Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method
Abstract
:1. Introduction
2. Research Methodology
3. Regional Green Building Development Evaluation Model
3.1. Indicator Selection
3.1.1. Certification Indicators
3.1.2. Economy Indicators
3.1.3. Policy Indicators
3.1.4. Technology Indicators
3.2. Attribute Reduction Based on Rough Set Theory
3.2.1. Data Normalization
3.2.2. K-Means Clustering
3.2.3. Attribute Reduction
3.3. Evaluation Models Based on the Catastrophe Progression Method
3.3.1. Evaluation Framework Establishment
3.3.2. Indicator Importance Determination
3.3.3. Result Calculation
- Principle 1 (complementary principle): If several control variables have high correlation coefficients, the complementary principle will be applied. The value of state variable is the average value of the normalization formulas determined by control variables, e.g., in the butterfly model.
- Principle 2 (non-complementary principle): If there is no obvious correlation between control variables, the non-complementary principle will be applied. The value of state variable is the minimum value among the normalization formulas determined by control variables, e.g., in the butterfly model.
4. Case Study
4.1. Data Collection
4.2. Calculation Process
4.2.1. Attribute Reduction Based on Rough Set Theory
4.2.2. Evaluation Model Based on the Catastrophe Progression Method
4.3. Calculation Result
5. Discussion
5.1. Spatial Distribution of Regional Green Building Development in Different Aspects
5.2. Spatial Distribution of Green Building Development in Different Regions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Region | Indicator | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 | D18 | D19 | D20 | D21 | D22 | D24 | D25 | |
Beijing | 0.16 | 1.00 | 0.34 | 0.34 | 0.20 | 0.23 | 0.32 | 0.07 | 0.48 | 0.92 | 1.00 | 0.52 | 0.59 | 0.71 | 0.49 | 0.79 | 0.55 | 0.62 | 0.00 | 0.30 | 0.09 | 0.13 | 1.00 | 1.00 |
Tianjin | 0.18 | 0.38 | 0.18 | 0.16 | 0.11 | 0.09 | 0.16 | 0.10 | 0.16 | 0.27 | 0.31 | 0.20 | 0.22 | 0.24 | 0.21 | 0.74 | 1.00 | 0.21 | 0.11 | 0.48 | 0.12 | 0.27 | 0.91 | 0.36 |
Hebei | 0.16 | 0.07 | 0.21 | 0.18 | 0.12 | 0.19 | 0.25 | 0.16 | 0.15 | 0.30 | 0.24 | 0.23 | 0.23 | 0.22 | 0.23 | 0.38 | 0.48 | 0.18 | 0.37 | 0.65 | 0.31 | 0.26 | 0.27 | 0.09 |
Shanxi | 0.08 | 0.00 | 0.11 | 0.11 | 0.07 | 0.06 | 0.24 | 0.09 | 0.09 | 0.22 | 0.21 | 0.14 | 0.16 | 0.17 | 0.14 | 0.24 | 0.58 | 0.20 | 0.05 | 0.17 | 0.17 | 0.17 | 0.00 | 0.09 |
Inner Mongolia | 0.02 | 0.48 | 0.04 | 0.04 | 0.04 | 0.03 | 0.08 | 0.03 | 0.04 | 0.11 | 0.09 | 0.05 | 0.05 | 0.05 | 0.04 | 0.53 | 0.84 | 0.48 | 0.08 | 0.22 | 0.04 | 0.08 | 0.00 | 0.09 |
Liaoning | 0.05 | 0.26 | 0.22 | 0.19 | 0.17 | 0.15 | 0.62 | 0.19 | 0.16 | 0.59 | 0.37 | 0.28 | 0.24 | 0.25 | 0.23 | 0.53 | 0.28 | 0.28 | 0.14 | 0.04 | 0.39 | 0.22 | 0.09 | 0.18 |
Jilin | 0.19 | 0.06 | 0.09 | 0.08 | 0.06 | 0.07 | 0.24 | 0.08 | 0.09 | 0.16 | 0.12 | 0.10 | 0.08 | 0.08 | 0.09 | 0.16 | 0.39 | 0.46 | 0.39 | 0.09 | 0.05 | 0.11 | 0.00 | 0.00 |
Heilongji-ang | 0.03 | 0.00 | 0.06 | 0.05 | 0.04 | 0.04 | 0.17 | 0.06 | 0.04 | 0.13 | 0.09 | 0.07 | 0.06 | 0.05 | 0.07 | 0.00 | 0.55 | 0.18 | 0.22 | 0.13 | 0.08 | 0.10 | 0.09 | 0.00 |
Shanghai | 0.37 | 0.61 | 0.22 | 0.20 | 0.14 | 0.17 | 0.30 | 0.14 | 0.19 | 0.41 | 0.47 | 0.35 | 0.40 | 0.46 | 0.35 | 0.60 | 0.17 | 0.31 | 0.06 | 0.22 | 0.05 | 0.13 | 0.27 | 0.27 |
