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Abstract: Coordination of a hydropower, combined heat and power (CHP), and battery energy
storage system (BESS) with multiple renewable energy sources (RES) can effectively reduce the
adverse effects of large-scale renewable energy integration in power systems. This paper proposes a
concept of a renewable-based hybrid energy system and puts forward an optimal scheduling model
of this system, taking into account the cost of operation and risk. An optimization method is proposed
based on Latin hypercube sampling, scene reduction, and piecewise linearization. Firstly, a large
number of samples were generated with the Latin hypercube sampling method according to the
uncertainties, including the renewable resources availability, the load demand, and the risk aversion
coefficients, and the generated samples were reduced with a scene reduction method. Secondly, the
piecewise linearization method was applied to convert nonlinear constraints into linear to obtain
the best results of each scene. Finally, the performance of the proposed model and method was
evaluated based on case studies with real-life data. Results showed that the renewable-based hybrid
system can not only reduce the intermittent and volatility of renewable resources but also ensure
the smooth of tie-line power as much as possible. The proposed model and method are universal,
feasible, and effective.

Keywords: hydro–PV–wind; hybrid energy system; uncertainty; Latin hypercube sampling and
scene reduction; risk aversion coefficients

1. Introduction

In recent years, with the increasing attention on global climate change and sustainable
development, the penetration of renewable energy resources (RES) has steadily grown in the global
electricity market. As renewable energy sources are starting to play a prominent role in revolutionizing
modern power systems, the impact on their operation and reliability no longer goes unnoticed and
neglected. However, because of their variability and difficult-to-predict nature, renewable resources
are always considered an unreliable resource, and their scheduled generation cannot be ensured [1,2].
Therefore, it seems that after overcoming the impediments related to the cost, the next problem which
should be solved is the reliable and economically justifiable integration of RES into the power system.
This is especially important in the case of RES such as wind and solar, which tend to exhibit a significant
temporal and spatial variability [3]. The problems of RES integration into the power system have been
studied in several studies [4–6].

In order to provide stable generation, coordination of several kinds of energy sources may
be an effective way to overcome these disadvantages above. Because of the large scale and good
regulation performance, hydroelectric power can effectively restrain the fluctuations in wind and
photovoltaic generation to improve their stabilities. Based on integrated technology, establishing a
hydro–photovoltaic–wind hybrid system is seen as a promising method to realize the conception [7,8].
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Malakar et al. [9] performed the coordinating strategy of a wind–hydro hybrid system connected
grid under frequency-based pricing. Reference [10] studied the portfolios of multiple energy sources
considering the complementarity between wind power and photovoltaics. The portfolios may play an
important role in reducing the fluctuations and intermittency to improve the reliability of individual
generation [11]. A method to solve the optimal power flow problem with different probability
density functions for wind and solar power was suggested by Reddy [12]. A stochastic day-ahead
optimal strategy for a wind–hydro system was presented by Biswas [13] considering the risk of the
system. References [14–17] studied the models of the wind–hydro hybrid system to reduce the cost
of imbalances. Compared with renewable resources, combined heat and power (CHP) systems are
highly controllable and have quite quick rates. Therefore, these systems with CHP are flexible and
can be used to ensure balance and improve the stability of RES integration into the power system [15].
The models for determining the strategy for optimal operation and trading of CHP systems have
many relevant studies. CHP systems can be optimized based on different optimization criteria, such as
energy savings, cost reduction, minimum environmental impact, or a combination of all of these [16].
Several methods and criteria have been proposed in the literature for optimization of the size and
operation of CHP systems [17–21]. References [22,23] proposed deterministic optimization models,
while References [24–27] presented stochastic programming models of CHP systems due to their ability
to approach various uncertainties in CHP system operation. References [28,29] proposed an economic
dispatch model that included CHP units, with a comprehensive survey reported [30–32]. Lai [33]
designed a CHP system by integrating the thermal storage techniques considering the uncertainty of
demand. Taking the variation of demands and prices into account, Carpaneto et al. [34] solved the best
CHP plan based on the decision theory concepts. Zapata et al. [35] promoted an aggregation model of
a CHP–photovoltaic (PV) hybrid system under uncertainty in the Belgian market. In addition, due
to the ability of energy storage, the battery energy storage system (BESS) is generally regarded as an
effective tool to deal with the intermittent characteristics of RES. Liao [36] proposed an optimization
method for sizing and scheduling BESS and the smart inverter (SI) of a photovoltaic (PV) system to
ensure the PV system owner’s investment returns and to assist the distribution system operator (DSO)
in adjusting the voltages. Chettibi [37] proposed an intelligent control strategy for a grid connected
hybrid energy generation system consisting of photovoltaic (PV) panels, fuel cell (FC) stack, and BESS.
Branco [38] put forward the integration of RES considering the installation of a battery energy storage
system (BESS) into an isolated power grid to keep the costs down.

