Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon (Salmo salar)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Typical Salmon Farming Methodology
2.3. Specific Site Methodology
2.4. Goal and Scope
2.5. Life Cycle Inventory (LCI)
2.5.1. LCI: Equipment Energy
2.5.2. LCI: Salmon Feed
2.5.3. LCI: Organic Waste
2.6. Life Cycle Impact Assessment (LCIA) Methodology
3. Results
3.1. General Results
3.2. Equipment Energy
3.3. Salmon Feed
Agricultural Products vs. Marine-Based Products in Salmon Feed
4. Conclusions
4.1. ASC and Certification
4.2. Formulating Salmon Feed to Reduce Environmental Impacts
5. Discussion
5.1. Environmental Impacts of Wild vs. ASC Certified Salmon
5.2. Influence of Site Selection on Environmental Impact
5.3. Avenues for Future Research
Author Contributions
Funding
Conflicts of Interest
Appendix A. Additional LCA Results
Impact category | Total | Feed Generator | House Operations | Light Generator | Net-Cleaning Compressor | Net-Pen Compressors | Petroleum Equipment | Salmon Feed | Organic Waste |
---|---|---|---|---|---|---|---|---|---|
Ozone depletion (kg CFC-11 eq) | 2.95 × 10−8 | 1.58 × 10−10 | 8.37 × 10−10 | 1.71 × 10−11 | 8.92 × 10−11 | 3.97 × 10−10 | 1.86 × 10−11 | 2.79 × 10−8 | 0 |
Global warming (kg CO2 Eq) | 2.28 | 0.0831 | 0.0127 | 0.00899 | 0.0469 | 0.209 | 0.00881 | 1.91 | 0 |
Smog (kg O3 eq) | 0.293 | 0.0356 | 0.00329 | 0.00385 | 0.0201 | 0.0893 | 0.00305 | 0.137 | 0 |
Acidification (kg SO2 eq) | 0.0240 | 0.00109 | 0.000108 | 0.000118 | 0.000617 | 0.00275 | 9.61 × 10−5 | 0.0192 | 0 |
Eutrophication (kg N eq) | 0.110 | 8.50 × 10−5 | 1.05 × 10−5 | 9.19 × 10−6 | 4.79 × 10−5 | 0.000213 | 7.95 × 10−6 | 0.0192 | 0.0907 |
Carcinogenics (CTUh) | 4.92 × 10−8 | 1.44 × 10−9 | 1.62 × 10−10 | 1.56 × 10−10 | 8.13 × 10−10 | 3.62 × 10−9 | 1.7 × 10−10 | 4.29 × 10−8 | 0 |
Non carcinogenics (CTUh) | 1.96 × 10−6 | 1.37 × 10−8 | 1.34 × 10−9 | 1.48 × 10−9 | 7.72 × 10−9 | 3.44 × 10−8 | 1.61 × 10−9 | 1.90 × 10−6 | 0 |
Respiratory effects (kg PM2.5) | 0.000932 | 2.17 × 10−5 | 2.64 × 10−6 | 2.35 × 10−6 | 1.23 × 10−5 | 5.45 × 10−5 | 1.44 × 10−6 | 0.000837 | 0 |
Ecotoxicity (CTUe) | 10.4 | 0.350 | 0.0334 | 0.0378 | 0.197 | 0.878 | 0.0412 | 8.86 | 0 |
Fossil fuel depletion (MJ surplus) | 2.66 | 0.168 | 0.0255 | 0.0182 | 0.0949 | 0.422 | 0.0198 | 1.91 | 0 |
Impact Category | Total | Fish Meal (Peru) | By-Product Fish Meal and Oil (British Columbia) | Fish Oil (Peru) | Menhaden Oil (U.S.) | By-Product Poultry Meal (British Columbia) | Wheat (Alberta) | Corn Gluten Meal (Ontario) | Canola Seed and Meal (U.S.) | Canola Oil (Alberta) | Soy Meal (Ontario) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ozone depletion (kg CFC-11 eq) | 2.79 × 10−8 | 7.60 × 10−9 | 2.65 × 10−10 | 4.14 × 10−9 | 1.64 × 10−9 | 6.59 × 10−9 | 1.92 × 10−9 | 1.18 × 10−9 | 2.23 × 10−9 | 2.26 × 10−9 | 1.11 × 10−10 |
Global warming (kg CO2 eq) | 1.91 | 0.275 | 0.0223 | 0.150 | 0.0681 | 0.567 | 0.0540 | 0.158 | 0.298 | 0.303 | 0.0179 |