Jiangsu | 1.00 | 0.22 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 0.89 | 1.00 | 0.94 | 0.93 | 0.95 | 0.71 | 0.22 | 0.34 | 0.80 | 0.22 | 1.00 | 1.00 | 0.82 | 0.55 |
Zhejiang | 0.33 | 0.31 | 0.97 | 0.93 | 0.79 | 0.96 | 0.68 | 1.00 | 0.56 | 0.85 | 0.63 | 0.88 | 1.00 | 1.00 | 1.00 | 0.50 | 0.02 | 0.00 | 0.75 | 0.35 | 0.52 | 0.61 | 0.00 | 0.18 |
Anhui | 0.15 | 0.23 | 0.23 | 0.21 | 0.20 | 0.18 | 0.30 | 0.21 | 0.18 | 0.29 | 0.25 | 0.24 | 0.25 | 0.25 | 0.25 | 0.72 | 0.14 | 0.23 | 0.43 | 0.30 | 0.19 | 0.18 | 0.00 | 0.27 |
Fujian | 0.15 | 0.11 | 0.30 | 0.30 | 0.38 | 0.29 | 0.37 | 0.37 | 0.26 | 0.46 | 0.23 | 0.32 | 0.34 | 0.32 | 0.35 | 0.81 | 0.10 | 0.33 | 1.00 | 0.09 | 0.25 | 0.29 | 0.00 | 0.09 |
Jiangxi | 0.11 | 0.00 | 0.18 | 0.17 | 0.14 | 0.17 | 0.18 | 0.18 | 0.16 | 0.24 | 0.14 | 0.20 | 0.20 | 0.20 | 0.21 | 0.32 | 0.12 | 0.34 | 0.96 | 0.09 | 0.13 | 0.15 | 0.00 | 0.00 |
Shandong | 0.25 | 0.12 | 0.38 | 0.34 | 0.34 | 0.33 | 0.66 | 0.38 | 0.41 | 0.56 | 0.54 | 0.43 | 0.39 | 0.34 | 0.42 | 0.62 | 0.30 | 0.41 | 0.36 | 0.13 | 0.44 | 0.46 | 0.18 | 0.91 |
Henan | 0.16 | 0.07 | 0.32 | 0.30 | 0.27 | 0.23 | 0.52 | 0.33 | 0.34 | 0.49 | 0.33 | 0.36 | 0.36 | 0.32 | 0.38 | 0.45 | 0.48 | 0.44 | 0.70 | 0.09 | 0.82 | 0.53 | 0.36 | 0.00 |
Hubei | 0.22 | 0.13 | 0.42 | 0.40 | 0.32 | 0.34 | 0.35 | 0.33 | 0.48 | 0.47 | 0.48 | 0.53 | 0.52 | 0.49 | 0.55 | 0.94 | 0.29 | 0.52 | 0.67 | 0.30 | 0.33 | 0.40 | 0.27 | 0.45 |
Hunan | 0.20 | 0.12 | 0.26 | 0.24 | 0.21 | 0.25 | 0.21 | 0.27 | 0.21 | 0.29 | 0.21 | 0.29 | 0.36 | 0.40 | 0.33 | 0.45 | 0.35 | 0.33 | 0.89 | 0.09 | 0.28 | 0.35 | 0.09 | 0.82 |
Guangdo-ng | 0.46 | 0.40 | 0.35 | 0.33 | 0.32 | 0.24 | 0.48 | 0.28 | 0.39 | 0.66 | 0.58 | 0.47 | 0.53 | 0.61 | 0.46 | 1.00 | 0.41 | 0.46 | 0.29 | 0.13 | 0.41 | 0.40 | 0.55 | 0.55 |
Guangxi | 0.16 | 0.15 | 0.12 | 0.11 | 0.09 | 0.12 | 0.11 | 0.12 | 0.05 | 0.12 | 0.09 | 0.12 | 0.14 | 0.14 | 0.14 | 0.38 | 0.02 | 0.02 | 0.57 | 0.13 | 0.07 | 0.07 | 0.09 | 0.18 |
Hainan | 0.03 | 0.63 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.65 | 0.00 | 0.43 | 0.69 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
Chongqi-ng | 0.13 | 0.31 | 0.25 | 0.24 | 0.25 | 0.25 | 0.27 | 0.24 | 0.31 | 0.27 | 0.26 | 0.26 | 0.25 | 0.26 | 0.23 | 0.77 | 0.06 | 0.52 | 0.76 | 1.00 | 0.10 | 0.17 | 0.27 | 0.18 |
Sichuan | 0.03 | 0.17 | 0.35 | 0.33 | 0.23 | 0.31 | 0.38 | 0.35 | 0.22 | 0.46 | 0.42 | 0.37 | 0.45 | 0.46 | 0.44 | 0.24 | 0.28 | 0.08 | 0.25 | 0.09 | 0.25 | 0.40 | 0.09 | 0.00 |
Guizhou | 0.14 | 0.04 | 0.07 | 0.07 | 0.04 | 0.06 | 0.07 | 0.07 | 0.04 | 0.08 | 0.13 | 0.08 | 0.13 | 0.15 | 0.11 | 0.29 | 0.10 | 0.08 | 0.00 | 0.22 | 0.05 | 0.05 | 0.00 | 0.00 |
Yunnan | 0.04 | 0.56 | 0.13 | 0.12 | 0.09 | 0.11 | 0.26 | 0.12 | 0.12 | 0.23 | 0.19 | 0.13 | 0.15 | 0.15 | 0.15 | 0.28 | 0.35 | 0.30 | 0.23 | 0.09 | 0.13 | 0.16 | 0.09 | 0.00 |
Tibet | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.65 | 0.59 | 1.00 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Shaanxi | 0.40 | 0.07 | 0.19 | 0.18 | 0.15 | 0.13 | 0.20 | 0.14 | 0.12 | 0.32 | 0.25 | 0.22 | 0.25 | 0.25 | 0.25 | 0.69 | 0.51 | 0.18 | 0.25 | 0.26 | 0.17 | 0.24 | 0.09 | 0.09 |
Gansu | 0.08 | 0.00 | 0.07 | 0.07 | 0.05 | 0.07 | 0.13 | 0.07 | 0.06 | 0.11 | 0.08 | 0.08 | 0.07 | 0.06 | 0.08 | 0.38 | 0.36 | 0.28 | 0.39 | 0.09 | 0.09 | 0.09 | 0.00 | 0.00 |
Qinghai | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.53 | 0.68 | 0.26 | 0.14 | 0.17 | 0.02 | 0.02 | 0.00 | 0.00 |