However, to our knowledge, the concept of coupling all the above energy together has not been
proposed in the existing literature. In this paper, we coupled the photovoltaic modules (PV), a wind turbine
(WT), battery energy storage modules (BESS), electric vehicle chargers (EV), CHP, and a hydroelectric
power plant as a portfolio, in an attempt to reduce the imbalance and ultimately minimize the cost of
the portfolio considering risk factor. Based on the perspective of the concept, a renewable-based hybrid
energy system is proposed in the paper, and an optimal scheduling model of this system to minimize the
cost of operation and risk is put forward considering multiple uncertainties, which include renewable
resource volatility, the load demand, and different energy service providers’ coefficients of risk aversion.
To handle this complex optimization problem, a method combining the Latin hypercube sampling, scene
reduction, and piecewise linearization is proposed. A large number of samples were generated with
the Latin hypercube sampling method according to the uncertainties, including the renewable resources
availability, the load demand, and the risk aversion coefficients, and the generated samples were reduced
with the scene reduction method. Additionally, the piecewise linearization method was applied to convert
nonlinear constraints into linear to obtain the best results of each scene.

In summary, the main contributions of this paper can be listed as below:

(1) Propose a concept of a renewable-based hybrid energy system along with a corresponding
mathematical model which can be used to simulate and optimize its performance.

(2) Introduce an optimal optimization model which focuses on minimizing the operating cost of
energy service providers considering the environment as much as possible.
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(3) Investigate the distinction of uncertainty variables volatility on the energy exchange with the
power grid.

(4) Research the impact of different risk aversion coefficients on the operation of energy
service providers.

The remainder of this paper is organized as follows. Section 2 formulates the mathematical model
for the operation of the hybrid power system. In Section 3, the solution method is described in detail.
In Section 4, numerical simulations of the proposed model are applied to a test system on real-life data,
and discussions are provided accordingly. Finally, the conclusions of the paper are drawn in Section 5.

2. Coordinated Optimal Scheduling Model of Hybrid System

The proposed day-ahead optimal scheduling model of the hybrid system in this paper focuses on
three issues: Firstly, a coordinated scheduling model including wind, solar, electric vehicle, battery
energy storage, CHP, and pumped-storage power is proposed, considering all the operation constraints.
Secondly, the different energy exchanges with the power grid due to the volatility of uncertainty
variables are considered in the scheduling process. Finally, the impact of different risk aversion
coefficients on the operation of the hybrid system is studied.

2.1. Description and Framework of the Hybrid Energy System

The renewable-based hybrid energy system supplied by energy service providers studied in the
paper is composed of PV, WT, BESS, EV, CHP, and a hydroelectric power station. The conceptual
structure of the proposed hybrid system in this paper is shown in Figure 1. The operation of multiple
energy resources in the hybrid power is subjected to different constraints in the day-ahead scheduling
because of their different characteristics. Due to the stochastic nature of the renewable resources,
finding a way to maximize the wind and solar power at the lowest cost is the key to the optimal
operation of hybrid energy system. In this situation, with the help of hydroelectric power plant, CHP
and BESS, formulating an effective scheduling strategy to ensure the power balance of power system
considering wind, solar, water, and other forms of energy is a major issue to be addressed.
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2.2. Objective of Optimal Scheduling Model in Hybrid System

To comprehensively consider economy, environment protection, and the renewable energy
consumption level, the day-ahead optimal scheduling model is constructed as follows:

C =
NS

∑
s=1

πs

[
NT

∑
t=1

(
NG

∑
g=1

Cg,t,s
CHP + Ct,s

BESS + Ct,s
grid

)]
+ β× CVaR (1)

The above objective is to minimize the operation cost consisting of four distinct terms, including
the generation cost of all CHPs, the cost of BESS, the cost of power exchange with the utility grid,
and the cost of risk valued by CVaR. The indices g, t, and s represent the CHPs, time periods, and the
scenarios. The objective is subject to many system equality and inequality constraints, including the
power balance constraint in Equation (2), utility grid power exchange limit in Equation (3), and the
constraint of risk in Equation (4). Meanwhile, these costs are calculated by the following model of
different energy resources, respectively:

Pt,s
W + Pt,s

solar + Pt,s
h +

NG

∑
g=1

Pg,t,s
CHP + Pt,s

discharge − Pt,s
charge − Pt,s

ev + Pt,s
grid = Pt,s

load (2)

− Pmax
grid ≤ Pt,s

grid ≤ Pmax
grid (3)

τs ≥
[

NT

∑
t=1

(
NG

∑
g=1

Cg,t,s
CHP + Ct,s

BESS + Ct,s
grid

)]
− ε (4a)

CVaR = ε +
1

NS(1− c)

NS

∑
s=1

τs (4b)

τs ≥ 0 (4c)

The power balance in Equation (2) ensures that the sum of power generated by local generations
and exchanged with the utility grid matches the local load. The power exchange with the utility grid is
limited by the flow limits of the associated connecting line, as presented in Equation (3). Equation (4)
denotes that the factor of risk with auxiliary variables of CVaR.

