Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objective Function
2.2. Power Network Constraints
2.3. Gas System Constraints
2.4. Thermal Storage Constraint
2.5. Systems Interconnection Constraints
3. Optimal Operation of the System Based on IGDT
3.1. Modeling of the Uncertainty
3.2. Background of IGDT
3.3. Robustness Function
3.4. Opportunity Function
4. Case Study and Simulation Results
4.1. The Analysis of Robustness Solution
4.2. The Analysis of Opportunity Solution
4.3. IGDT-Based Robust Operation of the Multi-Carrier Network
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
T | Total time duration |
NE | Number of power plants |
NGW | Number of gas suppliers |
t | Time interval |
n | Power plant |
/ | Start-up/shut-down cost of the non-gas-fueled power unit at each time interval |
/ | Start-up/shut-down price of non-gas- fueled power unit |
/ | Start-up/shut-down gas consumption of gas-fired power plant at each time interval |
/ | Start-up/shut-down gas usage rate of gas-fueled power unit |
The power supply of plant | |
F | The operation cost of plants |
O | Objective function |
/ | Min/max power limit of plants |
/ | Ramp up/down of generation units |
On/off status of power plant | |
The power output of the wind turbine | |
Electrical energy load of the system | |
Power flow through the system lines | |
Voltage angle of the bus of the electrical energy system | |
Power system line reactance | |
Power transmission capacity of the power system line | |
Gas transmission through the gas pipeline | |
The gas pressure of the gas system node | |
/ | Min/max gas pressure of gas system node |
Supplied gas by the gas supplier | |
Gas load | |
Min/max gas supply | |
Min/max gas load | |
an, bn, cn, dn, en, fn | Gas consumption/operation cost coefficients of the power unit |
Power usage of the water carrier | |
Power usage of the desalination system | |
Power usage of the water well pump | |
Power usage of the water source pump | |
The thermal energy level of the thermal storage system | |
Thermal energy charge of the thermal storage system | |
Thermal energy discharge of the thermal storage system | |
Thermal energy charging efficiency of the thermal storage system | |
Thermal energy discharging efficiency of the thermal storage system | |
Thermal storage efficiency | |
Min/max heat storage capacity of the thermal storage system | |
Maximum charge/discharge rate of the thermal storage system | |
Water load at each time | |
Water generation of the desalination system | |
System model | |
l | Uncertain nature of energy loads |
q | Decision variable |
Resistance rate of the optimal energy management schedule | |
Minimum amount of | |
Real and predicted load | |
Critical amount | |
Lowest bound of the operation cost | |
α | Uncertainty rate |
The lowest rate of uncertainty that network operation cost cannot surpass a critical amount Cr |
References
- Tan, S.; Wang, X.; Jiang, C. Optimal Scheduling of Hydro–PV–Wind Hybrid System Considering CHP and BESS Coordination. Appl. Sci. 2019, 9, 892. [Google Scholar] [CrossRef] [Green Version]
- Nazari-Heris, M.; Mehdinejad, M.; Mohammadi-Ivatloo, B.; Babamalek-Gharehpetian, G. Combined heat and power economic dispatch problem solution by implementation of whale optimization method. Neural Comput. Appl. 2019, 31, 421–436. [Google Scholar] [CrossRef]
- Tang, J.; Yu, T.; Zhang, X.; Li, Z.; Chen, J. Multi-Searcher Optimization for the Optimal Energy Dispatch of Combined Heat and Power-Thermal-Wind-Photovoltaic Systems. Appl. Sci. 2019, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Fang, J.; Li, J.; Chen, Z. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl. Energy 2016, 184, 1483–1492. [Google Scholar] [CrossRef]
- Liu, J.; Sun, W.; Harrison, G.P. The economic and environmental impact of power to hydrogen/power to methane facilities on hybrid power-natural gas energy systems. Int. J. Hydrog. Energy 2019, in press. [Google Scholar] [CrossRef]