Ningxia | 0.00 | 0.00 | 0.02 | 0.02 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.24 | 0.25 | 0.36 | 0.17 | 0.17 | 0.01 | 0.01 | 0.09 | 0.00 |
Xinjiang | 0.04 | 0.42 | 0.09 | 0.08 | 0.09 | 0.08 | 0.11 | 0.05 | 0.04 | 0.11 | 0.10 | 0.10 | 0.09 | 0.07 | 0.10 | 0.62 | 0.28 | 0.07 | 0.23 | 0.09 | 0.05 | 0.05 | 0.09 | 0.00 |
Region | Indicator | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 | D18 | D19 | D20 | D21 | D22 | D24 | D25 | |
Beijing | 3 | 1 | 3 | 1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
Tianjin | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 2 |
Hebei | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 1 | 3 | 3 |
Shanxi | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
Inner Mongolia | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 3 |
Liaoning | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | 3 |
Jilin | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 2 | 3 |
Heilongj-iang | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
Shanghai | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 |
Jiangsu | 2 | 3 | 1 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 |
Zhejiang | 1 | 2 | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 3 | 3 | 1 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 3 |
Anhui | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 2 |
Fujian | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 2 | 2 | 3 |
Jiangxi | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 3 | 1 | 1 | 1 | 2 | 3 |
Shandong | 1 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 3 | 3 | 2 | 2 | 1 | 3 | 2 | 2 | 1 |
Henan | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 3 |
Hubei | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 2 |
Hunan | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 1 | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 2 | 1 |
Guangd-ong | 1 | 2 | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 2 | 3 | 2 |
Guangxi | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 3 |
Hainan | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 1 | 2 | 3 | 1 | 1 | 1 | 2 | 3 |
Chongqi-ng | 3 | 2 | 3 | 1 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | 3 | 3 |
Sichuan | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 1 | 1 | 3 | 2 | 2 | 3 |
Guizhou | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
Yunnan | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 3 |
Tibet | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 2 | 3 |
Shaanxi | 1 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
Gansu | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 2 | 3 |
Qinghai | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 3 |
Ningxia | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 |
Xinjiang | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
Indicator | Indicator | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D14 | D15 | D16 | D17 | D18 | D19 | D20 | D21 | D22 | D24 | D25 | |
D1 | 1.00 | 0.09 | 0.76 | 0.80 | 0.75 | 0.71 | 0.71 | 0.81 | 0.68 | 0.67 | 0.78 | 0.73 | 0.74 | 0.39 | −0.16 | −0.04 | 0.26 | 0.13 | 0.69 | 0.78 | 0.52 | 0.45 |
D2 | 0.09 | 1.00 | 0.13 | 0.08 | 0.09 | 0.08 | −0.02 | 0.22 | 0.36 | 0.47 | 0.23 | 0.33 | 0.20 | 0.42 | 0.00 | 0.15 | −0.23 | 0.15 | −0.09 | −0.04 | 0.50 | 0.39 |