Smog (kg O3 eq) | 0.137 | 0.0434 | 0.00364 | 0.0237 | 0.0105 | 0.0116 | 0.00194 | 0.0132 | 0.0137 | 0.0140 | 0.00173 |
Acidification (kg SO2 eq) | 0.0192 | 0.00157 | 0.000124 | 0.000856 | 0.000379 | 0.00482 | 0.000737 | 0.00146 | 0.00454 | 0.00461 | 0.000114 |
Eutrophication (kg N eq) | 0.0192 | 0.000133 | 1.18 × 10−5 | 7.27 × 10−5 | 3.38 × 10−5 | 0.00243 | 0.00115 | 0.00128 | 0.00699 | 0.00711 | 3.73 × 10−6 |
Carcinogenics (CTUh) | 4.29 × 10−8 | 4.24 × 10−10 | 3.75 × 10−11 | 2.31 × 10−10 | 1.08 × 10−10 | 5.51 × 10−9 | 1.12 × 10−9 | 2.86 × 10−9 | 1.61 × 10−8 | 1.64 × 10−8 | 7.09 × 10−11 |
Non carcinogenics (CTUh) | 1.9 × 10−6 | 2.74 × 10−9 | 1.92 × 10−10 | 1.50 × 10−9 | 6.27 × 10−10 | 3.29 × 10−7 | 9.17 × 10−8 | 2.70 × 10−7 | 5.98 × 10−7 | 6.08 × 10−7 | 1.37 × 10−9 |
Respiratory effects (kg PM2.5 eq) | 8.37 × 10−4 | 0.000115 | 8.99 × 10−6 | 6.27 × 10−5 | 2.74 × 10−5 | 0.000181 | 2.98 × 10−5 | 6.38 × 10−5 | 0.000170 | 0.000173 | 4.95 × 10−6 |
Ecotoxicity (CTUe) | 8.86 | 0.0150 | 0.00124 | 0.00816 | 0.00366 | 2.52 | 0.968 | 0.681 | 2.28 | 2.32 | 0.0653 |
Fossil fuel depletion (MJ surplus) | 1.91 | 0.466 | 0.0385 | 0.254 | 0.114 | 0.230 | 0.0451 | 0.232 | 0.257 | 0.261 | 0.0148 |
References
- Harvey, B. Regional Review on Status and Trends in Aquaculture Development in North America, 2015; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All; FAO of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Food and Agriculture Organization (FAO). FAO Yearbook. Fishery and Aquaculture Statistics 2016; FAO of the United Nations: Rome, Italy, 2016. [Google Scholar]
- World Wide Fund for Nature (WWF). The 2050 Criteria: Guide to Responsible Investment in Agricultural, Forest, and Seafood Commodities; WWF: Washington, DC, USA, 2012. [Google Scholar]
- Mente, E.; Pierce, G.J.; Santos, M.B.; Neofitou, C. Effect of feed and feeding in the culture of salmonids on the marine aquatic environment: A synthesis for European aquaculture. Aquac. Int. 2006, 14, 499–522. [Google Scholar] [CrossRef]
- Taranger, G.L.; Karlsen, Ø.; Bannister, R.J.; Glover, K.A.; Husa, V.; Karlsbakk, E.; Kvamme, B.O.; Boxaspen, K.K.; Bjørn, P.A.; Finstad, B. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J. Mar. Sci. 2014, 72, 997–1021. [Google Scholar] [CrossRef] [Green Version]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- FishWatch: U.S. Seafood Facts. Available online: https://www.fisheries.noaa.gov/species/atlantic-salmon-farmed (accessed on 28 June 2019).
- Nguyen, T.; Williams, T. Aquaculture in Canada; Library of Parliament: Ottowa, ON, Canada, 2013. [Google Scholar]
- FAO. Fisheries & Aquaculture-National Aquaculture Sector Overview-Chile. Available online: http://www.fao.org/fishery/countrysector/naso_chile/en#tcN7010A (accessed on 28 June 2019).
- ASC. History. Available online: https://www.asc-aqua.org/about-us/history/ (accessed on 20 April 2019).