2.2.1. The Model of Hydro Power Station

Hydro power is a traditional renewable clean energy. In accordance with the regulation ability of
water, the hydropower station can be divided into two categories, a run-off hydropower station and
a pumped storage power station. The latter has a certain capacity of reservoir, which can store the
appropriate capacity of water and have a certain ability to adjust and control electricity. Therefore, we
assumed the hydropower station in this paper is a pumped storage power station to complement the
renewable resources effectively. The output power of the hydro unit follows a function with the water
flow. The relationship can be expressed as:

Pt,s
h = F(Qt,s) (5)

Pmin
h · ug,t

h ≤ Pt,s
h ≤ Pmax

h · ug,t
h (6)

Volt,s = Volt−1,s + Rt−1 −Qt−1,s − St−1,s (7)

Volmin ≤ Volt,s ≤ Volmax (8)

VolNT,s ≥ Volend (9)

Vol0,s = Volbegin (10)
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The relationship between output power and the water flow is shown in Equation (5), and the
output power is limited by the limits of capacity in Equation (6). Equation (7) represents the reservoir
volume constraint at time t and t−1, and the right and left limits of the reservoir volume in each hour
are expressed in Equation (8). Meanwhile, Equation (9) fixes the hydro reserve at the end of the period
to be no less than the terminal volume limit.

2.2.2. The Model of PV and WT

Different from those of a conventional thermal power unit, the operation characteristics and
uncertainties of renewable energy sources make it hard to adjust their grid power.

The output power of wind turbines is mainly determined by the speed of wind and based on the
nature of the turbine’s power curve. The energy output can be expressed as follows considering the
character of wind turbine operation:

PW = 0, v < vci & v > vco

PW = Pr
(v−vci)
(vr−vci)

= a + bv, vci < v < vr

PW = Pr, vr < v < vco

(11)

As another renewable resource, the output of solar power mainly depends on factors such as
temperature, light intensity, and panel area. The output of PV can be estimated as follows:

Psolar = Psc IT [1 + k(Tc − Tr)]/Isc (12a)

Tc = Ta + 30IT/1000 (12b)

Equation (12b) calculates the working temperature of photovoltaic cell components in order to
estimate the output power in Equation (12a).

2.2.3. The Model of CHP

In contrast to wind and solar photovoltaic, CHP units are highly controllable. In addition,
ramp-up and ramp-down times of CHP units are short. Therefore, they can be used to ensure balance
and stability in the electric grid because of their flexibility. The cost of CHP as a function of output
power is represented as follows:

Cg,t,s
CHP = Fg,t,s

CHP + yg,tSg (13)

yg,t + zg,t ≤ 1 (14)

yg,t − zg,t = ug,t
CHP − ug,t−1

CHP (15)

Tg,t,s
CHP = δCHP × Pg,t,s

CHP (16)

Tg,t,s
demand = Tg,t,s

CHP − Tg,t,s
sur (17)

0 ≤ Pg,t,s,k
CHP ≤ ug,t

CHPPg,k,max
CHP (18)

Pg,t,s
CHP − Pg,t−1,s

CHP ≤ Rg
u(1− yg,t) + yg,tPg,min

CHP (19)

− Rg
u(1− zg,t)− zg,tPg,min

CHP ≤ Pg,t,s
CHP − Pg,t−1,s

CHP (20)

The cost of CHP in an objective function consists of the running cost and the start-up cost shown
in Equation (13). Equations (14) and (15) represent the running state of CHP with state variables.
The constraints of thermal load are shown in Equations (16) and (17). Equation (18) represents the limits
of CHP output, which are subject to commitment status and operating characteristics. Equations (19)
and (20) define the left and right limits of the CHP ramping rate according to parameters of CHP.
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2.2.4. The Model of BESS

The battery energy storage component in power system not only can smooth the output fluctuation
of some intermittent energy sources, such as wind power and photovoltaic power, but can also
participate in demand side management and the schedule of the smoothing power system load curve
to reduce security problems caused by the load fluctuation of power system. The principle of battery
energy storage is the charging and discharging of the chemical reaction between across the electrodes
inside the battery. The battery energy storage cost can be expressed as:

Ct,s
BESS = θ ×

(
Pt,s

discharge + Pt,s
charge

)
(21)

SoCt,s
BESS = SoCt−1,s

BESS + ηc
BESSPt,s

chaarge −
Pt,s

dischaarge

ηd
BESS

(22)

SoCmin
BESS ≤ SoCt,s

BESS ≤ SoCmax
BESS (23)

SoC0,s
BESS = SoCbegin

BESS (24)

SoCNT,s
BESS ≥ SoCend

BESS (25)

Pt,s
BESS = Pt,s

discharge − Pt,s
charge (26)

0 ≤ Pt,s
discharge ≤ Pmax

discharge (27)

0 ≤ Pt,s
charge ≤ Pmax

charge (28)

The cost of BESS in an objective function consists of the depreciable cost of discharge and charge
shown in Equation (21), and the output power is calculated in Equation (26). Equation (22) represents
the SoC constraint at time t and t−1, and the right and left limits of the SoC in each hour are expressed
in Equation (23). Meanwhile, Equation (25) fixes the SoC at the end of the period to be no less than the
terminal limit. Equations (27) and (28) represent the right and left limits of discharge and charge power.