D3 | 0.76 | 0.13 | 1.00 | 0.98 | 0.99 | 0.87 | 0.97 | 0.93 | 0.87 | 0.80 | 0.98 | 0.94 | 0.98 | 0.32 | −0.29 | −0.13 | 0.42 | 0.18 | 0.81 | 0.91 | 0.41 | 0.45 |
D5 | 0.80 | 0.08 | 0.98 | 1.00 | 0.98 | 0.88 | 0.97 | 0.93 | 0.83 | 0.74 | 0.95 | 0.88 | 0.94 | 0.36 | −0.31 | −0.09 | 0.49 | 0.15 | 0.83 | 0.92 | 0.38 | 0.42 |
D6 | 0.75 | 0.09 | 0.99 | 0.98 | 1.00 | 0.84 | 0.98 | 0.90 | 0.81 | 0.73 | 0.94 | 0.89 | 0.95 | 0.27 | −0.34 | −0.15 | 0.47 | 0.18 | 0.78 | 0.89 | 0.33 | 0.38 |
D7 | 0.71 | 0.08 | 0.87 | 0.88 | 0.84 | 1.00 | 0.85 | 0.88 | 0.89 | 0.79 | 0.89 | 0.80 | 0.86 | 0.27 | −0.22 | −0.06 | 0.29 | 0.04 | 0.89 | 0.90 | 0.40 | 0.46 |
D8 | 0.71 | −0.02 | 0.97 | 0.97 | 0.98 | 0.85 | 1.00 | 0.86 | 0.77 | 0.65 | 0.91 | 0.85 | 0.93 | 0.23 | −0.36 | −0.19 | 0.52 | 0.13 | 0.81 | 0.91 | 0.23 | 0.31 |
D9 | 0.81 | 0.22 | 0.93 | 0.93 | 0.90 | 0.88 | 0.86 | 1.00 | 0.90 | 0.88 | 0.96 | 0.90 | 0.93 | 0.46 | −0.20 | 0.10 | 0.39 | 0.21 | 0.82 | 0.89 | 0.61 | 0.61 |
D10 | 0.68 | 0.36 | 0.87 | 0.83 | 0.81 | 0.89 | 0.77 | 0.90 | 1.00 | 0.96 | 0.94 | 0.93 | 0.91 | 0.43 | −0.14 | 0.02 | 0.19 | 0.12 | 0.75 | 0.80 | 0.61 | 0.63 |
D11 | 0.67 | 0.47 | 0.80 | 0.74 | 0.73 | 0.79 | 0.65 | 0.88 | 0.96 | 1.00 | 0.89 | 0.91 | 0.86 | 0.46 | −0.06 | 0.08 | 0.03 | 0.19 | 0.63 | 0.71 | 0.72 | 0.72 |
D12 | 0.78 | 0.23 | 0.98 | 0.95 | 0.94 | 0.89 | 0.91 | 0.96 | 0.94 | 0.89 | 1.00 | 0.97 | 0.99 | 0.41 | −0.25 | −0.05 | 0.35 | 0.18 | 0.80 | 0.89 | 0.52 | 0.56 |
D14 | 0.73 | 0.33 | 0.94 | 0.88 | 0.89 | 0.80 | 0.85 | 0.90 | 0.93 | 0.91 | 0.97 | 1.00 | 0.98 | 0.41 | −0.23 | −0.07 | 0.27 | 0.18 | 0.69 | 0.81 | 0.54 | 0.59 |
D15 | 0.74 | 0.20 | 0.98 | 0.94 | 0.95 | 0.86 | 0.93 | 0.93 | 0.91 | 0.86 | 0.99 | 0.98 | 1.00 | 0.37 | −0.27 | −0.11 | 0.37 | 0.17 | 0.78 | 0.89 | 0.46 | 0.52 |
D16 | 0.39 | 0.42 | 0.32 | 0.36 | 0.27 | 0.27 | 0.23 | 0.46 | 0.43 | 0.46 | 0.41 | 0.41 | 0.37 | 1.00 | −0.02 | 0.38 | 0.21 | 0.27 | 0.23 | 0.27 | 0.47 | 0.50 |
D17 | −0.16 | 0.00 | −0.29 | −0.31 | −0.34 | −0.22 | −0.36 | −0.20 | −0.14 | −0.06 | −0.25 | −0.23 | −0.27 | −0.02 | 1.00 | 0.23 | −0.52 | 0.01 | −0.12 | −0.11 | 0.32 | 0.06 |
D18 | −0.04 | 0.15 | −0.13 | −0.09 | −0.15 | −0.06 | −0.19 | 0.10 | 0.02 | 0.08 | −0.05 | −0.07 | −0.11 | 0.38 | 0.23 | 1.00 | 0.12 | −0.03 | −0.05 | −0.10 | 0.20 | 0.24 |
D19 | 0.26 | −0.23 | 0.42 | 0.49 | 0.47 | 0.29 | 0.52 | 0.39 | 0.19 | 0.03 | 0.35 | 0.27 | 0.37 | 0.21 | −0.52 | 0.12 | 1.00 | 0.05 | 0.41 | 0.42 | −0.12 | 0.06 |
D20 | 0.13 | 0.15 | 0.18 | 0.15 | 0.18 | 0.04 | 0.13 | 0.21 | 0.12 | 0.19 | 0.18 | 0.18 | 0.17 | 0.27 | 0.01 | −0.03 | 0.05 | 1.00 | 0.00 | 0.09 | 0.33 | 0.12 |
D21 | 0.69 | −0.09 | 0.81 | 0.83 | 0.78 | 0.89 | 0.81 | 0.82 | 0.75 | 0.63 | 0.80 | 0.69 | 0.78 | 0.23 | −0.12 | −0.05 | 0.41 | 0.00 | 1.00 | 0.94 | 0.38 | 0.33 |
D22 | 0.78 | −0.04 | 0.91 | 0.92 | 0.89 | 0.90 | 0.91 | 0.89 | 0.80 | 0.71 | 0.89 | 0.81 | 0.89 | 0.27 | −0.11 | −0.10 | 0.42 | 0.09 | 0.94 | 1.00 | 0.44 | 0.43 |
D24 | 0.52 | 0.50 | 0.41 | 0.38 | 0.33 | 0.40 | 0.23 | 0.61 | 0.61 | 0.72 | 0.52 | 0.54 | 0.46 | 0.47 | 0.32 | 0.20 | −0.12 | 0.33 | 0.38 | 0.44 | 1.00 | 0.62 |
D25 | 0.45 | 0.39 | 0.45 | 0.42 | 0.38 | 0.46 | 0.31 | 0.61 | 0.63 | 0.72 | 0.56 | 0.59 | 0.52 | 0.50 | 0.06 | 0.24 | 0.06 | 0.12 | 0.33 | 0.43 | 0.62 | 1.00 |
References
- Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007—The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 20 May 2020).