- Bush, S.R.; Belton, B.; Hall, D.; Vandergeest, P.; Murray, F.J.; Ponte, S.; Oosterveer, P.; Islam, M.S.; Mol, A.P.; Hatanaka, M. Certify sustainable aquaculture? Science 2013, 341, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- ASC. Partners and Supporters. Available online: https://www.asc-aqua.org/about-us/partners-and-supporters/ (accessed on 20 April 2019).
- Audit Manual-ASC Salmon Standard V1.1-April 2017. Available online: https://www.asc-aqua.org/wp-content/uploads/2017/07/ASC-Salmon-Audit-Manual_v1.1-1.pdf (accessed on 20 April 2019).
- ASC Responsible Feed Standard, Second Draft. Available online: https://www.asc-aqua.org/wp-content/uploads/2017/06/ASC-Responsible-Feed-Standard_v0.2.pdf (accessed on 20 April 2019).
- Diana, J.S. Aquaculture production and biodiversity conservation. BioScience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Laurent, A. LCA of aquaculture systems: Methodological issues and potential improvements. Int. J. Life Cycle Assess. 2019, 24, 324–337. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization (ISO). ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framework; The International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Mungkung, R.; De Haes, H.U.; Clift, R. Potentials and limitations of life cycle assessment in setting ecolabelling criteria: A case study of thai shrimp aquaculture product (5 pp). Int. J. Life Cycle Assess. 2006, 11, 55–59. [Google Scholar] [CrossRef]
- Cao, L.; Diana, J.S.; Keoleian, G.A. Role of life cycle assessment in sustainable aquaculture. Rev. Aquac. 2013, 5, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, H.; Aanondsen, S.A. Environmental impacts of wild caught cod and farmed Salmon-a comparison with chicken (7 pp). Int. J. Life Cycle Assess. 2006, 11, 60–65. [Google Scholar] [CrossRef]
- Ziegler, F.; Winther, U.; Hognes, E.S.; Emanuelsson, A.; Sund, V.; Ellingsen, H. The Carbon Footprint of Norwegian Seafood Products on the Global Seafood Market: Carbon Footprint of Norwegian Seafood on Global Market. J. Ind. Ecol. 2013, 17, 103–116. [Google Scholar] [CrossRef]
- Buchspies, B.; Tölle, S.J.; Jungbluth, N. Life Cycle Assessment of High-Sea Fish and Salmon Aquaculture; ESU-Services Ltd.: Schaffhausen, Switzerland, 2011. [Google Scholar]
- Turolla, E.; Castaldelli, G.; Fano, E.A.; Tamburini, E. Life Cycle Assessment (LCA) Proves that Manila Clam Farming (Ruditapes philippinarum) is a Fully Sustainable Aquaculture Practice and a Carbon Sink. Sustainability 2020, 12, 5252. [Google Scholar] [CrossRef]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of Mussel (Mytilus galloprovincialis) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Dullah, H.; Malek, M.A.; Hanafiah, M.M. Life Cycle Assessment of Nile Tilapia (Oreochromis niloticus) Farming in Kenyir Lake, Terengganu. Sustainability 2020, 12, 2268. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F.; Flysjo, A.; Kruse, S.; Cancino, B.; Silverman, H. Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems; ACS Publications: Washington, DC, USA, 2009. [Google Scholar]
- Nhu, T.T.; Schaubroeck, T.; Henriksson, P.J.; Bosma, R.; Sorgeloos, P.; Dewulf, J. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA. Environ. Pollut. 2016, 219, 156–165. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 14044: Environmental Management: Life Cycle Assessments: Requirements and Guidelines; The International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Durlinger, B.; Koukouna, E.; Broekema, R.; Paassen, V.M.; Scholten, J. Agri-Footprint 4.0-Part 1: Methodology and Basic Principles; Agri-Footprint: Gouda, The Netherlands, 2017. [Google Scholar]
- U.S. Life Cycle Inventory Database. Available online: https://www.lcacommons.gov/nrel/search (accessed on 25 March 2019).