- Bai, L.; Li, F.; Cui, H.; Jiang, T.; Sun, H.; Zhu, J. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl. Energy 2016, 167, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrog. Energy 2019, in press. [Google Scholar]
- Li, Z.; Wu, W.; Wang, J.; Zhang, B.; Zheng, T. Transmission-constrained unit commitment considering combined electricity and district heating networks. IEEE Trans. Sustain. Energy 2015, 7, 480–492. [Google Scholar] [CrossRef]
- Ali Shaabani, Y.; Seifi, A.R.; Kouhanjani, M.J. Stochastic multi-objective optimization of combined heat and power economic/emission dispatch. Energy 2017, 141, 1892–1904. [Google Scholar] [CrossRef]
- Sadat-Mohammadi, M.; Asadi, S.; Habibnezhad, M.; Jebelli, H. Robust scheduling of multi-chiller system with chilled-water storage under hourly electricity pricing. Energy Build. 2020, 218, 110058. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Shahidehpour, M. Robust short-term scheduling of integrated heat and power microgrids. IEEE Syst. J. 2018, 13, 3295–3303. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Jiang, T.; Chen, H.; Bai, L.; Li, X. Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process. Appl. Energy 2017, 194, 696–704. [Google Scholar] [CrossRef]
- Alabdulwahab, A.; Abusorrah, A.; Zhang, X.; Shahidehpour, M. Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Trans. Sustain. Energy 2015, 6, 606–615. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, B.; Fang, J.; Chen, Z. A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system. Appl. Energy 2017, 200, 192–203. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Sadat-Mohammadi, M.; Mirzaei, M.A.; Asadi, S.; Mohammadi-Ivatloo, B.; Jebelli, H. Robust Energy Management of Integrated Power Infrastructure and Gas Networks with High Penetration of Renewable Energy Sources; CRC: Tempe, AZ, USA, 2020. [Google Scholar]
- Alipour, M.; Zare, K.; Seyedi, H. A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids. Energy 2018, 149, 135–146. [Google Scholar] [CrossRef]
- Lu, S.; Gu, W.; Zhou, J.; Zhang, X.; Wu, C. Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy. Energy 2018, 152, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Widl, E.; Jacobs, T.; Schwabeneder, D.; Nicolas, S.; Basciotti, D.; Henein, S.; Noh, T.G.; Terreros, O.; Schuelke, A.; Auer, H. Studying the potential of multi-carrier energy distribution grids: A holistic approach. Energy 2018, 153, 519–529. [Google Scholar] [CrossRef]
- Adamek, F.; Arnold, M.; Andersson, G. On decisive storage parameters for minimizing energy supply costs in multicarrier energy systems. IEEE Trans. Sustain. Energy 2013, 5, 102–109. [Google Scholar] [CrossRef]
- Martinez-Mares, A.; Fuerte-Esquivel, C.R. A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Trans. Power Syst. 2012, 27, 2156–2166. [Google Scholar] [CrossRef]
- Liu, X. Combined Analysis of Electricity and Heat Networks. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2013. [Google Scholar]
- Shabanpour-Haghighi, A.; Seifi, A.R. An integrated steady-state operation assessment of electrical, natural gas, and district heating networks. IEEE Trans. Power Syst. 2015, 31, 3636–3647. [Google Scholar] [CrossRef]
- Bouwmans, I.; Hemmes, K. Optimising energy systems: Hydrogen and distributed generation. In Proceedings of the Second International Symposium on Distributed Generation: Power System and Market Aspects, Stockholm, Sweden, 2–4 October 2002; pp. 1L–7L. [Google Scholar]
- Geidl, M.; Andersson, G. Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 2007, 22, 145–155. [Google Scholar] [CrossRef]
- Moeini-Aghtaie, M.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Hajipour, E. A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans. Power Syst. 2013, 29, 707–716. [Google Scholar] [CrossRef]
- Shabanpour-Haghighi, A.; Seifi, A.R. Simultaneous integrated optimal energy flow of electricity, gas, and heat. Energy Convers. Manag. 2015, 101, 579–591. [Google Scholar] [CrossRef]
- Shabanpour-Haghighi, A.; Seifi, A.R. Multi-objective operation management of a multi-carrier energy system. Energy 2015, 88, 430–442. [Google Scholar] [CrossRef]
