Table S1. Results of mixed effects negative binomial regression analysis to examine relationships between fecal source (recreation, grazing, and rural residences) and fecal indicator bacteria (*E. coli* and fecal coliform) concentrations (cfu/100 mL) for 595 water samples collected across 77 stream sample sites sustaining perennial streamflow throughout the entire summer sampling period (July through September of 2016).

	E. coli		Fecal Coliform	
Model Parameter	Coefficient (S.E.)	p-Value	Coefficient (S.E.)	p-Value
Fixed Effects				
Fecal Source (FS)				
$Grazing^1$				
Recreation ²	-0.66 (0.33)	0.045	-0.43 (0.32)	0.174
Residences ²	1.41 (0.61)	0.020	1.86 (0.59)	0.002
Intercept	3.24 (0.25)	< 0.001	4.11 (0.24)	< 0.001
Random Intercept				
Sample Site Identity ³	1.88 (0.33)		1.63 (0.32)	

 $^{^1}$ Referent condition for fecal source during the analyses, thus no coefficient is generated. 2 Post-hoc pairwise comparison indicted rural residence coefficient significantly different from recreation for *E. coli* (*p-Value* < 0.001) and fecal coliform (*p-Value* < 0.001). 3 Likelihood-ratio tests confirmed the random intercept negative binomial model was significantly superior to standard negative binomial regression for both *E. coli* and fecal coliform.