Discovering the Role of Emotional and Rational Appeals and Hidden Heterogeneity of Consumers in Advertising Copies for Sustainable Marketing
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. Appeals and Value in Advertising Copies
2.2. Value, Trust and Satisfaction in Advertising Copies
2.3. Positive Word-of-Mouth
2.4. Consumers’ Hidden Heterogeneity
2.5. Research Model
3. Methods
3.1. Participants
3.2. Measures
3.3. Procedure and Statistical Analysis
4. Results
4.1. Assessing the Global Model
4.2. Discovering the Hidden Consumers’ Traits
4.3. Identifying Different Types of Smartphone Consumers
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Williams, R. Advertising: The magic system. Advert. Soc. Rev. 2000, 1. [Google Scholar] [CrossRef]
- Brown, R.S., Jr. Advertising and the public interest: Legal protection of trade symbols. Yale LJ 1947, 57, 1165. [Google Scholar] [CrossRef] [Green Version]
- Litman, J. Breakfast with Batman: The public interest in the advertising age. Yale Law J. 1999, 108, 1717–1735. [Google Scholar] [CrossRef]
- Rossiter, J.R.; Percy, L. Advertising and Promotion Management; McGraw-Hill Book Company: New York, NY, USA, 1987. [Google Scholar]
- Wells, W.; Burnett, J.; Moriarty, S.E.; Pearce, R.C.; Pearce, C. Advertising: Principles and Practice; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; Volume 328. [Google Scholar]
- Nelson, P. Advertising as information. J. Political Econ. 1974, 82, 729–754. [Google Scholar] [CrossRef]
- Mehta, A. Advertising attitudes and advertising effectiveness. J. Advert. Res. 2000, 40, 67–72. [Google Scholar] [CrossRef]
- Lavidge, R.J.; Steiner, G.A. A model for predictive measurements of advertising effectiveness. J. Mark. 1961, 25, 59–62. [Google Scholar] [CrossRef]
- Bellman, S.; Robinson, J.A.; Wooley, B.; Varan, D. The effects of social TV on television advertising effectiveness. J. Mark. Commun. 2017, 23, 73–91. [Google Scholar] [CrossRef]
- Yang, S.; Lin, S.; Carlson, J.R.; Ross, W.T., Jr. Brand engagement on social media: Will firms’ social media efforts influence search engine advertising effectiveness? J. Mark. Manag. 2016, 32, 526–557. [Google Scholar] [CrossRef]
- Fuller, D.A. Sustainable Marketing: Managerial-Ecological Issues; Sage Publications: New York, NY, USA, 1999. [Google Scholar]
- Goasduff, L. Gartner Says Worldwide Smartphone Sales Will Grow 3% in 2020. Available online: https://www.gartner.com/en/newsroom/press-releases/2020-01-28-gartner-says-worldwide-smartphone-sales-will-grow-3-- (accessed on 10 May 2020).
- Kim, K.J.; Sundar, S.S. Mobile persuasion: Can screen size and presentation mode make a difference to trust? Hum. Commun. Res. 2016, 42, 45–70. [Google Scholar] [CrossRef]
- Sung, J.; Cho, K. The influence of media type on attitude toward mobile advertisements over time. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay-Nesbitt, J.; Manchanda, R.V.; Smith, M.C.; Huhmann, B.A. Effects of age, need for cognition, and affective intensity on advertising effectiveness. J. Bus. Res. 2011, 64, 12–17. [Google Scholar] [CrossRef]
- Sharma, M. Marketing myopia-a mousetrap that marketer should avoid. Int. Res. J. Manag. Sociol. Humanit. 2015, 6, 488–491. [Google Scholar]
- De Pelsmacker, P.; Geuens, M.; Anckaert, P. Media context and advertising effectiveness: The role of context appreciation and context/ad similarity. J. Advert. 2002, 31, 49–61. [Google Scholar] [CrossRef]
- Ducoffe, R.H.; Curlo, E. Advertising value and advertising processing. J. Mark. Commun. 2000, 6, 247–262. [Google Scholar] [CrossRef]
- Lannon, J.; Cooper, P. Humanistic advertising: A holistic cultural perspective. Int. J. Advert. 1983, 2, 195–213. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Batra, R. Assessing the role of emotions as mediators of consumer responses to advertising. J. Consum. Res. 1987, 14, 404–420. [Google Scholar] [CrossRef]
- Morris, J.D.; Woo, C.; Geason, J.A.; Kim, J. The power of affect: Predicting intention. J. Advert. Res. 2002, 42, 7–17. [Google Scholar] [CrossRef]