- IPCC. Climate Change 2013—The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 20 May 2020).
- Zuo, J.; Pullen, S.; Rameezdeen, R.; Bennetts, H.; Wang, Y.; Mao, G.; Zhou, Z.; Du, H.; Duan, H. Green building evaluation from a life-cycle perspective in Australia: A critical review. Renew. Sustain. Energy Rev. 2017, 70, 358–368. [Google Scholar] [CrossRef]
- IEA Policy Pathways Brief: Modernising Building Energy Codes 2017. Available online: https://webstore.iea.org/policy-pathways-brief-modernising-building-energy-codes-2017 (accessed on 20 May 2020).
- Sharma, A.; Saxena, A.; Sethi, M.; Shree, V. Varun Life cycle assessment of buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 871–875. [Google Scholar] [CrossRef]
- USEPA Definition of Green Building. Available online: https://archive.epa.gov/greenbuilding/web/html/about.html (accessed on 20 May 2020).
- Hwang, B.G.; Zhu, L.; Ming, J.T.T. Factors affecting productivity in green building construction projects: The case of Singapore. J. Manag. Eng. 2017, 33. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Su, Y.; Deng, X. An empirical analysis of the factors affecting the adoption and diffusion of GBTS in the construction market. Sustainability 2019, 11, 1795. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, H.; Lu, L. A comprehensive review on passive design approaches in green building rating tools. Renew. Sustain. Energy Rev. 2015, 50, 1425–1436. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Gao, W.; Wang, F.; Zhou, N.; Kammen, D.M.; Ying, X. A survey of the status and challenges of green building development in various countries. Sustainability 2019, 11, 5385. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Long, R.; Chen, H.; Chen, F.; Wang, J. Visualized analysis of global green buildings: Development, barriers and future directions. J. Clean. Prod. 2020, 245. [Google Scholar] [CrossRef]
- Todd, J.A.; Pyke, C.; Tufts, R. Implications of trends in LEED usage: Rating system design and market transformation. Build. Res. Inf. 2013, 41, 384–400. [Google Scholar] [CrossRef]
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Illankoon, I.M.C.S.; Tam, V.W.Y.; Le, K.N.; Shen, L. Key credit criteria among international green building rating tools. J. Clean. Prod. 2017, 164, 209–220. [Google Scholar] [CrossRef]
- Shan, M.; Hwang, B. gang Green building rating systems: Global reviews of practices and research efforts. Sustain. Cities Soc. 2018, 39, 172–180. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, C.; Zhang, Y.; Yuan, J.; Luo, Y.; Gang, W. A review of renewable energy assessment methods in green building and green neighborhood rating systems. Energy Build. 2019, 195, 68–81. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Tan, Y.; Zhang, G. Building green retrofit in China: Policies, barriers and recommendations. Energy Policy 2020, 139. [Google Scholar] [CrossRef]
- De Santoli, L.; Lo Basso, G.; Nastasi, B. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings. Energy Procedia 2017, 133, 207–218. [Google Scholar] [CrossRef]
- Ahmad, T.; Aibinu, A.A.; Stephan, A. Managing green building development—A review of current state of research and future directions. Build. Environ. 2019, 155, 83–104. [Google Scholar] [CrossRef]
- Darko, A.; Zhang, C.; Chan, A.P.C. Drivers for green building: A review of empirical studies. Habitat Int. 2017, 60, 34–49. [Google Scholar] [CrossRef]
- Oyedokun, T.B. Green premium as a driver of green-labelled commercial buildings in the developing countries: Lessons from the UK and US. Int. J. Sustain. Built Environ. 2017, 6, 723–733. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Liu, H. Policies to enhance the drivers of green housing development in China. Energy Policy 2018, 121, 225–235. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, M.; Cai, Y.; Wang, H.; Li, S. What Hinders the Development of Green Building? An Investigation of China. Int. J. Environ. Res. Public Health 2019, 16, 3140. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M. Planning for urban sustainability: The geogrpahy of LEED®-neighborhood developmentTM (LEED®-NDTM) projects in the United States. Int. J. Urban Sustain. Dev. 2015, 7, 15–32. [Google Scholar] [CrossRef]
- Cidell, J. Building green: The emerging geography of LEED-certified buildings and professionals. Prof. Geogr. 2009, 61, 200–215. [Google Scholar] [CrossRef]
