Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Sites and Fecal Sources
2.3. Sample Collection and FIB Determination
2.4. Data Analysis and Interpretation
3. Results and Discussion
3.1. Precipitation, Streamflow, and Samples Collected
3.2. FIB Concentrations, Streamflow Conditions, Fecal Sources, and Season
3.3. FIB Concentrations, Fecal Sources, and Water Quality Benchmarks
3.4. Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. AMB Express 2014, 4, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, H.; Schwartzbrod, L.; Dei-Cas, E. Microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 2002, 28, 371–409. [Google Scholar] [CrossRef]
- Efstratiou, A.; Ongerth, J.E.; Karanis, P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks—An update 2011–2016. Water Res. 2017, 114, 14–22. [Google Scholar] [CrossRef]
- Field, K.G.; Samadpour, M. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 2007, 41, 3517–3538. [Google Scholar] [CrossRef]
- Harwood, V.J.; Staley, C.; Badgley, B.D.; Borges, K.; Korajkic, A. Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes. FEMS Microbiol. Rev. 2014, 38, 1–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- José Figueras, M.; Borrego, J.J. New perspectives in monitoring drinking water microbial quality. Int. J. Environ. Res. Public Health 2010, 7, 4179–4202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.F.; Ng, C.; Nshimyimana, J.P.; Loh, L.L.; Gin, K.Y.H.; Thompson, J.R. Next-generation sequencing (NGS) for assessment of microbial water quality: Current progress, challenges, and future opportunities. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.A.; Joshi, K.; Bhand, S.; Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. Microbiologyopen 2016, 5, 901–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, Z.; Liu, Y.; Wang, X.; Li, Y.; Ma, P.; Gu, B.; Li, H. Recent advances in rapid pathogen detection method based on biosensors. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1021–1037. [Google Scholar] [CrossRef] [PubMed]
- Ashbolt, N.J.; Grabow, W.O.K.; Snozzi, M. Indicators of microbial water quality. In Assessment of Risk and Risk Management for Water-Related Infectious Disease; Fewtrell, L., Bartram, J., Eds.; World Health Organization, IWA Publishing: London, UK, 2001; Volume 23, pp. 289–316. [Google Scholar]
- USEPA. Recreational Water Quality Criteria; United States Environmental Protection Agency: Washington DC, USA, 2012.
- Leclerc, H.; Mossel, D.A.A.; Edberg, S.C.; Struijk, C.B. Advances in the bacteriology of the coliform group: Their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 2001, 55, 201–234. [Google Scholar] [CrossRef] [PubMed]
- Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol. Symp. Suppl. 2000, 88. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Erickson, M.C. Closing the door on the fecal coliform assay. Microbe 2006, 1, 162–163. [Google Scholar] [CrossRef] [Green Version]
- Odonkor, S.T.; Ampofo, J.K. Escherichia coli as an indicator of bacteriological quality of water: An overview. Microbiol. Res. (Pavia) 2013, 4, 2. [Google Scholar] [CrossRef]
- Sinclair, A.; Hebb, D.; Jamieson, R.; Gordon, R.; Benedict, K.; Fuller, K.; Stratton, G.W.; Madani, A. Growing season surface water loading of fecal indicator organisms within a rural watershed. Water Res. 2009, 43, 1199–1206. [Google Scholar] [CrossRef]