- Gopinath, S.; Thomas, J.S.; Krishnamurthi, L. Investigating the relationship between the content of online word of mouth, advertising, and brand performance. Mark. Sci. 2014, 33, 241–258. [Google Scholar] [CrossRef]
- Söderlund, M.; Rosengren, S. Receiving word-of-mouth from the service customer: An emotion-based effectiveness assessment. J. Retail. Consum. Serv. 2007, 14, 123–136. [Google Scholar] [CrossRef]
- El Kadiri, S.; Grabot, B.; Thoben, K.-D.; Hribernik, K.; Emmanouilidis, C.; Von Cieminski, G.; Kiritsis, D. Current trends on ICT technologies for enterprise information systems. Comput. Ind. 2016, 79, 14–33. [Google Scholar] [CrossRef] [Green Version]
- Buhalis, D.; O’Connor, P. Information communication technology revolutionizing tourism. Tour. Recreat. Res. 2005, 30, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Sundar, S.S. Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Copeland, M.T. Principles of Merchandising; AW Shaw Company: Chicago, AW, USA, 1924. [Google Scholar]
- Hall, M. Principles of Marketing. Econ. J. 1963, 73, 508–509. [Google Scholar] [CrossRef]
- Albers-Miller, N.D.; Stafford, M.R. An international analysis of emotional and rational appeals in services vs goods advertising. J. Consum. Mark. 1999, 16, 42–57. [Google Scholar] [CrossRef]
- Kotler, P.; Armstrong, G. Principles of Marketing; Pearson Education: London, UK, 2010. [Google Scholar]
- Chiu, C.-M.; Hsu, M.-H.; Lai, H.; Chang, C.-M. Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decis. Support Syst. 2012, 53, 835–845. [Google Scholar] [CrossRef]
- Harris, L.C.; Goode, M.M. The four levels of loyalty and the pivotal role of trust: A study of online service dynamics. J. Retail. 2004, 80, 139–158. [Google Scholar] [CrossRef]
- Bolton, R.N.; Drew, J.H. A multistage model of customers’ assessments of service quality and value. J. Consum. Res. 1991, 17, 375–384. [Google Scholar] [CrossRef]
- Overby, J.W.; Lee, E.-J. The effects of utilitarian and hedonic online shopping value on consumer preference and intentions. J. Bus. Res. 2006, 59, 1160–1166. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Holbrook, M.B. The chain of effects from brand trust and brand affect to brand performance: The role of brand loyalty. J. Mark. 2001, 65, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-Y.; Lu, H.-P. Predicting mobile social network acceptance based on mobile value and social influence. Internet Res. 2015, 25, 107–130. [Google Scholar] [CrossRef]
- Chiu, C.M.; Wang, E.T.; Fang, Y.H.; Huang, H.Y. Understanding customers’ repeat purchase intentions in B2C e-commerce: The roles of utilitarian value, hedonic value and perceived risk. Inf. Syst. J. 2014, 24, 85–114. [Google Scholar] [CrossRef]
- Arnold, M.J.; Reynolds, K.E. Hedonic shopping motivations. J. Retail. 2003, 79, 77–95. [Google Scholar] [CrossRef]
- Adaval, R. Sometimes it just feels right: The differential weighting of affect-consistent and affect-inconsistent product information. J. Consum. Res. 2001, 28, 1–17. [Google Scholar] [CrossRef]
- Geuens, M.; De Pelsmacker, P.; Faseur, T. Emotional advertising: Revisiting the role of product category. J. Bus. Res. 2011, 64, 418–426. [Google Scholar] [CrossRef]
- Simonson, I. The effect of product assortment on buyer preferences. J. Retail. 1999, 75, 347–370. [Google Scholar] [CrossRef]
- Yang, Z.; Cai, S.; Zhou, Z.; Zhou, N. Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Inf. Manag. 2005, 42, 575–589. [Google Scholar] [CrossRef]
- Mimouni-Chaabane, A.; Volle, P. Perceived benefits of loyalty programs: Scale development and implications for relational strategies. J. Bus. Res. 2010, 63, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and utilitarian motivations for online retail shopping behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Johar, J.S.; Sirgy, M.J. Value-expressive versus utilitarian advertising appeals: When and why to use which appeal. J. Advert. 1991, 20, 23–33. [Google Scholar] [CrossRef]
- Sullivan, Y.W.; Kim, D.J. Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments. Int. J. Inf. Manag. 2018, 39, 199–219. [Google Scholar] [CrossRef]