2.2.5. The Model of EV

Different from that of a traditional load, the charging and discharging power of electric vehicles is
based on driving behavior of users, battery characteristics, and charging and discharging device. It is
uncertain in the two dimensions of time and space, so it is necessary to simplify it in order to solve it in
an actual situation. Equation (29) shows the limit of the charging power, not exceeding the maximum
charging power of charging pile. Equation (30) represents the capacity relationship between t−1 and t
moment. Equations (31) and (32) show the capacity limit, and Equation (33) expresses the charging
time is assumed as 8 h.

0 ≤ Pt,s
ev ≤ Pmax

ev (29)

SoCt,s
ev = SoCt−1,s

ev + ηc
evPt,s

ev (30)

SoCmin
ev ≤ SoCt,s

ev ≤ SoCmax
ev (31)

SoCevnt,s
ev ≥ SoCend

ev (32)

evnt = 8 (33)

Above all, the objective and constraints of hybrid energy system are shown in Equations (1)–(4).
The hydro power constraints are shown in Equations (5)–(10), and the wind and photovoltaic power
generation constraints are shown in Equations (11) and (12). Equations (13)–(20) represent the
constraints of CHP, battery energy storage constraints are shown in Equations (21)–(28), and electric
vehicles constraints are shown in Equations (29)–(33).
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3. Solution Methodology

Regarding the proposed day-ahead optimal scheduling model of the hybrid system, two key
issues need to be solved: Firstly, how to deal with multiple uncertainties influences the finally results
of the proposed model. Secondly, how to incorporate the objective function into the mixed integer
programming (MIP) problem affects the efficiency of solution.

3.1. Latin Hypercube Sampling and Scene Reduction (LHSSR) Method

The LHSSR method is an effective method to deal with the uncertainty of renewable energy
sources. The method firstly samples the probability distribution of renewable energy sources, to get
large samples to cover the random variable space. Then, combining it with the scene cutting method
to cut scene and probability statistics greatly reduces the amount of calculation to satisfy the accuracy
of the premise. Assume that sample size is N, number of random variables is z, and the Nth sample
can be expressed as Xn = [Xn1, Xn2, . . . , Xnz], n ∈ (1, n). The procedure of the LHSSR method is as
follows in Table 1:

Table 1. The procedure of Latin hypercube sampling and scene reduction (LHSSR) method.

Procedure—LHSSR Method

Scene construction
Step 1 Assume xw ∈ [xwd, xwu], the probability distribution function of xw is fw(xw)
Step 2 Divide the scope [ fw(xwd), fw(xwu)] into N equal probability interval
Step 3 Randomly select qi in all probability subinterval [(i− 1)/N, i/N]
Step 4 Denote qi = (i− 1 + r)/N and yiw = qi · ( fw(xwu)− fw(xwd)) + fw(xwd)
Step 5 Obtain sample by inverse transformation: xiw = f−1

w (yiw)
Scene reduction
Step 6 Initialization pi =

1
N

Step 7 Calculate distance as to any two scenarios dk(Xi, Xj) =

√
z
∑

w=1
(xiw − xjw)

2

Step 8 Search the nearest scene of Xi expressed as min
{

dk(Xi, Xj), i 6= j
}

Step 9 Calculate the product PKDi = min
{

dk(Xi, Xj), i 6= j
}
× pi

Step 10 Search for the smallest PKD expressed as PKDs = min
{

PKDi|1 ≤ i ≤N
}

Step 11 Update scenarios probability pj = pj + pi and reduce scene Xi from the scene set
Step 12 Update the scene number N = N − ni and return Step 7.

3.2. Piecewise Linearization of the Objective Function

Piecewise linearization is widely used in the nonlinear curve of the power unit for the convenience
to solve and accelerate its convergence, as shown in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 20 
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The process of piecewise linearization of the cost curve can be expressed as the following formulas:

cp
i (t) = Aiu

t
i +

Li

∑
l=1

Fl,iδl(i, t) (34)

pi(t) =
Li

∑
l=1

δl(i, t) + piu
t
i (35)

δ1(i, t) ≤ T1,i − pi (36)

δl(i, t) ≤ Tl,i − Tl−1,i (37)

δLi
(i, t) ≤ pi − TLi−1, i (38)

δl(i, t) ≥ 0 (39)

where Fl,i is the increased cost of the i-th generator at the l section of the piecewise linearization curve,
δl(i, t) is the output of the i-th generator at the l section in moment t, and Li is the number of the
piecewise section.

In the objective function, only the cost of CHP is nonlinear. Based on the piecewise linearization
method above, the nonlinear constraint (Equation (13)) can be converted into Equation (40) as follows:

Pg,t,s
CHP = Pg,min

CHP ug,t
CHP +

NK

∑
k=1

Pg,t,s,k
CHP (40a)

Fg,t,s
CHP = Fg,min

CHP ug,t
CHP +

NK

∑
k=1

Pg,t,s,k
CHP Cg,k

CHP (40b)

Therefore, the objective function and constraints are linearized, and the problem can be converted
into an MIP problem, solved using commercial solver CPLEX 12.4 (IBM, Armonk, NY, USA).