- Kaza, N.; Lester, T.W.; Rodriguez, D.A. The Spatio-temporal Clustering of Green Buildings in the United States. Urban Stud. 2013, 50, 3262–3282. [Google Scholar] [CrossRef]
- Qiu, Y.; Tiwari, A.; Wang, Y.D. The diffusion of voluntary green building certification: A spatial approach. Energy Effic. 2015, 8, 449–471. [Google Scholar] [CrossRef]
- Smith, R.M. “Green” building in India: A comparative and spatial analysis of the LEED-India and GRIHA rating systems. Asian Geogr. 2015, 32, 73–84. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, W.; Zhong, R. The spatial distribution of green buildings in China: Regional imbalance, economic fundamentals, and policy incentives. Appl. Geogr. 2017, 88, 38–47. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Wong, S.W.; Liao, S.; Lou, Y. A holistic evaluation of smart city performance in the context of China. J. Clean. Prod. 2018, 200, 667–679. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Del Giudice, V.; De Paola, P.; Cantisani, G.B. Rough Set Theory for Real Estate Appraisals: An Application to Directional District of Naples. Buildings 2017, 7, 12. [Google Scholar] [CrossRef]
- Renigier-Bilozor, M.; Janowski, A.; d’Amato, M. Automated Valuation Model based on fuzzy and rough set theory for real estate market with insufficient source data. Land Use Policy 2019, 87. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, X.; Chen, X. Social vulnerability assessment of earthquake disaster based on the catastrophe progression method: A Sichuan Province case study. Int. J. Disaster Risk Reduct. 2017, 24, 361–372. [Google Scholar] [CrossRef]
- Kuo, C.-F.J.; Lin, C.-H.; Hsu, M.-W.; Li, M.-H. Evaluation of of intelligent green building policies in Taiwan—Using fuzzy analytic hierarchical process and fuzzy transformation matrix. Energy Build. 2017, 139, 146–159. [Google Scholar] [CrossRef]
- Streimikiene, D.; Skulskis, V.; Balezentis, T.; Agnusdei, G.P. Uncertain multi-criteria sustainability assessment of green building insulation materials. Energy Build. 2020, 219. [Google Scholar] [CrossRef]
- Mao, P.; Qi, J.; Tan, Y.; Li, J. An examination of factors affecting healthy building: An empirical study in east China. J. Clean. Prod. 2017, 162, 1266–1274. [Google Scholar] [CrossRef]
- Ma, G.; Liu, Y.; Shang, S. A Building Information Model (BIM) and Artificial Neural Network (ANN) Based System for Personal Thermal Comfort Evaluation and Energy Efficient Design of Interior Space. Sustainability 2019, 11, 4972. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, S.; Zhang, Y.; Xu, L.; Qu, Z.; Song, G.; Zhang, J. Comprehensive assessment and hierarchical management of the sustainable utilization of urban water resources based on catastrophe theory. J. Taiwan Inst. Chem. Eng. 2016, 60, 430–437. [Google Scholar] [CrossRef]
- Zeeman, E.C. Catastrophe Theory. Sci. Am. 1976, 234, 65–83. [Google Scholar] [CrossRef]
- Wang, J.; Shen, L.; Ren, Y.; Wei, X.; Tan, Y.; Shu, T. An alternative model for evaluating the balance of carrying capacity between functional urban infrastructures. Environ. Impact Assess. Rev. 2019, 79. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, Y.; Chen, Y.; Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 2018, 134, 282–293. [Google Scholar] [CrossRef]
- Hak, T.; Janouskova, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Shu, T.; Shen, L.; Liao, X.; Yang, N.; He, H. Economic perspective-based analysis on urban infrastructures carrying capacity—A China study. Environ. Impact Assess. Rev. 2020, 83. [Google Scholar] [CrossRef]
- Xiao, Y.; Qiao, Z. The problems and countermeasures for implementing green building in China. In Proceedings of the 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, 26–27 December 2009; Volume 1, pp. 114–118. [Google Scholar] [CrossRef]
- Prum, D.A.; Tetsuo, K. Green building geography across the United States: Does governmental incentives or economic growth stimulate construction? Real Estate Law J. 2014, 43. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C. Critical analysis of green building research trend in construction journals. Habitat Int. 2016, 57, 53–63. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.-Y. Green building research-current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Green Building Action Programme. Available online: http://www.gov.cn/zwgk/2013-01/06/content_2305793.htm (accessed on 20 May 2020).