- Rousseau, D.M.; Sitkin, S.B.; Burt, R.S.; Camerer, C. Not so different after all: A cross-discipline view of trust. Acad. Manag. Rev. 1998, 23, 393–404. [Google Scholar] [CrossRef]
- Soh, H.; Reid, L.N.; King, K.W. Measuring trust in advertising. J. Advert. 2009, 38, 83–104. [Google Scholar] [CrossRef]
- Chai, J.C.Y.; Malhotra, N.K.; Alpert, F. A two-dimensional model of trust–value–loyalty in service relationships. J. Retail. Consum. Serv. 2015, 26, 23–31. [Google Scholar] [CrossRef]
- Koh, Y.J.; Sundar, S.S. Heuristic versus systematic processing of specialist versus generalist sources in online media. Hum. Commun. Res. 2010, 36, 103–124. [Google Scholar] [CrossRef]
- Tarn, J.L. The effects of service quality, perceived value and customer satisfaction on behavioral intentions. J. Hosp. Leis. Mark. 1999, 6, 31–43. [Google Scholar] [CrossRef]
- Gao, L.; Waechter, K.A.; Bai, X. Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study–A case of China. Comput. Hum. Behav. 2015, 53, 249–262. [Google Scholar] [CrossRef]
- Sanchez-Franco, M.J. The moderating effects of involvement on the relationships between satisfaction, trust and commitment in e-banking. J. Interact. Mark. 2009, 23, 247–258. [Google Scholar] [CrossRef]
- Thoms, P.; Dose, J.J.; Scott, K.S. Relationships between accountability, job satisfaction, and trust. Hum. Resour. Dev. Q. 2002, 13, 307–323. [Google Scholar] [CrossRef]
- Kampen, J.K.; De Walle, S.V.; Bouckaert, G. Assessing the relation between satisfaction with public service delivery and trust in Government. The impact of the predisposition of citizens toward Government on evalutations of its performance. Public Perform. Manag. Rev. 2006, 29, 387–404. [Google Scholar]
- Jin, B.; Park, J.Y.; Kim, J. Cross-cultural examination of the relationships among firm reputation, e-satisfaction, e-trust, and e-loyalty. Int. Mark. Rev. 2008, 25, 324–337. [Google Scholar] [CrossRef]
- Horppu, M.; Kuivalainen, O.; Tarkiainen, A.; Ellonen, H.K. Online satisfaction, trust and loyalty, and the impact of the offline parent brand. J. Prod. Brand Manag. 2008, 17, 403–413. [Google Scholar] [CrossRef]
- Şahin, A.; Turhan, L.; Zehir, A. Building behavioral intentions in automotive industry: Brand experience, satisfaction, trust, direct mail communication and attitudes toward advertising. Bus. Manag. Dyn. 2013, 3, 45. [Google Scholar]
- Bulearca, M.; Tamarjan, D. Augmented reality: A sustainable marketing tool. Glob. Bus. Manag. Res. Int. J. 2010, 2, 237–252. [Google Scholar]
- Sun, Y.; Ko, E. Influence of sustainable marketing activities on customer equity. J. Glob. Sch. Mark. Sci. 2016, 26, 270–283. [Google Scholar] [CrossRef]
- Kumar, V.; Mirchandani, R. Increasing the ROI of social media marketing. MIT Sloan Manag. Rev. 2012, 54, 55. [Google Scholar] [CrossRef]
- Abubakar, A.M.; Ilkan, M. Impact of online WOM on destination trust and intention to travel: A medical tourism perspective. J. Destin. Mark. Manag. 2016, 5, 192–201. [Google Scholar] [CrossRef]
- Choi, B.; Choi, B.-J. The effects of perceived service recovery justice on customer affection, loyalty, and word-of-mouth. Eur. J. Mark. 2014, 48, 108–131. [Google Scholar] [CrossRef]
- WeintraubAustin, E.; Miller, A.C.-R.; Silva, J.; Guerra, P.; Geisler, N.; Gamboa, L.; Phakakayai, O.; Kuechle, B. The effects of increased cognitive involvement on college students’ interpretations of magazine advertisements for alcohol. Commun. Res. 2002, 29, 155–179. [Google Scholar] [CrossRef]
- Okazaki, S.; Katsukura, A.; Nishiyama, M. How mobile advertising works: The role of trust in improving attitudes and recall. J. Advert. Res. 2007, 47, 165–178. [Google Scholar] [CrossRef]
- Fang, Y.H.; Chiu, C.M.; Wang, E.T. Understanding customers’ satisfaction and repurchase intentions. Internet Res. 2011, 21, 479–503. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Chang, C.-M.; Chu, K.-K.; Lee, Y.-J. Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean IS success model and trust. Comput. Hum. Behav. 2014, 36, 234–245. [Google Scholar]