- Oliver, D.M.; Porter, K.D.H.; Pachepsky, Y.A.; Muirhead, R.W.; Reaney, S.M.; Coffey, R.; Kay, D.; Milledge, D.G.; Hong, E.; Anthony, S.G.; et al. Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments. Sci. Total Environ. 2016, 544, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Pachepsky, Y.A.; Allende, A.; Boithias, L.; Cho, K.; Jamieson, R.; Hofstra, N.; Molina, M. Microbial water quality: Monitoring and modeling. J. Environ. Qual. 2018, 47, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Devane, M.L.; Weaver, L.; Singh, S.K.; Gilpin, B.J. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds – A review. J. Environ. Manag. 2018, 222, 293–303. [Google Scholar] [CrossRef]
- Kay, D.; Anthony, S.; Crowther, J.; Chambers, B.J.; Nicholson, F.A.; Chadwick, D.; Stapleton, C.M.; Wyer, M.D. Microbial water pollution: A screening tool for initial catchment-scale assessment and source apportionment. Sci. Total Environ. 2010, 408, 5649–5656. [Google Scholar] [CrossRef]
- Stea, E.C.; Truelstrup Hansen, L.; Jamieson, R.C.; Yost, C.K. Fecal contamination in the surface waters of a rural- and an urban-source watershed. J. Environ. Qual. 2015, 44, 1556–1567. [Google Scholar] [CrossRef]
- Xue, F.; Tang, J.; Dong, Z.; Shen, D.; Liu, H.; Zhang, X.; Holden, N.M. Tempo-spatial controls of total coliform and E. coli contamination in a subtropical hilly agricultural catchment. Agric. Water Manag. 2018, 200, 10–18. [Google Scholar] [CrossRef]
- Bradshaw, J.K.; Snyder, B.J.; Oladeinde, A.; Spidle, D.; Berrang, M.E.; Meinersmann, R.J.; Oakley, B.; Sidle, R.C.; Sullivan, K.; Molina, M. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Res. 2016, 101, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, P.; Kelly-Quinn, M.; Jennings, E.; Antunes, P.; O’Sullivan, M.; Fenton, O.; HUallacháin, D.Ó. The environmental impact of cattle access to watercourses: A review. J. Environ. Qual. 2019, 48, 340–351. [Google Scholar] [CrossRef] [PubMed]
- McGrane, S.J.; Tetzlaff, D.; Soulsby, C. Application of a linear regression model to assess the influence of urbanised areas and grazing pastures on the microbiological quality of rural streams. Environ. Monit. Assess. 2014, 186, 7141–7155. [Google Scholar] [CrossRef] [PubMed]
- Kloot, R.W. Locating Escherichia coli contamination in a rural South Carolina watershed. J. Environ. Manag. 2007, 83, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, H.; Trevors, J.T.; Weir, S.C.; Thomas, J.L.; Habash, M. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario. Water Res. 2014, 53, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Meeroff, D.E.; Bloetscher, F.; Long, S.C.; Bocca, T. The use of multiple tracers to evaluate the impact of sewered and non-sewered development on coastal water quality in a rural area of Florida. Water Environ. Res. 2013, 86, 445–456. [Google Scholar] [CrossRef]
- Verhougstraete, M.P.; Martin, S.L.; Kendall, A.D.; Hyndman, D.W.; Rose, J.B. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale. Proc. Natl. Acad. Sci. USA 2015, 112, 10419–10424. [Google Scholar] [CrossRef] [Green Version]
- Byappanahalli, M.N.; Nevers, M.B.; Whitman, R.L.; Ge, Z.; Shively, D.; Spoljaric, A.; Przybyla-Kelly, K. Wildlife, urban inputs, and landscape configuration are responsible for degraded swimming water quality at an embayed beach. J. Great Lakes Res. 2015, 41, 156–163. [Google Scholar] [CrossRef]
