Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characterization of Courtyard
2.3. Microclimate Monitoring Equipment
2.4. Questionnaire Application to Derive the Declared Thermal Sensation
2.5. Thermal Stress-Modified Physiological Equivalent Temperature Index (mPET)
2.6. Calibration Procedure-Derivation of Local Thermal Sensation Categories
2.7. Shading Performance of Courtyard
2.8. Evaluation of the Thermal Impact Provided by the Courtyard and Its Influence on Thermal Sensation
3. Results and Discussion
3.1. Characterization of Personal Variables
3.2. Characterization of Microclimate Variables
3.3. Thermal Sensation Category Calibration
3.4. Courtyard Shading Index
3.5. Courtyard Thermal Environment Impact
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bovati, M. Il Clima Come Fondamento Del Progetto.Christian Marinotti Edizioni—2017. Available online: http://www.marinotti.com/marco-bovati/il-clima-come-fondamento-del-progetto (accessed on 22 July 2020).
- Rivera-Gómez, C.; Diz-Mellado, E.; Galán-Marín, C.; López-Cabeza, V.P. Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature. Sustain. Cities Soc. 2019, 51, 101740. [Google Scholar] [CrossRef]
- Al-Hafith, O.; Satish, B.K.; Bradbury, S.; De Wilde, P. The impact of courtyard compact urban fabric on its shading: Case study of Mosul city, Iraq. Energy Procedia 2017, 122, 889–894. [Google Scholar] [CrossRef]
- Soflaei, F.; Shokouhian, M.; Abraveshdar, H.; Alipour, A. The impact of courtyard design variants on shading performance in hot- arid climates of Iran. Energy Build. 2017, 143, 71–83. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; Van den Dobbelsteen, A. Indoor thermal comfort in urban courtyard block dwellings in the Netherlands. Build. Environ. 2014, 82, 566–579. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Tablada, A.; Chaos-Yeras, M.; De la Paz, G.; Matzarakis, A. Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renew. Energy 2018, 125, 840–856. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A. Thermal performance characteristics of unshaded courtyards in hot and humid climates. Build. Environ. 2015, 87, 154–168. [Google Scholar] [CrossRef]
- Arquitextos 181.07 Crítica: O Pátio No Brasil | Vitruvius. Available online: https://www.vitruvius.com.br/revistas/read/arquitextos/16.181/5560 (accessed on 25 June 2020).
- Galán-Marín, C.; López-Cabeza, V.P.; Rivera-Gómez, C.; Rojas-Fernández, J.M. On the Influence of Shade in Improving Thermal Comfort in Courtyards. Proceedings 2018, 2, 1390. [Google Scholar] [CrossRef] [Green Version]
- Teshnehdel, S.; Mirnezami, S.; Saber, A.; Pourzangbar, A.; Olabi, A.G. Data-driven and numerical approaches to predict thermal comfort in traditional courtyards. Sustain. Energy Technol. Assessments 2020, 37, 100569. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Trindade da Silva, F.; Engel de Alvarez, C. An integrated approach for ventilation’s assessment on outdoor thermal comfort. Build. Environ. 2015, 87, 59–71. [Google Scholar] [CrossRef]
- Arêa Leão Borges, V.C.; Callejas, I.J.A.; Durante, L.C. Thermal sensation in outdoor urban spaces: A study in a Tropical Savannah climate, Brazil. Int. J. Biometeorol. 2020, 64, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Baruti, M.M.; Johansson, E.; Åstrand, J. Review of studies on outdoor thermal comfort in warm humid climates: Challenges of informal urban fabric. Int. J. Biometeorol. 2019, 63, 1449–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, E.; Drach, P.; Broede, P. Outdoor comfort study in Rio de Janeiro: Site-related context effects on reported thermal sensation. Int. J. Biometeorol. 2017, 61, 463–475. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor thermal comfort. Front. Biosci.-Sch. 2011, 3, 1552–1568. [Google Scholar] [CrossRef]
- Callejas, I.J.A.; Biudes, M.S.; Machado, N.G.; Durante, L.C.; De Almeida Lobo, F. Patterns of energy exchange for tropical urban and rural ecosystems located in Brazil central. J. Urban Environ. Eng. 2019, 13, 69–79. [Google Scholar] [CrossRef]
- Machado, N.G.; Biudes, M.S.; Querino, C.A.S.; De Morais Danelichen, V.H.; Velasque, M.C.S. Seasonal and interannual pattern of meteorological variables in Cuiabá, Mato Grosso state, Brazil. Braz. J. Geophys. 2015, 33, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D. Padrões de ocupação do solo e microclimas urbanos na região de clima tropical continental. Pós Rev do Programa Pós-Graduação em Arquitetura e Urban da FAUUSP 2000, 88. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.B. Patrimônio Histórico-cultural de Mato Grosso; Entrelinhas: Cuiabá, Brazil, 2008. [Google Scholar]
- ISO. ISO 7726:1998—Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. Available online: https://www.iso.org/standard/14562.html (accessed on 25 June 2020).