4. Results

4.1. Parameter and Settings

The developed model of a hybrid energy system was applied to a real demonstration project in
China, which was conceptualized with representative costs and technical data from numerous previous
studies. The hybrid energy system was composed of two photovoltaic modules, a wind turbine, two
battery energy storage modules, four electric vehicle chargers, a combined heat and power, and a
hydroelectric power plant, which is illustrated in detail in Table 2. The parameters of each module are
represented in Tables 3–6. The power outputs of renewable resources, including wind and PV and
local load in a typical day, are represented in Figure 3. The time interval of RES is assumed as 15 min,
and the period is 96. The electricity prices in a typical day are shown in Figure 4.

Because of the influence of socioeconomic development and population growth, the demands
can be described as parameters with a fluctuant interval. Hence, assume the fluctuating intervals
of renewable resources and load demands as, respectively, ±20% and ±10% [39]. The confidence
coefficient of risk is 0.95, and the risk aversion coefficient of the energy service provider is 0.3.

Table 2. Components of the hybrid energy system.

Module Hydro WG PV BESS EV CHP

Number 1 1 2 2 4 1
Installed capacity/kW 20,000 200 150,155 100 90 600
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Table 3. Parameters of the hydro power.

Parameter Value

Maximum output/kW 20,000
Minimum output/kW 500
Maximum capacity/Hm3 600
Minimum capacity/Hm3 200
Original capacity/Hm3 500
Final capacity/Hm3 500
Water flow/0.04 m3/s 0.04

Table 4. Parameters of combined heat and power (CHP).

Parameter Value

Maximum output/kW 600
Minimum output/kW 60
Start-up cost/RMB 100
Maximum output of piecewise 200
Consumption coefficient of unit output [0.6709,0.6934,0.7159]
Ramp-up rate/kW/min 600
Ramp-down rate/kW/min 600
heat-power ratio 2.54
Heat load/kJ 0

Table 5. Parameters of a battery energy storage system (BESS).

Parameter Value

Discharging efficiency 0.9
Charging efficiency 0.9
Maximum SoC 160
Minimum SoC 40
Rated output 100
Depreciation expense of unit output/RMB 0.08
Original SoC 80
Final SoC 80

Table 6. Parameters of electric vehicle chargers (EV).

Parameter Value

Rated power of charging pile/kW 90
Battery capacity of EV 324
Battery efficiency 0.08
Original quantity of EV 80
Final quantity of EV 80
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4.2. Results of the Proposed Model

Depending on the parameters above, construct 1500 scenes using Latin hypercube sampling,
finally getting 150 scenarios with the scene reduction technology. Combined with the piecewise
linearization method, the above proposed strategies are all MIP problems. Therefore, they can be
solved by commercial solver CPLEX 12.4 efficiently, and the optimal results of the proposed model are
shown in Tables 7 and 8.

Table 7. Optimal output power of each generator in the above model.

Time CHP/
kW

BESS1/
kW

BESS2/
kW

EV1/
kW

EV2/
kW

EV3/
kW

EV4/
kW

Hydro/
kW

Tie-Line Power/
kW

1 0 0 0 0 0 54 0 0 2406
2 0 0 0 0 0 0 0 0 2352
3 0 0 0 0 0 0 0 0 2356
4 0 0 0 0 0 0 0 0 2364
5 0 0 0 0 54 0 0 0 2264
6 0 0 0 0 0 0 0 0 2210
7 0 0 0 0 0 0 0 0 2223
8 0 0 0 0 0 0 0 0 2236
9 0 0 0 54 0 0 0 0 2211
10 0 0 0 0 0 0 0 0 2103
11 0 0 0 0 0 0 0 0 2102
12 0 0 0 0 0 0 54 0 2114
13 0 0 0 0 0 0 0 0 2024.6
14 0 0 −29.63 0 0 0 0 0 2113.5
15 0 0 −29.63 0 0 0 0 0 2112.6
16 0 0 −29.63 0 0 0 0 0 2112.9
17 0 0 0 90 0 0 0 0 2156.7
18 0 0 0 0 90 0 0 0 2156.9
19 0 0 0 0 0 90 0 0 2157.2
20 0 0 0 0 0 0 90 0 2156.8
21 0 0 0 90 0 0 0 0 2185.8
22 0 0 0 0 90 0 0 0 2186.7
23 0 0 0 0 0 90 0 0 2186.3
24 0 0 0 0 0 0 90 0 2185.9
25 0 0 0 0 0 0 0 0 2485.89
26 0 −29.63 0 0 0 0 0 0 2575.7
27 0 −29.63 0 0 0 0 0 0 2576.4
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Table 7. Cont.