- Nevers, M.B.; Byappanahalli, M.N.; Shively, D.; Buszka, P.M.; Jackson, P.R.; Phanikumar, M.S. Identifying and eliminating sources of recreational water quality degradation along an urban coast. J. Environ. Qual. 2018, 47, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.H.; Senay, C.; Young, S.; Nayak, B.; Lobos, A.; Conrad, J.; Harwood, V.J. Determination of wild animal sources of fecal indicator bacteria by microbial source tracking (MST) influences regulatory decisions. Water Res. 2018, 144, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Henson, S.S.; Ahearn, D.S.; Dahlgren, R.A.; Nieuwenhuyse, E.V.; Tate, K.W.; Fleenor, W.E. Water quality response to a pulsed-flow event on the Mokelumne river, California. River Res. Appl. 2007, 23, 185–200. [Google Scholar] [CrossRef]
- Droppo, I.G.; Liss, S.N.; Williams, D.; Nelson, T.; Jaskot, C.; Trapp, B. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs. Environ. Sci. Technol. 2009, 43, 1737–1743. [Google Scholar] [CrossRef]
- McKergow, L.A.; Davies-Colley, R.J. Stormflow dynamics and loads of Escherichia coli in a large mixed land use catchment. Hydrol. Process. 2010, 24, 276–289. [Google Scholar] [CrossRef]
- Pandey, P.; Soupir, M.L.; Wang, Y.; Cao, W.; Biswas, S.; Vaddella, V.; Atwill, R.; Merwade, V.; Pasternack, G. Water and sediment microbial quality of mountain and agricultural streams. J. Environ. Qual. 2018, 47, 985–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirs, M.; Harwood, V.J.; Fidler, A.E.; Gillespie, P.A.; Fyfe, W.R.; Blackwood, A.D.; Cornelisen, C.D. Source tracking faecal contamination in an urbanised and a rural waterway in the Nelson-Tasman region, New Zealand. New Zealand J. Mar. Freshw. Res. 2011, 45, 43–58. [Google Scholar] [CrossRef]
- Duane, T.P. Recreation in the Sierra. In Status of the Sierra Nevada: The Sierra Nevada Ecosystem Project Vol. II Assessments and Scientific Basis for Management Options; University of California: Davis, CA, USA, 1996; Volume II, pp. 557–609. [Google Scholar]
- USFS. Grazing Statistical Summary Fiscal Year 2016 Forest Service Range Management; United States Forest Service: Washington, DC, USA, 2016. [Google Scholar]
- USFS. Visitor Use Monitoring Survey Results National Summary Report Fiscal Year 2012 through 2016; United States Forest Service: Washington, DC, USA, 2018. [Google Scholar]
- USBLM. Public Land Statistics; United States Bureau of Land Management: Washington, DC, USA, 2018; Volume 199. [Google Scholar]
- CSWRCB. Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of CALIFORNIA; California State Water Resources Control Board: Sacramento, CA, USA, 2019. [Google Scholar]
- CRWQCB. Water Quality Control Plan for the Central Valley Region; California Regional Water Quality Control Board: Rancho Cordova, CA, USA, 2019. [Google Scholar]
- CRWQCB. Water Quality Control Plan for the Lahontan Region; California Regional Water Quality Control Board: South Lake Tahoe, CA, USA, 2019. [Google Scholar]
- Roche, L.M.; Kromschroeder, L.; Atwill, E.R.; Dahlgren, R.A.; Tate, K.W. Water quality conditions associated with cattle grazing and recreation on national forest lands. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Oles, K.M.; Weixelman, D.A.; Lile, D.F.; Tate, K.W.; Snell, L.K.; Roche, L.M. Riparian meadow response to modern conservation grazing management. Environ. Manag. 2017, 60, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater, 12th ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Stata Corp. Stata statistical software: Release 13.1; Stat Corp: College Station, TX, USA, 2016. [Google Scholar]