- ISO. ISO 9920:2007—Ergonomics of the thermal environment—Estimation of thermal insulation and water vapour resistance of a clothing ensemble. Available online: https://www.iso.org/standard/39257.html (accessed on 25 June 2020).
- ISO. ISO 10551:1995—Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales. Available online: https://www.iso.org/standard/18636.html (accessed on 25 June 2020).
- Statistics for Research (Third Edition) By Dowdy 2004 Book—Estatística para Pesquisa—Docsity. Available online: https://www.docsity.com/pt/statistics-for-research-third-edition-by-dowdy-2004-book/4885603/ (accessed on 25 June 2020).
- Chen, Y.C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Climatol. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- RayMan—Modelling Mean Radiant Temperature and Thermal Indices. Available online: https://www.urbanclimate.net/rayman/introraymanpro.htm (accessed on 25 June 2020).
- ISO. ISO 8996:2004—Ergonomics of the Thermal Environment—Determination of Metabolic Rate. Available online: https://www.iso.org/standard/34251.html (accessed on 25 June 2020).
- De Dear, R.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 67, 104–145. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- AUTODESK. Autodesk Ecotect Analysis: Sustainable Building Design Sofware; AUTODESK: San Rafael, CA, USA, 2016. [Google Scholar]
- Diz-Mellado, E.; Galán-Marín, C.; Rivera-Gómez, C. Adaptive Comfort Criteria in Transitional Spaces. A Proposal for Outdoor Comfort. Proceedings 2020, 38, 8013. [Google Scholar] [CrossRef] [Green Version]
- Risco, N.D.E.F.D.E.; Doen, P.; Cra, S.; Inqu, N.P.O.R.; Telef, R. Vigitel Brasil 2007; Ministério da Saúde: Brasilia, Brazil, 2007; 132p. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2017_vigilancia_fatores_riscos.pdf (accessed on 25 June 2020).
- Krüger, E.L.; Rossi, F.A.; Cristeli, P.S.; Souza, H. Calibração do índice de conforto para espaços externos. Ambiente Construído 2018, 18, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- Callejas, I.J.A.; Nogueira, M.C.J.A.; Biudes, M.S.; Durante, L.C. Seasonal Variation of Surface Energy Balance of a Central Brazil City. Mercator 2016, 15, 85–106. [Google Scholar] [CrossRef]
- Forouzandeh, A. Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustain. Cities Soc. 2018, 36, 327–345. [Google Scholar] [CrossRef]
- Cantón, M.A.; Ganem, C.; Barea, G.; Llano, J.F. Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renew. Energy 2014, 69, 437–446. [Google Scholar] [CrossRef]
Question: “Right Now, How Are You Feeling (Choose According to the Scale Below)? | ||||||
---|---|---|---|---|---|---|
Response Intensity Scale | ||||||
−3 | −2 | −1 | 0 | +1 | +2 | +3 |
Cold | Cool | Slightly cool | Neutral (thermal neutrality) | Slightly warm | Warm | Hot |
PMV | PET (°C) | Thermal Sensation | Physiological Stress Level |
---|---|---|---|
<−3.5 | <4 | Very cold | Extreme cold stress |
−3.5 to −2.5 | 4 to 8 | Cold | Strong cold stress |
−2.5 to −1.5 | 8 to 13 | Cool | Moderate cold stress |
