Open 2012, 2, e001685. [Google Scholar] [CrossRef] [Green Version]
- Gough, M.; Lippert, A.M.; Martin, M.A. The Role of Time Use Behaviors in the Risk of Obesity among Low-Income Mothers. Womens Health Issues 2019, 29, 23–30. [Google Scholar] [CrossRef]
- Dunachie, S.; Chamnan, P. The double burden of diabetes and global infection in low and middle-income countries. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 56–64. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- Julia, C.; Martinez, L.; Alles, B.; Touvier, M.; Hercberg, S.; Mejean, C.; Kesse-Guyot, E. Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; Mendonça, R.d.D.; de la Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, 1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef]
- Steele, E.M.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y.; Lee, J.H. Association between energy drink intake, sleep, stress, and suicidality in Korean adolescents: Energy drink use in isolation or in combination with junk food consumption. Nutr. J. 2016, 15, 87. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.S.; Young, K.J.; June, N.S.; Jong-Ho, L.; Won, J.J. Social isolation stress during adolescence may promote consumption of palatable food in female rats. J. Neurochem. 2009, 110, 199–200. [Google Scholar]
- Cook, K.; Sumis, A.; Kidney, E.; Andrade, F.; Hu, R.; Zhang, X.Y.; Yu, W.; Bouker, K.B.; Clarke, R.; Hilakivi-Clarke, L. Social isolation stress induces obesity and unfolded protein response and autophagy in the mammary gland, and increases mammary tumorigenesis in mice. Anticancer Res. 2014, 34, 5948–5949. [Google Scholar]
- Atasoy, S.; Ladwig, K.H.; Kruse, J.; Lukaschek, K.; Peters, A. Inverse relationship between social isolation and type 2 diabetes incidence in people with obesity: Findings from the MONICA/KORA prospective cohort. J. Psychosom. Res. 2019, 121, 124. [Google Scholar] [CrossRef]
- Ames, M.; Leadbeater, B. Overweight and isolated: The interpersonal problems of youth who are overweight from adolescence into young adulthood. Int. J. Behav. Dev. 2017, 41, 390–404. [Google Scholar] [CrossRef]
- Rauber, F.; Steele, E.M.; Louzada, M.L.d.C.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and indicators of obesity in the United Kingdom population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef]
- Jackson, S.E.; Llewellyn, C.H.; Smith, L. The obesity epidemic—Nature via nurture: A narrative review of high-income countries. SAGE Open Med. 2020, 8, 2050312120918265. [Google Scholar] [CrossRef] [PubMed]
- Kibrom, A.; Ibrahim, H.; Breisinger, C. Food Policies and Obesity in Low and Middle Income Countries; IFRI Middle East and Africa Working Papers: Paris, France, 2020. [Google Scholar]
- Action Aid. Farmgate: The Developmental Impact of Agricultural Subsidies. Available online: https://www.actionaid.org.uk/sites/default/files/content_document/farmgate_3132004_12159.pdf (accessed on 1 August 2019).
- Drewnowski, A.; Darmon, N. The economics of obesity: Dietary energy density and energy cost. Am. J. Clin. Nutr. 2005, 82, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.D.; Cornelsen, L.; Marteau, T.M.; Jebb, S.A.; Smith, R.D. Potential impact on prevalence of obesity in the UK of a 20% price increase in high sugar snacks: Modelling study. BMJ 2019, 366, l4786. [Google Scholar] [CrossRef] [Green Version]
- Ruanpeng, D.; Thongprayoon, C.; Cheungpasitpom, W.; Harindhanavudhi, T. Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM Int. J. Med. 2017, 110, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Spiegelman, D.; van Dam, R.M.; Holmes, M.D.; Malik, V.S.; Willett, W.C.; Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Int. Med. 2010, 170, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.; Piqué i Camps, J.; European Parliament; European Parliament. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying down Procedures in Matters of Food Safety; Parliament, E., Ed.; Journal Officiel des Communautés Européennes: Brussels, Belgium, 2002; Volume 178/2002, pp. 1–24. [Google Scholar]
- Fardet, A.; Rock, E. How to protect both health and food system sustainability? A holistic ‘global health’-based approach via the 3V rule proposal. Public Health Nutr. 2020, in press. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 2–8. [Google Scholar] [CrossRef]
- Millenium Institute. Global Food and Nutrition Scenarios—Final Report; Millenium Institute: Washington, DC, USA, 2013; pp. 1–23. [Google Scholar]