- Tiedemann, A.R.; Higgins, D.A.; Quigley, T.M.; Sanderson, H.R.; Marx, D.B. Responses of fecal coliform in streamwater to four grazing strategies. J. Range Manag. 1987, 40, 322. [Google Scholar] [CrossRef]
- Lau, Y.L.; Liu, D. Effect of flow rate on biofilm accumulation in open channels. Water Res. 1993, 27, 355–360. [Google Scholar] [CrossRef]
- Edwards, D.R.; Coyne, M.S.; Daniel, T.C.; Vendrell, P.F.; Murdoch, J.F.; Moore, P.A. Indicator bacteria concentrations of two Northwest Arkansas streams in relation to flow and season. Trans. Am. Soc. Agric. Eng. 1997, 40, 103–109. [Google Scholar] [CrossRef]
- Herrig, I.; Seis, W.; Fischer, H.; Regnery, J.; Manz, W.; Reifferscheid, G.; Böer, S. Prediction of fecal indicator organism concentrations in rivers: The shifting role of environmental factors under varying flow conditions. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef]
- Gary, H.L.; Johnson, S.R.; Ponce, S.L. Cattle grazing impact on surface water quality in a Colorado Front Range stream. J. Soil Water Conserv. 1983, 38, 124–128. [Google Scholar]
- Forrester, H.; Clow, D.; Roche, J.; Heyvaert, A.; Battaglin, W. Effects of backpacker use, pack stock trail use, and pack stock grazing on water-quality indicators, including nutrients, E. coli, hormones, and pharmaceuticals, in Yosemite National Park, USA. Environ. Manag. 2017, 60, 526–543. [Google Scholar] [CrossRef]
- Clow, D.W.; Forrester, H.; Miller, B.; Roop, H.; Sickman, J.O.; Ryu, H.; Domingo, J.S. Effects of stock use and backpackers on water quality in wilderness in Sequoia and Kings Canyon National Parks, USA. Environ. Manag. 2013, 52, 1400–1414. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Paule, A.L. Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae 2017, 70, 1–22. [Google Scholar] [CrossRef]
- Habteselassie, M.Y.; Kirs, M.; Conn, K.E.; Blackwood, A.D.; Kelly, G.; Noble, R.T. Tracking microbial transport through four onsite wastewater treatment systems to receiving waters in eastern North Carolina. J. Appl. Microbiol. 2011, 111, 835–847. [Google Scholar] [CrossRef]
- Williams, A.E.; Lund, L.J.; Johnson, J.A.; Kabala, Z.J. Natural and anthropogenic nitrate contamination of groundwater in a rural community, California. Environ. Sci. Technol. 1998, 32, 32–39. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Flint, A.L.; O’Leary, D.R.; Nishikawa, T.; Martin, P.; Johnson, R.D.; Clark, D.A. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California. J. Hydrol. 2015, 524, 147–165. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.L.; Norris, J.R. Occurrence of Fecal Coliform Bacteria in Selected Streams in Wyoming, 1990–1999; United States Geological Survey: Cheyenne, WY, USA, 2000.
- St Laurent, J.; Mazumder, A. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition. Water Res. 2014, 48, 170–178. [Google Scholar] [CrossRef]
- Stallard, M.A.; Winesett, S.; Scopel, M.; Bruce, M.; Bailey, F.C. Seasonal loading and concentration patterns for fecal bacteroidales qPCR markers and relationships to water quality parameters at baseflow. Water. Air. Soil Pollut. 2019, 230. [Google Scholar] [CrossRef]
- Lewis, D.J.; Voeller, D.; Saitone, T.L.; Tate, K.W. Management scale assessment of practices to mitigate cattle microbial water quality impairments of coastal waters. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- George, M.R.; Jackson, R.D.; Boyd, C.S.; Tate, K.W. A scientific assessment of the effectiveness of riparian management practices. In Conservation Benefits of Rangeland Practices Assessment, Recommendations, and Knowledg Gaps; Briske, D.D., Ed.; United States Department of Agriculture: Washington, DC, USA; Natural Resources Conservation Service: Washington, DC, USA, 2011; pp. 213–252. [Google Scholar]