Time CHP/
kW

BESS1/
kW

BESS2/
kW

EV1/
kW

EV2/
kW

EV3/
kW

EV4/
kW

Hydro/
kW

Tie-Line Power/
kW

28 0 −29.63 0 0 0 0 0 0 2577.9
29 15 0 0 0 90 0 0 0 3064.2
30 15 0 0 90 0 0 0 0 3065
31 15 0 0 0 0 0 90 0 3066.1
32 15 0 0 0 0 90 0 0 3065.7
33 150 0 0 0 0 0 0 125 3013.3
34 150 0 0 0 0 0 0 125 3013.5
35 150 0 0 0 0 0 0 125 3013.5
36 150 0 0 0 0 0 0 125 3015.1
37 150 0 0 0 0 0 0 1450 1721.2
38 150 0 0 0 0 0 0 1450.4 1713.4
39 150 0 0 0 0 0 0 1460.4 1701.6
40 150 0 0 0 0 0 0 1480 1678.2
41 150 0 0 0 0 0 0 3158 0
42 150 0 0 0 0 0 0 3158 0
43 150 0 0 0 0 0 0 3158 0
44 150 0 0 0 0 0 0 3158 0
45 150 0 0 0 0 0 0 125 2930
46 150 0 0 0 0 0 0 125 2929.1
47 150 0 0 0 0 0 0 125 2929.5
48 150 0 0 0 0 0 0 125 2931.2
49 150 0 0 0 0 0 0 125 2949.8
50 150 0 0 0 0 0 0 125 2950.1
51 150 0 0 0 0 0 0 125 2950.4
52 150 0 0 0 0 0 0 125 2951.2
53 150 0 0 0 0 0 0 3048 0
54 150 0 0 0 0 0 0 3050 0
55 150 0 0 0 0 0 0 3048 0
56 150 0 0 0 0 0 0 3048 0
57 150 0 0 0 0 0 0 3019 0
58 150 0 0 0 0 0 0 3019 0
59 150 0 0 0 0 0 0 3018.9 0
60 150 0 0 0 0 0 0 3019 0
61 150 0 0 0 0 0 0 3061 0
62 150 0 0 0 0 0 0 3060.5 0
63 150 0 0 0 0 0 0 3060.1 0
64 150 0 0 0 0 0 0 3061.2 0
65 150 0 0 0 0 0 0 3269.8 0
66 150 0 0 0 0 0 0 3270.1 0
67 150 0 0 0 0 0 0 3270.6 0
68 150 0 0 0 0 0 0 3270 0
69 150 0 0 0 0 0 0 125 3207.8
70 150 0 0 0 0 0 0 125 3207.7
71 150 0 0 0 0 0 0 125 3209.1
72 150 0 0 0 0 0 0 125 3211.4
73 150 0 0 0 0 0 0 125 3212.3
74 150 0 0 0 0 0 0 125 3213
75 150 0 0 0 0 0 0 125 3216
76 150 0 0 0 0 0 0 125 3210.5
77 150 0 18 0 0 0 0 3686.3 0
78 150 0 18 0 0 0 0 3686.3 0
79 150 0 18 0 0 0 0 3686.3 0
80 150 0 18 0 0 0 0 3687 0
81 150 0 0 0 0 0 0 3040 0
82 150 0 0 0 0 0 0 3041.8 0
83 150 0 0 0 0 0 0 3041.5 0
84 150 0 0 0 0 0 0 3039.7 0
85 150 0 0 0 0 0 0 2763.8 0
86 150 0 0 0 0 0 0 2765 0
87 150 0 0 0 0 0 0 2756.9 0
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Table 7. Cont.

Time CHP/
kW

BESS1/
kW

BESS2/
kW

EV1/
kW

EV2/
kW

EV3/
kW

EV4/
kW

Hydro/
kW

Tie-Line Power/
kW

88 150 0 0 0 0 0 0 2764 0
89 150 0 0 0 0 0 0 125 2287.7
90 150 0 0 0 0 0 0 125 2284
91 150 0 0 0 0 0 0 125 2279.6
92 150 0 0 0 0 0 0 125 2290.1
93 150 36 0 0 0 0 0 2117 0
94 150 18 0 0 0 0 0 2117 0
95 150 18 0 0 0 0 0 2117 0
96 150 0 0 0 0 0 0 2117 0

Table 8. Optimal results of the proposed model.

Cost/RMB CVaR/RMB Objective/RMB

Results 111,275 120,306 147,366

Table 7 represents the optimal output power of each generator in a hybrid energy system.
Along with the increase of the local load demand, CHP and hydro power gradually begin to be
put into operation, and the CHP operates at its maximum output all the time from the 33th period,
while the output of hydro power changes with the fluctuation of the electricity price. Due to the
electric vehicles needing a full charge to work before 8:00 a.m., the power exchange with EVs focuses
on periods 1 to 32. With regard to the BESSs, they charge at a low electricity price between periods
14 to 16 and 26 to 28. and discharge at a high electricity price at 8:00 p.m. from periods 77 to 80 to
get more economic benefits. From periods 53 to 68 and 77 to 88, the hydro power works at a high
output power level because of the higher electricity price, while the tie-line power is zero to reduce the
total cost in the hybrid energy system. Table 8 shows the optimal results of the proposed model in the
hybrid system, consisting of the cost of operation and the cost of risk.