- Hong, S.Y.; Yang, S.-U. Effects of reputation, relational satisfaction, and customer–company identification on positive word-of-mouth intentions. J. Public Relat. Res. 2009, 21, 381–403. [Google Scholar] [CrossRef]
- Wirtz, J.; Chew, P. The effects of incentives, deal proneness, satisfaction and tie strength on word-of-mouth behaviour. Int. J. Serv. Ind. Manag. 2002, 13, 141–162. [Google Scholar] [CrossRef]
- Jiewanto, A.; Laurens, C.; Nelloh, L. Influence of service quality, university image, and student satisfaction toward WOM intention: A case study on Universitas Pelita Harapan Surabaya. Procedia Soc. Behav. Sci. 2012, 40, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Maxham, J.G., III. Service recovery’s influence on consumer satisfaction, positive word-of-mouth, and purchase intentions. J. Bus. Res. 2001, 54, 11–24. [Google Scholar] [CrossRef]
- Ranaweera, C.; Prabhu, J. On the relative importance of customer satisfaction and trust as determinants of customer retention and positive word of mouth. J. Target. Meas. Anal. Mark. 2003, 12, 82–90. [Google Scholar] [CrossRef]
- Agag, G.; El-Masry, A.A. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Comput. Hum. Behav. 2016, 60, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.S.-T.; Chen, L.S.-L. The influence of perceived justice of service recovery on affective and cognitive trust. Int. J. Serv. Stand. 2011, 7, 278–290. [Google Scholar] [CrossRef]
- Xu, Q. Should I trust him? The effects of reviewer profile characteristics on eWOM credibility. Comput. Hum. Behav. 2014, 33, 136–144. [Google Scholar] [CrossRef]
- Alfina, I.; Ero, J.; Hidayanto, A.N.; Shihab, M.R. The impact of cognitive trust and e-wom on purchase intention in C2C e-commerce site. J. Comput. Sci. 2014, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.-M.; Rai, A.; Ringle, C.M.; Völckner, F. Discovering unobserved heterogeneity in structural equation models to avert validity threats. Mis Q. 2013, 37, 665–694. [Google Scholar] [CrossRef] [Green Version]
- Rust, R.T.; Verhoef, P.C. Optimizing the marketing interventions mix in intermediate-term CRM. Mark. Sci. 2005, 24, 477–489. [Google Scholar] [CrossRef]
- Gormley, T.A.; Matsa, D.A. Common errors: How to (and not to) control for unobserved heterogeneity. Rev. Financ. Stud. 2014, 27, 617–661. [Google Scholar] [CrossRef] [Green Version]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved heterogeneity and the statistical analysis of highway accident data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Krasnokutskaya, E. Identification and estimation of auction models with unobserved heterogeneity. Rev. Econ. Stud. 2011, 78, 293–327. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Treating unobserved heterogeneity in PLS-SEM: A multi-method approach. In Partial Least Squares Path Modeling; Springer: Berlin/Heidelberg, Germany, 2017; pp. 197–217. [Google Scholar]
- Fuentes-Blasco, M.; Moliner-Velázquez, B.; Gil-Saura, I. Analyzing heterogeneity on the value, satisfaction, word-of-mouth relationship in retailing. Manag. Decis. 2017, 55, 1558–1577. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; Bendle, N. Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry. Manag. Sci. 2019, 66, 1783–2290. [Google Scholar] [CrossRef]
- Yang, S.; Hu, M.; Winer, R.S.; Assael, H.; Chen, X. An empirical study of word-of-mouth generation and consumption. Mark. Sci. 2012, 31, 952–963. [Google Scholar] [CrossRef]
- Duan, W.; Gu, B.; Whinston, A.B. The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. J. Retail. 2008, 84, 233–242. [Google Scholar] [CrossRef]
- Rahim, A.; Safin, S.Z.; Kheng, L.K.; Abas, N.; Ali, S.M. Factors influencing purchasing intention of smartphone among university students. Procedia Econ. Financ. 2016, 37, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Deloitte. Global Mobile Consumer Survey: US Edition. 2017. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-2017-global-mobile-consumer-survey-executive-summary.pdf (accessed on 31 May 2020).