- Pelletier, N.; Tyedmers, P. Feeding farmed salmon: Is organic better? Aquaculture 2007, 272, 399–416. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Ward, D.; Reynolds, D.M.; Brunsdon, C.; Carliell-Marquet, C.; Browning, S. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Sci. Total Environ. 2008, 391, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Tyedmers, P. Life Cycle Considerations for Improving Sustainability Assessments in Seafood Awareness Campaigns. Environ. Manag. 2008, 42, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.P.; Gee, J.; Ethier, V.; Beck, M.; Wilson, A.; Stoner, J.A. Global Aquaculture Performance Index (GAPI): The First Global Environmental Assessment of Marine Fish Farming. Sustainability 2013, 5, 3976–3991. [Google Scholar] [CrossRef] [Green Version]
- Volpe, J.; Beck, M.; Ethier, V.; Gee, J.; Wilson, A. Global Aquaculture Performance Index; University of Victoria: Victoria, BC, Canada, 2010. [Google Scholar]
- Bare, J.; Young, D.; Qam, S.; Hopton, M.; Chief, S. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI); US Environmental Protection Agency: Washington, DC, USA, 2012.
- Hognes, E.S.; Ziegler, F.; Sund, V. Carbon Footprint and Area Use of Farmed Norwegian Salmon; SINTEF Fisheries and Aquaculture: Trondheim, Norway, 2011. [Google Scholar]
- Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal partial substitution within aquafeed formulations: Life cycle assessment of four alternative protein sources. Int. J. Life Cycle Assess. 2020. [Google Scholar] [CrossRef]
- Couture, J.; Geyer, R.; Øvrum Hansen, J.; Kuczenski, B.; Øverland, M.; Palazzo, J.; Sahlmann, C.; Lenihan, H. Environmental Benefits of Novel Nonhuman Food Inputs to Salmon Feeds. Environ. Sci. Technol. 2019, 53. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S. Fish and Fuel: Life Cycle Greenhouse Gas Emissions Associated with Icelandic Cod, Alaskan Pollock, and Alaskan Pink Salmon Fillets Delivered to the United Kingdom. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, August 2010. [Google Scholar]
- WWF. Farmed Salmon Industries. Available online: https://www.worldwildlife.org/industries/farmed-salmon (accessed on 22 April 2019).
- ASC. About the ASC. Available online: https://www.asc-aqua.org/about-us/about-the-asc/ (accessed on 1 May 2019).
Total | Feed Generator | House Operations | Light Generator | Net-Cleaning Compressor | Net-Pen Compressors | Petroleum Equipment | Salmon Feed | Organic Waste | |
---|---|---|---|---|---|---|---|---|---|
Ozone depletion (kg CFC-11 eq) | 2.95 × 10−8 | 1.58 × 10−10 | 8.37 × 10−10 | 1.71 × 10−11 | 8.92 × 10−11 | 3.97 × 10−10 | 1.86 × 10−11 | 2.79 × 10−8 | 0 |
GWP (kg CO2 eq) | 2.28 | 0.0831 | 0.0127 | 0.00899 | 0.0469 | 0.209 | 0.00881 | 1.91 | 0 |
Smog (kg O3 eq) | 0.293 | 0.0356 | 0.00329 | 0.00385 | 0.0201 | 0.0893 | 0.00305 | 0.137 | 0 |
Acidification (kg SO2 eq) | 0.024 | 0.00109 | 0.000108 | 0.000118 | 0.000617 | 0.00275 | 9.61 × 10−5 | 0.0192 | 0 |
Eutrophication (kg N eq) | 0.11 | 0.000085 | 1.05 × 10−5 | 9.19 × 10−6 | 4.79 × 10−5 | 0.000213 | 7.95 × 10−6 | 0.0192 | 0.0907 |
Ecotoxicity (CTUe) | 10.4 | 0.35 | 0.0334 | 0.0378 | 0.197 | 0.878 | 0.0412 | 8.86 | 0 |
Total | Feed Generator | House Operations | Light Generator | Net-Cleaning Compressor | Net-Pen Compressors | Petroleum Equipment | Salmon Feed | Organic Waste | |
---|---|---|---|---|---|---|---|---|---|
GWP (kg CO2 eq) | 2.26 | 0.00909 | 0.0127 | 0.211 | 0.0474 | 0.00909 | 0.00893 | 1.89 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherry, J.; Koester, J. Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon (Salmo salar). Sustainability 2020, 12, 6079. https://doi.org/10.3390/su12156079
Sherry J, Koester J. Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon (Salmo salar). Sustainability. 2020; 12(15):6079. https://doi.org/10.3390/su12156079
Chicago/Turabian StyleSherry, Jesse, and Jennifer Koester. 2020. "Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon (Salmo salar)" Sustainability 12, no. 15: 6079. https://doi.org/10.3390/su12156079