- WWF France. Eco2Initiative, Vers une Alimentation bas Carbone, Saine et Abordable—Prospective des Régimes Alimentaires et Evolution de L’empreinte Carbone de L’alimentation en France (Volet 2); WWF France: Le Pré-Saint-Gervais, France, 2018; pp. 1–16. [Google Scholar]
- WWF France. Eco2Initiative, Vers une Alimentation bas Carbone, Saine et Abordable—Etude Comparative Multidimensionnelle de Paniers Alimentaires Durables: Impact Carbone, Qualité Nutritionnelle et Coûts (Volet 1); WWF France: Le Pré-Saint-Gervais, France, 2017; pp. 1–47. [Google Scholar]
- Poux, X.; Aubert, P.M. Une Europe Agroécologique en 2050: Une Agriculture Multifonctionnelle pour une Alimentation Saine Enseignements d’une Modélisation du Système Alimentaire Européen; IDDRI (Institut du Développement Durable et des Relations Internationales): Paris, france, 2018; pp. 1–78. [Google Scholar]
- Karlsson, J.; Röös, E.; Sjunnestrand, T.; Pira, K. Future Nordic Diets: Exploring Ways for Sustainably Feeding the Nordics; Nordisk Ministerråd: Copenhagen, Denmark, 2017; pp. 1–98. [Google Scholar]
- Stolze, M.; Schader, C.; Müller, A.; Frehner, A.; Giuliani, F.; Kopainsky, B.; Soceco, R.; Nathani, C.; Brandes, J.; Rohrmann, S.; et al. Sustainable and Healthy Diets: Trade-Offs and Synergies. Final Scientific Report—NRP 69 “Healthy Nutrition and Sustainable Food Production”; FiBL: Frick, Switzerland, 2019; pp. 1–86. [Google Scholar]
Ingredients | Number of Food Products 2 | Percentage of All Products in the Open Food Facts Database 2 |
---|---|---|
Ultra-processed carbohydrates: | ||
Glucose-fructose syrup/glucose syrup/(oligo)fructose | >52,154 | >7.6 |
Starch | >22,389 | >3.2 |
Dextrose | >21,340 | >3.1 |
Lactose | >11,232 | >1.6 |
Malt (extract) | >8292 | >1.2 |
Maltodextrins/dextrins | >7756 | >1.1 |
Invert sugar | >4349 | >0.6 |
Ultra-processed lipids: | ||
Refined plant-based oils and fats 3 | >64,811 | >9.4 |
Hydrogenated oils | >99 | >0.01 |
Ultra-processed proteins: | ||
Milk/whey/casein protein | >11,789 | >1.7 |
Gluten | >11,428 | >1.7 |
Gelatine | >3970 | >0.6 |
Soy protein | >1953 | >0.3 |
Pea protein | >1289 | >0.2 |
Protein hydrolysate/hydrolysed proteins | >307 | >0.04 |
Egg white and protein | >62 | >0.01 |
Aroma 4: | >72,348 | >10.5 |
Additives | Number of Food Products 2 | Percentage of all Products in the Open Food Facts Database 2 |
---|---|---|
Texture: | ||
E322: lecithins | >23,640 | >3.4 |
E14XX: modified starches | >16,405 | >2.4 |
E415: xanthan gum | >12,015 | >1.7 |
E471: mono and diglycerides of fatty acids | >11,828 | >1.7 |
E440: pectin | >10,172 | >1.5 |
E450: diphosphates, pyrophosphates | >10,644 | >1.5 |
E412: guar gum | >9177 | >1.3 |
E407: carraghenans | >8616 | >1.2 |
E420: sorbitol | >4285 | >0.6 |
E406: agar-agar | >842 | >0.1 |
E1200: polydextrose | >375 | >0.1 |
E421: mannitol | >235 | >0.03 |
Colour: | ||
E160c: paprika extract, capsanthin, capsorubin | >5101 | >0.7 |
E160a: carotenes | >4347 | >0.6 |
E120: cochineal, carmines, carminic acid | >3560 | >0.5 |
E150a: plain caramel | >3097 | >0.5 |
E133: Brilliant blue FCF | >1450 | >0.2 |
Flavour/taste: | ||
E621: monosodium glutamate | >3710 | >0.5 |
E955: sucralose | >2436 | >0.4 |
E950: acesulfame potassium | >2329 | >0.3 |
E951: aspartame | >1249 | >0.2 |
E960: steviol glycosides | >880 | >0.1 |
E953: isomalt | >443 | >0.06 |
E967: xylitol | >394 | >0.06 |
E954: saccharine | >238 | >0.03 |
kg CO2/kg of Active Ingredient | kg CH4/kg of Active Ingredient | kg N2O/kg of Active Ingredient | |
---|---|---|---|
Pesticides: | |||
Herbicides | 8.33217 | 0.02548 | 0.00022 |
Fungicides | 5.537 | 0.01855 | 0.00015 |
Insecticides | 23.7 | 0.0543 | 0.00063 |
Growth regulators | 7.86 | 0.0241 | 0.00021 |
Fertilizers 2: | kg CO2/unit | kg CO2/unit | kg CO2/unit |
Manure in heap (ton) | 2940.000 | 0.0647 | 9.120 |
Liquid manure (m3) | 2920.000 | 0.0988 | 6.960 |
kg CO2eq./kg of nutrient | |||
Nitrogen fertilizer | 5.34 | ||
Phosphate fertilizer | 0.57 | ||
Potassium fertilizer | 0.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fardet, A.; Rock, E. Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability 2020, 12, 6280. https://doi.org/10.3390/su12156280
Fardet A, Rock E. Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability. 2020; 12(15):6280. https://doi.org/10.3390/su12156280
Chicago/Turabian StyleFardet, Anthony, and Edmond Rock. 2020. "Ultra-Processed Foods and Food System Sustainability: What Are the Links?" Sustainability 12, no. 15: 6280. https://doi.org/10.3390/su12156280