5. Discussion

In order to show the advantages of the proposed model, the tie-line power performance and the
comparison results of the hybrid energy system with different situations are given in the following
part, in which the effectiveness and the economy improvement are verified.

5.1. Comparison of Different Models

Considering the high cost of investment about BESS and charging piles, we compared the optimal
results without the BESS or charging piles. The results of four different models are shown in Table 9.
The tie-line power with power grid is represented in Figure 5.

Table 9. Optimal results of the compared models.

Include All No BESS No EV No BESS and EV

Cost/RMB 111,275 111,291 110,664 110,680
CVaR/RMB 120,306 120,324 119,693 119,710
Objective/RMB 147,366 147,388 146,572 146,593

BESS has the ability to store energy, so it can discharge at high prices and charge at a low price to
reduce the economic cost and stabilize the tie-line power. Comparing scheduling models where BESS
participates and where it does not, we found that the total cost and risk all dropped, and the economic
objective was lower in Table 9, which is consistent with the fact. Regarding the hybrid energy system,
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the charging piles of EV are opposite to the BESS. The charging piles can be seen as a controllable load,
so the total cost and risk will drop without them.

Figure 5 shows the tie-line power curve of the compared model. Throughout the time of operation,
the curve of the model including all is much smoother than the compared model without BESS and EV.
At periods 28 to 42, 46 to 59, and 70 to 76, the power of the tie-line in the proposed model is lower than
those of the compared models without BESS and EV, respectively. Therefore, with the diversification
of load demands, expanding the types of energy is important to peak shaving and valley filling.
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In order to show the advantages of the proposed method, the computational time and the
comparison results of the hybrid energy system with different situations are given in the following part.

5.2. Comparison of Different Methods

It is important to compare the proposed method with traditional methods regarding the above
model, including all energy modules. This paper illustrates and compares the following three cases to
investigate the advantages of the proposed method. Case 1 is the method proposed in this paper, and
case 2 is the method with Monte Carlo sampling, scene reduction, and piecewise linearization. Case 3
is the intelligent method (PSO). The results of the three different methods are shown in Table 10.

Table 10. Optimal results of the compared methods.

Objective/RMB Computational Time/s

Case 1 (PL-LHSSR) 147,366 23.38
Case 2 (PL-MCSR) 147,371 25.14
Case 3 (PSO) 147,366.8 80.02

The method in case 2 is similar to the proposed method in case 1, and the difference is the
sampling method. In Table 10, the results of the objective and computational time in case 2 is slightly
more than those in case 1. However, the computational time of the intelligent method (PSO) is much
longer than that in case 1. The computational time in case 3 is nearly four times as long as that in case 1.
The main reason is that piecewise linearization can effectively reduce the solving time. The objective
result in case 3 is slightly equal to case 2. From Table 10, the proposed method has advantages in
optimal results and computational time.
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5.3. Impact of the Fluctuation of Uncertainty Variables

According to different seasons and regions, the difference of load curve and renewable resources is
obvious. Therefore, it is necessary to consider the fluctuation of uncertainty variables on the influence
of the objective function. Considering three scenarios: Reduction of 10%, unchanged, and increase of
10%, the optimal results are shown as follows:

Table 11 represents the effects of the fluctuation of uncertainty variables on the objective function
of the proposed model in hybrid energy system. Wind and PV as renewable resources have the
features of low cost and high risk. With the increasing output of wind or PV, the cost reduces from
111,275 to 111,114 and 111,135, while the risk increases from 120,306 to 120,471 and 120,429 in Table 11.
The results are opposite as to the case of decreasing output. In addition, the fluctuation of local load
results has much more of an impact on the optimal results. The relative change reaches 20% when
the load fluctuates by 10%, while the relative change only reaches 1% when the renewable resources
fluctuate by 10%. Therefore, it is particularly important to improve the forecasting accuracy of the
load demand.

Table 11. Optimal results of the uncertainty fluctuations.

Results Cost/RMB CVaR/RMB Objective/RMB

Initial 111,275 120,306 147,366
Wind + 10% 111,114 120,471 147,255
Wind − 10% 111,436 120,140 147,478
PV + 10% 111,135 120,429 147,264
PV − 10% 111,414 120,183 147,469
Load + 10% 132,794 142,718 175,609
Load − 10% 89,755 97,891 119,122

5.4. Impact of the Time Intervals of RES

According to different granularity requirements, the difference in time intervals of RES is obvious.
Therefore, it is necessary to consider the different granularity requirements of RES on the influence
of the objective function. Considering three scenarios: 5-min intervals, 10-min intervals, and 15-min
intervals, the optimal results are shown as follows:

Table 12 represents the sensitive studies of different time intervals of RES. Due to the small scale
of RES compared to the whole scale of energy system, the impact of different time intervals on the
optimal results can be negligible. The objective results of different scenarios are approximately equal.