- Implementation Rules and Evaluation Criteria of the National Green Building Innovation Award. Available online: http://www.mohurd.gov.cn/wjfb/201101/t20110130_202254.html (accessed on 20 May 2020).
- Kesidou, E.; Wu, L. Stringency of environmental regulation and eco-innovation: Evidence from the eleventh Five-Year Plan and green patents. Econ. Lett. 2020, 190. [Google Scholar] [CrossRef]
- Moncaster, A.M.; Symons, K.E. A method and tool for ‘cradle to grave’ embodied carbon and energy impacts of UK buildings in compliance with the new TC350 standards. Energy Build. 2013, 66, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Toroghi, S.H.; Jacobs, F. Automated Green Building Rating System for Building Designs. J. Archit. Eng. 2016, 22, A4015001. [Google Scholar] [CrossRef]
- Release of the First Green Building Materials Evaluation Label. Available online: http://www.mohurd.gov.cn/zxydt/201605/t20160530_227640.html (accessed on 20 May 2020).
Category | First Layer | Second Layer | Indicator Layer | Units |
---|---|---|---|---|
Certification (A1) | Certification (B1) | Certification (C1) | Number of certified green buildings (D1) | Unit |
Proportion of buildings with high-level certification (D2) | % | |||
Economy (A2) | Industry (B2) | Industry (C2) | Total output value in construction industry (D3) | Billion yuan |
Output value of construction (D4) | Billion yuan | |||
Value added in construction industry (D5) | Billion yuan | |||
Output value of building construction (D6) | Billion yuan | |||
Enterprise (B3) | Enterprise (C3) | Number of construction enterprises (D7) | Unit | |
Number of staff and workers in construction enterprises (D8) | Person | |||
Finance (C4) | Total profits of construction enterprises (D9) | Billion yuan | ||
Paid-up capitals of construction enterprises (D10) | Billion yuan | |||
Total assets of construction enterprises (D11) | Billion yuan | |||
Business revenue of construction enterprises (D12) | Billion yuan | |||
Contract (C5) | Total value of contracts (D13) | Billion yuan | ||
Value from contracts signed in last year (D14) | Billion yuan | |||
Value from new contracts signed in this year (D15) | Billion yuan | |||
Efficiency (B4) | Efficiency (C6) | Labor productivity (D16) | Yuan/person | |
Value of machines per laborer (D17) | Yuan/person | |||
Ratio of profits to gross output value (D18) | % | |||
Ratio of pre-tax profit to gross output value (D19) | % | |||
Policy (A3) | Policy (B5) | Policy (C7) | Number of local policies (D20) | Unit |
Technology (A4) | Technology (B6) | Technology (C8) | Total power of machinery and equipment owned (D21) | kw |
Net value of machinery and equipment owned (D22) | Yuan | |||
Number of green building material labels (D23) | Unit | |||
Number of green building innovation awards (D24) | Unit | |||
Number of green building patents (D25) | Unit |
Category | Dimension of Control Variables | Potential Function | Normalization Formula |
---|---|---|---|
Folded model | 1 | ||
Cusp model | 2 | ; | |
Swallowtail model | 3 | ; ; | |
Butterfly model | 4 | ; ; ; |
Indicator | Data Source | Publication Institution |
---|---|---|
D1, D2 | The website of Chinese Green Building Evaluation Label (http://www.cngb.org.cn/) | The Development Centre for Science, Technology and Industrialization of MOHURD |
D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D21, D22 | The website of National Bureau of Statistics (http://www.stats.gov.cn/) | The National Bureau of Statistics |
D20 | The website of Chinalawinfo Database (http://www.lawinfochina.com/) | The Legal Information Center and Yinghua Company of Peking University |
D24 | The website of MOHURD (http://www.mohurd.gov.cn/wjfb/201507/t20150714_222929.html) | The MOHURD |