−1.5 to −0.5 | 13 to 18 | Slightly cool | Slight cold stress |
−0.5 to 0.5 | 18 to 23 | Comfortable | No thermal stress |
0.5 to 1.5 | 23 to 29 | Slightly warm | Slight heat stress |
1.5 to 2.5 | 29 to 35 | Warm | Moderate heat stress |
2.5 to 3.5 | 35 to 41 | Hot | Strong heat stress |
>3.5 | >41 | Very hot | Extreme stress to heat |
Parameters | Categories | Number of Respondents | Respondents (%) |
---|---|---|---|
Sex | Female | 46 | 52.27% |
Male | 42 | 47.73% | |
Age | Up to 25 years old (young) | 36 | 40.91% |
Between 25 and 64 years old (adult) | 46 | 52.27% | |
Over 64 years old (elderly) | 6 | 6.82% | |
Body Mass Index (BMI = weight/height2) | Lean | 4 | 4.54% |
Healthy | 37 | 42.05% | |
Overweight | 30 | 34.09% | |
Obese | 17 | 19.32% |
Categories | Age | Weight | Height | BMI | Insulation |
---|---|---|---|---|---|
(years) | (kg) | (m) | (kg/m2) | (clo) | |
Average | 35.6 | 71.3 | 1.67 | 25.5 | 0.5 |
Median | 30.0 | 70.0 | 1.69 | 25.1 | 0.5 |
Max. | 83.0 | 110.0 | 1.93 | 37.2 | 1.0 |
Min. | 14.0 | 49.0 | 1.44 | 17.4 | 0.2 |
S.D | 16.4 | 13.4 | 0.09 | 4.3 | 0.2 |
Period | Statistics | Ta (°C) | RH (%) | V (m/s) | Trm (°C) | mPET (°C) |
---|---|---|---|---|---|---|
June to February | Average | 30.8 | 45.0 | 0.3 | 41.9 | 34.3 |
Maximum | 40.4 | 69.0 | 1.1 | 63.1 | 43.6 | |
Minimum | 19.9 | 23.0 | 0.0 | 23.3 | 21.8 | |
Standard deviation | 5.1 | 12.9 | 0.3 | 11.6 | 6.2 |
PMV | Thermal Sensation | Original PET | Curitiba PET (Subtropical) [33] | Vitória PET (Tropical) [12] | Calibrated mPET (Tropical Aw) |
---|---|---|---|---|---|
<−3.5 | Very cold | <4 °C | - | - | |
−3.5 to −2.5 | Cold | 4 to 8 °C | - | - | |
−2.5 to −1.5 | Cool | 8 to 13 °C | - | 18 to 22 °C | - |
−1.5 to −0.5 | Slightly cool | 13 to 18 °C | <13 °C | 20 to 22 °C | <24.1 °C |
−0.5 to 0.5 | Comfortable | 18 to 23 °C | 13 to 25 °C | 22 to 30 °C | 24.1 to 30.6 °C |
0.5 to 1.5 | Slightly warm | 23 to 29 °C | 25 to 37 °C | 30 to 34 °C | 30.6 to 37.1 °C |
1.5 to 2.5 | Warm | 29 to 35 °C | >37 °C | 34 to 46 °C | 37.1 to 43.6 °C |
2.5 to 3.5 | Hot | 35 to 41 °C | >46 °C | >43.6 °C | |
>3.5 | Very hot | >41 °C | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apolonio Callejas, I.J.; Cleonice Durante, L.; Diz-Mellado, E.; Galán-Marín, C. Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates. Sustainability 2020, 12, 6135. https://doi.org/10.3390/su12156135
Apolonio Callejas IJ, Cleonice Durante L, Diz-Mellado E, Galán-Marín C. Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates. Sustainability. 2020; 12(15):6135. https://doi.org/10.3390/su12156135
Chicago/Turabian StyleApolonio Callejas, Ivan Julio, Luciane Cleonice Durante, Eduardo Diz-Mellado, and Carmen Galán-Marín. 2020. "Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates" Sustainability 12, no. 15: 6135. https://doi.org/10.3390/su12156135
APA StyleApolonio Callejas, I. J., Cleonice Durante, L., Diz-Mellado, E., & Galán-Marín, C. (2020). Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates. Sustainability, 12(15), 6135. https://doi.org/10.3390/su12156135