- Silver, L. Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally. Available online: https://www.pewresearch.org/global/2019/02/05/in-emerging-economies-smartphone-adoption-has-grown-more-quickly-among-younger-generations/ (accessed on 31 May 2020).
- Rosselli, F.; Skelly, J.J.; Mackie, D.M. Processing rational and emotional messages: The cognitive and affective mediation of persuasion. J. Exp. Soc. Psychol. 1995, 31, 163–190. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. Bönningstedt: SmartPLS. Retrieved July 2015, 15, 2016. [Google Scholar]
- Esposito Vinzi, V.; Trinchera, L.; Squillacciotti, S.; Tenenhaus, M. REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling. Appl. Stoch. Models Bus. Ind. 2008, 24, 439–458. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; Sage Publications: New York, NY, USA, 2017. [Google Scholar]
- Podsakoff, P.M.; Organ, D.W. Selfreports in Organizational Research: Problems and Prospects. J. Manag. 1986, 12, 531–544. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.R.; Lacker, D.F. Two structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kline, E.; Wilson, C.; Ereshefsky, S.; Tsuji, T.; Schiffman, J.; Pitts, S.; Reeves, G. Convergent and discriminant validity of attenuated psychosis screening tools. Schizophr. Res. 2012, 134, 49–53. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2016. [Google Scholar]
- Liebana-Cabanillas, F.; Alonso-Dos-Santos, M. Factors that determine the adoption of Facebook commerce: The moderating effect of age. J. Eng. Technol. Manag. 2017, 44, 1–18. [Google Scholar] [CrossRef]
Features | Frequency | % | |
---|---|---|---|
Gender | Female | 119 | 51.7% |
Male | 111 | 48.3% | |
Education | Undergraduate | 227 | 98.7% |
Graduate | 3 | 1.3% | |
Smartphone Brand | Samsung | 105 | 45.7% |
Apple | 70 | 30.4% | |
LG | 42 | 18.3% | |
Others | 13 | 5.6% |
Construct | Avg; (SD) | Question | Source |
---|---|---|---|
Emotional Appeal | 4.84 (1.811) | This advertising copy conveys more emotional features than the functional features of the product. | Albers-Miller and Stafford [29] |
Rational Appeal | 4.77 (1.662) | This advertising copy conveys more functional features than the emotional features of the product. | |
Hedonic Value | 3.97 (1.754) | It is fun to read product information through advertising copy. | Lin and Lu [36] |
3.52 (1.677) | Advertising copy gives me an enjoyable expectation for the product. | ||
3.48 (1.684) | I enjoy reading advertising copy. | ||
3.77 (1.673) | I do not get bored by reading the advertising copy. | ||
Utilitarian Value | 3.74 (1.736) | Advertising copy enables me to acquire a large amount of information about a product. | |
3.55 (1.649) | Advertising copy enhances my efficiency in identifying information. | ||
3.62 (1.656) | Advertising copy is a useful medium for obtaining product information. | ||
3.62 (1.622) | Advertising copy is a useful medium for identifying a product. | ||
Satisfaction | 3.42 (1.621) | I feel satisfied with the information provided in the advertising copy. | Gao, Wechter and Bai [52] |
2.80 (1.729) | I feel content with the information provided in the advertising copy. | ||