- Nojavan, S.; Majidi, M.; Zare, K. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT. Energy Convers. Manag. 2017, 147, 29–39. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mirzaei, M.A.; Mohammadi-Ivatloo, B.; Marzband, M.; Asadi, S. Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. J. Clean. Prod. 2020, 244, 118769. [Google Scholar] [CrossRef]
- Mirzaei, M.A.; Yazdankhah, A.S.; Mohammadi-Ivatloo, B.; Marzband, M.; Shafie-khah, M.; Catalão, J.P. Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system. J. Clean. Prod. 2019, 223, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Moradi-Dalvand, M.; Nazari-Heris, M.; Mohammadi-ivatloo, B.; Galavani, S.; Rabiee, A. A Two-Stage Mathematical Programming Approach for the Solution of Combined Heat and Power Economic Dispatch. IEEE Syst. J. 2019, in press. [Google Scholar] [CrossRef]
- Fan, H.; Lu, J.; Li, Z.; Shahidehpour, M.; Zhang, S. Optimal Planning of Integrated Electricity-Gas System with Demand Side Management. IEEE Access 2019, 7, 176790–176798. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Abapour, S.; Mohammadi-Ivatloo, B. Optimal economic dispatch of FC-CHP based heat and power micro-grids. Appl. Therm. Eng. 2017, 114, 756–769. [Google Scholar] [CrossRef]
- Zare, K.; Moghaddam, M.P.; El Eslami, M.K.S. Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology. Energy 2010, 35, 2999–3007. [Google Scholar] [CrossRef]
- Mirzaei, M.A.; Yazdankhah, A.S.; Mohammadi-Ivatloo, B. Stochastic security-constrained operation of wind and hydrogen energy storage systems integrated with price-based demand response. Int. J. Hydrog. Energy 2019, 44, 14217–14227. [Google Scholar] [CrossRef]
- Li, J.; Fang, J.; Zeng, Q.; Chen, Z. Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources. Appl. Energy 2016, 167, 244–254. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B. A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives. Renew. Sustain. Energy Rev. 2018, 81, 2128–2143. [Google Scholar] [CrossRef]
- Alabdulwahab, A.; Abusorrah, A.; Zhang, X.; Shahidehpour, M. Stochastic security-constrained scheduling of coordinated electricity and natural gas infrastructures. IEEE Syst. J. 2015, 11, 1674–1683. [Google Scholar] [CrossRef]
- Wang, D.; Wu, R.; Li, X.; Lai, C.S.; Wu, X.; Wei, J.; Xu, Y.; Wu, W.; Lai, L.L. Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations. J. Clean. Prod. 2019, 241, 118407. [Google Scholar] [CrossRef]
Reference | Type of Energy Carriers | UC Problem | Modeling Networks Constraints | Modeling Uncertain Parameter | The Implemented Uncertainty-Handling Method |
---|---|---|---|---|---|
[8] | Power and heat | ✓ | ✓ | - | - |
[9] | Power and heat | - | - | - | Stochastic |
[10] | Power and heat | - | - | ✓ | Robust-stochastic |
[11] | Power and gas | - | ✓ | - | - |
[12] | Power and gas | - | ✓ | - | - |
[30] | Power and gas | ✓ | ✓ | ✓ | Stochastic |
[17] | Power, gas, and heating | - | ✓ | - | - |
[22] | Power, gas, and heating | - | ✓ | - | - |
[28] | Power, gas, and heating | - | - | ✓ | IGDT |
[29] | Power, gas, and heating | ✓ | ✓ | ✓ | Two-stage stochastic |
Proposed model | Power, gas, water, and heating | ✓ | ✓ | ✓ | IGDT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S. Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage. Sustainability 2020, 12, 5158. https://doi.org/10.3390/su12125158
Nazari-Heris M, Mohammadi-Ivatloo B, Asadi S. Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage. Sustainability. 2020; 12(12):5158. https://doi.org/10.3390/su12125158
Chicago/Turabian StyleNazari-Heris, Morteza, Behnam Mohammadi-Ivatloo, and Somayeh Asadi. 2020. "Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage" Sustainability 12, no. 12: 5158. https://doi.org/10.3390/su12125158
APA StyleNazari-Heris, M., Mohammadi-Ivatloo, B., & Asadi, S. (2020). Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage. Sustainability, 12(12), 5158. https://doi.org/10.3390/su12125158