- USFS. National Best Management Practices for Water Quality Management on national Forest System Lands—Vol.1 National Core BMP Technical Guide; United States Forest Service: Washington, DC, USA, 2012; Volume 1. [Google Scholar]
- Freitas, M.R.; Roche, L.M.; Weixelman, D.; Tate, K.W. Montane meadow plant community response to livestock grazing. Environ. Manag. 2014, 54, 301–308. [Google Scholar] [CrossRef] [PubMed]
Watershed | |||
---|---|---|---|
Stanislaus River | Susan River | East Walker River | |
Study Area (ha) | 141,969 | 192,358 | 92,642 |
Elevation Range (m) | 323 to 3515 | 1211 to 2537 | 1962 to 3754 |
Mean Annual Precipitation (cm) 1 | 130 | 69 | 61 |
Mean Annual Temperature (°C) 1 | 8.6 | 7.7 | 4.8 |
Number of Sample Sites | 28 | 26 | 23 |
Number of Samples Collected | 178 | 234 | 183 |
E. coli | Fecal Coliform | |||
---|---|---|---|---|
Model Parameter | Coefficient (S.E.) | p-Value | Coefficient (S.E.) | p-Value |
Independent Variables | ||||
Streamflow | ||||
Intermittent 1 | -- | -- | -- | -- |
Perennial | −1.19 (0.40) | 0.003 | −0.70 (0.32) | 0.090 |
Intercept | 3.95 (0.36) | <0.001 | 4.59 (0.37) | <0.001 |
Random Intercept | ||||
Sample Site Identity 2 | 1.80 (0.35) | -- | 1.96 (0.37) | -- |
E. coli | Fecal Coliform | |||
---|---|---|---|---|
Model Parameter | Coefficient (S.E.) | p-Value | Coefficient (S.E.) | p-Value |
Fixed Effects | ||||
Fecal Source (FS) | ||||
Grazing 1 | -- | -- | -- | -- |
Recreation 2 | −0.84 (0.34) | 0.013 | −0.58 (0.34) | 0.088 |
Residences 2 | 1.31 (0.67) | 0.049 | 1.88 (0.67) | 0.005 |
Julian Day (JD) | 0.099 (0.045) | 0.028 | 0.138 (0.042) | 0.001 |
JD^2 | −0.0024 (0.00009) | 0.015 | −0.0003 (0.00009) | 0.001 |
Intercept | −6.81 (5.07) | 0.179 | −11.10 (4.68) | 0.018 |
Random Intercept | ||||
Sample Site Identity 3 | 1.35 (0.30) | -- | 1.41 (0.31) | -- |
Percent of Sample Sites | ||||
---|---|---|---|---|
Sites | E. coli > 100 | FC > 20 | FC > 200 | |
Overall | 77 | 14 | 61 | 53 |
Recreation | 40 | 8 | 53 | 45 |
Grazing | 31 | 10 | 65 | 55 |
Residences | 6 | 83 | 100 | 100 |
Percent of Sample Sites | ||||
---|---|---|---|---|
Sites | E. coli > 320 | FC > 40 | FC > 400 | |
Overall | 77 | 13 | 83 | 25 |
Recreation | 40 | 5 | 80 | 15 |
Grazing | 31 | 16 | 84 | 29 |
Residences | 6 | 50 | 100 | 67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derose, K.L.; Roche, L.M.; Lile, D.F.; Eastburn, D.J.; Tate, K.W. Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes. Sustainability 2020, 12, 5207. https://doi.org/10.3390/su12125207
Derose KL, Roche LM, Lile DF, Eastburn DJ, Tate KW. Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes. Sustainability. 2020; 12(12):5207. https://doi.org/10.3390/su12125207
Chicago/Turabian StyleDerose, Kelsey L., Leslie M. Roche, David F. Lile, Danny J. Eastburn, and Kenneth W. Tate. 2020. "Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes" Sustainability 12, no. 12: 5207. https://doi.org/10.3390/su12125207
APA StyleDerose, K. L., Roche, L. M., Lile, D. F., Eastburn, D. J., & Tate, K. W. (2020). Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes. Sustainability, 12(12), 5207. https://doi.org/10.3390/su12125207