3.10 (1.573) | I feel pleased with the information provided in the advertising copy. | ||
Affective Trust | 3.97 (1.495) | This advertising copy is likable. | Soh, Reid and King [48] |
3.31 (1.492) | This advertising copy is enjoyable. | ||
4.99 (1.345) | This advertising copy is positive. | ||
Cognitive Trust | 4.25 (1.306) | This advertising copy is truthful. | |
4.23 (1.293) | This advertising copy is credible. | ||
4.23 (1.327) | This advertising copy is reliable. | ||
3.91 (1.371) | This advertising copy is dependable. | ||
3.88 (1.381) | This advertising copy is accurate. | ||
4.08 (1.455) | This advertising copy is useful. | ||
Positive WOM | 3.52 (1.435) | I am willing to recommend the product in advertising to others. | Choi and Choi [63] |
3.89 (1.510) | I usually say positive things about the product in advertising to others. | ||
3.47 (1.506) | I will tell my friends and relatives to use the product in advertising to others. |
Construct | Cronbach’s α | Composite Reliability | AVE |
---|---|---|---|
Emotional Appeal | 1.000 | 1.000 | 1.000 |
Rational Appeal | 1.000 | 1.000 | 1.000 |
Hedonic Value | 0.937 | 0.955 | 0.841 |
Utilitarian Value | 0.950 | 0.964 | 0.869 |
Satisfaction | 0.882 | 0.927 | 0.808 |
Affective Trust | 0.833 | 0.900 | 0.752 |
Cognitive Trust | 0.935 | 0.950 | 0.761 |
Positive WOM | 0.931 | 0.956 | 0.879 |
Construct | EA | RA | HV | UV | SA | AT | CT | PW |
---|---|---|---|---|---|---|---|---|
EA | 1.000 | |||||||
RA | −0.146 | 1.000 | ||||||
HV | 0.412 | 0.219 | 0.917 | |||||
UV | 0.194 | 0.514 | 0.720 | 0.932 | ||||
SA | 0.280 | 0.373 | 0.761 | 0.789 | 0.899 | |||
AT | 0.392 | 0.150 | 0.746 | 0.588 | 0.708 | 0.867 | ||
CT | 0.163 | 0.429 | 0.607 | 0.659 | 0.644 | 0.624 | 0.872 | |
PW | 0.147 | 0.349 | 0.633 | 0.620 | 0.654 | 0.627 | 0.665 | 0.938 |
Construct | EA | RA | HV | UV | SA | AT | CT | PW |
---|---|---|---|---|---|---|---|---|
EA | ||||||||
RA | 0.146 | |||||||
HV | 0.426 | 0.226 | ||||||
UV | 0.199 | 0.527 | 0.763 | |||||
SA | 0.301 | 0.402 | 0.835 | 0.864 | ||||
AT | 0.432 | 0.163 | 0.840 | 0.656 | 0.812 | |||
CT | 0.169 | 0.446 | 0.649 | 0.700 | 0.708 | 0.705 | ||
PW | 0.151 | 0.363 | 0.677 | 0.660 | 0.718 | 0.712 | 0.712 |
Hypothesis | Results | |
---|---|---|
H1 | Emotional ad appeal will positively influence hedonic value. | Accepted |
H2 | Rational ad appeal will positively influence utilitarian value. | Accepted |
H3 | Hedonic value will positively influence affective trust (H3a) and satisfaction (H3b). | Accepted |
H4 | Utilitarian value will positively influence cognitive trust (H4a) and satisfaction (H4b). | Accepted |
H5 | Satisfaction will positively influence affective trust (H5a) and cognitive trust (H5b). | Accepted |
H6 | Satisfaction will positively influence positive WOM. | Accepted |
H7 | Affective trust will positively influence positive WOM. | Accepted |
H8 | Cognitive trust will positively influence positive WOM. | Accepted |
Construct | Original R² | K = 2 | K = 3 | K = 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HV | 0.170 | 0.329 | 0.101 | 0.247 | 0.345 | 0.019 | 0.136 | 0.531 | 0.038 | 0.500 |
UV | 0.264 | 0.455 | 0.165 | 0.272 | 0.157 | 0.359 | 0.345 | 0.173 | 0.066 | 0.619 |