D25 | The website of National Intellectual Property Administration (http://pss-system.cnipa.gov.cn/sipopublicsearch/portal/uiIndex.shtml) | The National Intellectual Property Administration |
Region | A1 | Rank | A2 | Rank | A3 | Rank | A4 | Rank | P | Rank |
---|---|---|---|---|---|---|---|---|---|---|
Jiangsu | 0.469 | 8 | 0.981 | 1 | 0.466 | 9 | 0.930 | 1 | 0.913 | 1 |
Tianjin | 0.565 | 3 | 0.851 | 18 | 0.692 | 3 | 0.755 | 5 | 0.907 | 2 |
Chongqing | 0.509 | 6 | 0.889 | 9 | 1.000 | 1 | 0.588 | 11 | 0.906 | 3 |
Beijing | 0.539 | 5 | 0.881 | 11 | 0.552 | 5 | 0.802 | 2 | 0.903 | 4 |
Guangdong | 0.636 | 2 | 0.910 | 5 | 0.361 | 16 | 0.797 | 3 | 0.897 | 5 |
Zhejiang | 0.559 | 4 | 0.936 | 2 | 0.590 | 4 | 0.581 | 12 | 0.892 | 6 |
Shanghai | 0.719 | 1 | 0.860 | 17 | 0.466 | 10 | 0.578 | 13 | 0.885 | 7 |
Hubei | 0.367 | 10 | 0.919 | 3 | 0.552 | 6 | 0.720 | 6 | 0.880 | 8 |
Hebei | 0.266 | 22 | 0.866 | 14 | 0.808 | 2 | 0.621 | 8 | 0.865 | 9 |
Anhui | 0.482 | 7 | 0.874 | 12 | 0.552 | 7 | 0.506 | 15 | 0.863 | 10 |
Shandong | 0.343 | 14 | 0.914 | 4 | 0.361 | 17 | 0.766 | 4 | 0.863 | 11 |
Hunan | 0.342 | 15 | 0.893 | 8 | 0.295 | 20 | 0.693 | 7 | 0.844 | 12 |
Shaanxi | 0.269 | 21 | 0.861 | 16 | 0.511 | 8 | 0.536 | 14 | 0.834 | 13 |
Henan | 0.272 | 20 | 0.908 | 7 | 0.295 | 21 | 0.609 | 9 | 0.826 | 14 |
Guangxi | 0.385 | 9 | 0.816 | 22 | 0.361 | 18 | 0.490 | 16 | 0.824 | 15 |
Fujian | 0.337 | 16 | 0.909 | 6 | 0.295 | 22 | 0.485 | 17 | 0.821 | 16 |
Liaoning | 0.356 | 11 | 0.872 | 13 | 0.209 | 30 | 0.599 | 10 | 0.820 | 17 |
Sichuan | 0.326 | 17 | 0.886 | 10 | 0.295 | 23 | 0.461 | 18 | 0.813 | 18 |
Inner Mongolia | 0.290 | 19 | 0.793 | 25 | 0.466 | 11 | 0.379 | 21 | 0.802 | 19 |
Yunnan | 0.347 | 12 | 0.842 | 19 | 0.295 | 24 | 0.397 | 20 | 0.801 | 20 |
Xinjiang | 0.347 | 13 | 0.812 | 24 | 0.295 | 25 | 0.335 | 23 | 0.787 | 21 |
Jilin | 0.246 | 23 | 0.826 | 20 | 0.295 | 28 | 0.281 | 26 | 0.763 | 22 |
Guizhou | 0.204 | 24 | 0.777 | 27 | 0.466 | 12 | 0.256 | 28 | 0.762 | 23 |
Hainan | 0.303 | 18 | 0.678 | 30 | 0.295 | 29 | 0.055 | 31 | 0.682 | 24 |
Shanxi | 0.000 | 25 | 0.825 | 21 | 0.417 | 13 | 0.449 | 19 | 0.628 | 25 |
Heilongjiang | 0.000 | 26 | 0.778 | 26 | 0.361 | 19 | 0.366 | 22 | 0.603 | 26 |
Jiangxi | 0.000 | 27 | 0.865 | 15 | 0.295 | 26 | 0.320 | 24 | 0.599 | 27 |
Gansu | 0.000 | 29 | 0.815 | 23 | 0.295 | 27 | 0.291 | 25 | 0.587 | 28 |
Ningxia | 0.000 | 28 | 0.742 | 28 | 0.417 | 14 | 0.259 | 27 | 0.585 | 29 |
Qinghai | 0.000 | 30 | 0.728 | 29 | 0.417 | 15 | 0.211 | 29 | 0.572 | 30 |
Tibet | 0.000 | 31 | 0.411 | 31 | 0.000 | 31 | 0.065 | 30 | 0.261 | 31 |
Province | Number | Capital | Number | Percentage |
---|---|---|---|---|
Jiangsu | 288 | Nanjing | 29 | 10.07% |
Guangdong | 132 | Guangzhou | 29 | 21.97% |
Shaanxi | 115 | Xi’an | 78 | 67.83% |
Zhejiang | 96 | Hangzhou | 38 | 39.58% |
Shandong | 71 | Jinan | 22 | 30.99% |
Hubei | 62 | Wuhan | 37 | 59.68% |
Hunan | 57 | Changsha | 41 | 71.93% |
Jilin | 55 | Changchun | 18 | 34.55% |
Hebei | 47 | Shijiazhuang | 6 | 12.77% |
Henan | 45 | Zhengzhou | 14 | 31.11% |
Total | 1035 | 312 | 32.23% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Gao, X.; Gong, S.; Li, Z. Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method. Sustainability 2020, 12, 5988. https://doi.org/10.3390/su12155988
Chen L, Gao X, Gong S, Li Z. Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method. Sustainability. 2020; 12(15):5988. https://doi.org/10.3390/su12155988
Chicago/Turabian StyleChen, Linyan, Xin Gao, Shitao Gong, and Zhou Li. 2020. "Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method" Sustainability 12, no. 15: 5988. https://doi.org/10.3390/su12155988
APA StyleChen, L., Gao, X., Gong, S., & Li, Z. (2020). Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method. Sustainability, 12(15), 5988. https://doi.org/10.3390/su12155988