AT | 0.603 | 0.768 | 0.521 | 0.567 | 0.735 | 0.550 | 0.746 | 0.860 | 0.425 | 0.766 |
CT | 0.475 | 0.893 | 0.231 | 0.635 | 0.546 | 0.334 | 0.715 | 0.686 | 0.161 | 0.708 |
SA | 0.700 | 0.719 | 0.694 | 0.673 | 0.696 | 0.752 | 0.821 | 0.854 | 0.589 | 0.731 |
PW | 0.516 | 0.780 | 0.336 | 0.766 | 0.809 | 0.793 | 0.844 | 0.957 | 0.422 | 0.653 |
∑R² | 2.728 | 2.996 | 3.086 | 3.337 | ||||||
Segment Size | 230 | 74 | 156 | 68 | 74 | 88 | 60 | 14 | 97 | 59 |
Relative Size | 100% | 32.2% | 67.8% | 29.6% | 32.2% | 38.3% | 26.1% | 6.1% * | 42.2% | 25.7% |
Construct | M | SD | AVE | CR | EA | RA | HV | UV | SA | AT | CT | PW |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EA | 4.839 | 1.811 | 1.000 | 1.000 | 1.000 | |||||||
RA | 4.770 | 1.662 | 1.000 | 1.000 | −0.146 * | 1.000 | ||||||
HV | 3.692 | 1.555 | 0.955 | 0.841 | 0.419 ** | 0.226 ** | 1.000 | |||||
UV | 3.630 | 1.553 | 0.964 | 0.869 | 0.194 ** | 0.515 ** | 0.719 ** | 1.000 | ||||
SA | 3.107 | 1.476 | 0.927 | 0.808 | 0.284 ** | 0.380 ** | 0.755 ** | 0.792 ** | 1.000 | |||
AT | 4.093 | 1.253 | 0.900 | 0.752 | 0.393 ** | 0.149 * | 0.743 ** | 0.585 ** | 0.695 ** | 1.000 | ||
CT | 4.102 | 1.173 | 0.950 | 0.761 | 0.166 * | 0.436 ** | 0.607 ** | 0.661 ** | 0.645 ** | 0.624 ** | 1.000 | |
PW | 3.628 | 1.391 | 0.956 | 0.879 | 0.145 * | 0.351 ** | 0.629 ** | 0.619 ** | 0.648 ** | 0.626 ** | 0.664 ** | 1.000 |
Hypothesis | Global Model (N = 230) | Type 1 Model (N = 68) | Type 2 Model (N = 74) | Type 3 Model (N = 88) |
---|---|---|---|---|
H1. EA → HV | 0.412 *** | 0.497 *** | 0.588 *** | 0.138 |
H2. RA → UV | 0.514 *** | 0.521 *** | 0.396 *** | 0.599 *** |
H3a. HV → AT | 0.494 *** | 0.181 | 0.671 *** | 0.438 *** |
H3b. HV → SA | 0.402 *** | 0.503 *** | 0.366 ** | 0.361 *** |
H4a. UV → CT | 0.401 *** | 0.285 ** | 0.533 *** | 0.455 ** |
H3b. UV → SA | 0.500 *** | 0.392 *** | 0.521 *** | 0.566 *** |
H5a. SA → AT | 0.332 *** | 0.605 *** | 0.228 ** | 0.352 ** |
H5b. SA →CT | 0.328 *** | 0.565 *** | 0.240 | 0.063 |
H6. SA → PW | 0.277 ** | 0.044 | 0.279 ** | 0.222 ** |
H7. AT → PW | 0.208 ** | −0.642 *** | 0.173 *** | 0.382 *** |
H8. CT → PW | 0.357 *** | 0.266 *** | −0.576 *** | 0.538 *** |
H9. UH | Accepted |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Jeon, H.G.; Lee, K.C. Discovering the Role of Emotional and Rational Appeals and Hidden Heterogeneity of Consumers in Advertising Copies for Sustainable Marketing. Sustainability 2020, 12, 5189. https://doi.org/10.3390/su12125189
Kim C, Jeon HG, Lee KC. Discovering the Role of Emotional and Rational Appeals and Hidden Heterogeneity of Consumers in Advertising Copies for Sustainable Marketing. Sustainability. 2020; 12(12):5189. https://doi.org/10.3390/su12125189
Chicago/Turabian StyleKim, Cheong, Hyeon Gyu Jeon, and Kun Chang Lee. 2020. "Discovering the Role of Emotional and Rational Appeals and Hidden Heterogeneity of Consumers in Advertising Copies for Sustainable Marketing" Sustainability 12, no. 12: 5189. https://doi.org/10.3390/su12125189
APA StyleKim, C., Jeon, H. G., & Lee, K. C. (2020). Discovering the Role of Emotional and Rational Appeals and Hidden Heterogeneity of Consumers in Advertising Copies for Sustainable Marketing. Sustainability, 12(12), 5189. https://doi.org/10.3390/su12125189