Table 12. Optimal results of different time intervals.

Results Cost/RMB CVaR/RMB Objective/RMB

5-min 111,275 120,303 147,365
10-min 111,275 120,306 147,366
15-min 111,275 120,306 147,366

5.5. Impact of the Coefficient of Risk Aversion

In the renewable-based hybrid energy system supplied by energy service providers, different
providers have different coefficients of risk aversion. Consider five scenarios to study the impact of
risk coefficient for optimization model. The optimal results are shown in Table 13.

Table 13 represents the sensitive studies on the provider’s risk aversion for the hybrid energy
system. A larger coefficient of risk aversion for the energy service provider indicates less tolerance
towards possible uncertainty in the model. With the increase of the coefficient of risk aversion, the
system pays more attention to risk, leading to the increase in the cost of risk. Thus, the hybrid system’s
objective cost is increased by the increase in coefficient of risk aversion.
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Table 13. Components of the hybrid energy system.

Coefficient of Risk Aversion Objective/RMB

0.1 123,301
0.2 135,335
0.3 147,366
0.5 171,423
0.8 207,519

6. Conclusions

This paper proposed a concept of a renewable-based hybrid energy system which can effectively
restrain the fluctuations in wind and photovoltaic generation to improve their stabilities. Taking into
account the cost of operation and risk, an optimal scheduling model of this system was put forward.
An optimization method was proposed based on Latin hypercube sampling, scene reduction, and
piecewise linearization. The main achievements and conclusions are listed below:

(1) A concept of a renewable-based hybrid energy system including PV, WT, BESS, EV, CHP, and
hydroelectric power was proposed to solve the reliable and economically justifiable integration
of RES into the power system.

(2) An optimal scheduling model of this system was put forward considering the cost of operation
and risk.

(3) An optimization method was proposed based on Latin hypercube sampling, scene reduction,
and piecewise linearization to deal with multiple uncertainties, including renewable resource
volatility, the load demand, and different energy service providers’ coefficient of risk aversion.

(4) Based on the real data obtained in China, the performance of the proposed model and method
was evaluated. Results showed that the renewable-based hybrid system can not only reduce the
intermittent and volatility of renewable resources but also ensure the smoothness of the tie-line
power as much as possible. The effectiveness and the economy improvement of the proposed
model and method were verified.

(5) In future studies, the environmental factors of the hybrid energy system and how to deal with
uncertainty efficiently in a power system can be studied. Hence, how to improve the reliable and
economically justifiable integration of RES into the power system is worth further research.
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Nomenclature

Abbreviations
WG wind generator
PV photovoltaic
CHP combined heat and power
BESS battery energy storage system
EV electric vehicles
CVaR conditional value at risk
LHSSR Latin hypercube sampling and scene reduction
Symbols
C total cost [RMB]
Cg,t,s

CHP total cost of the gth generator at t moment in s scenario [RMB]
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Ct,s
BESS cost of depreciation at t moment in s scenario [RMB]

Ct,s
grid purchase cost from power grid at t moment in s scenario [RMB]

evnt charging time [h]
Fg,t,s

CHP operating cost of the gth generator at t moment in s scenario [RMB]
IT light intensity [W/m2]
k temperature coefficient
NS number of scenarios
NT dispatching cycle
NG number of CHP unit
Pt,s

h water turbine power at t moment in s scenario [kW]
Pmin

h minimum power of water turbine [kW]
Pmax

h maximum power of water turbine [kW]
PW output power of wind turbine [kW]
Pr rated power output of wind turbine [kW]
Psolar power output of PV [kW]
Psc maximum power output of PV Under standard conditions [kW]

Pg,t,s,k
CHP output power of gth generator at t moment in s scenario [kW]

Pt,s
discharge discharging power at t moment in s scenario [kW]

Pt,s
charge charging power at t moment in s scenario [kW]

Pt,s
BESS output power of BESS at t moment in s scenario [kW]

Pt,s
ev charging power of EV at t moment in s scenario [kW]

Pt,s
grid tie-line power at t moment in s scenario [kW]

Qt,s water consumption of generating at t moment in s scenario [m3]
Rt volume of water flowing into the reservoir at t moment [m3]
Rg

u ramp rate of the gth generator
St,s volume of overflow at t moment in s scenario [m3]
Sg boot cost of the gth generator at t moment in s scenario [RMB]
SoCt,s

BESS state of charge of the battery bank in BESS [%]
SoCt,s

ev state of charge of the battery bank in EV [%]
Tc operating temperature of PV [◦C]
Ta environment temperature [◦C]
T reference temperature [◦C]
Tg,t,s

CHP heat load at t moment in s scenario
Tg,t,s

demand actual heat load of gth generator at t moment in s scenario
Tg,t,s

sur Heat dissipation of gth generator at t moment in s scenario
Volt,s volume of water stored in the reservoir at t moment in s scenario [m3]
vr rated wind speed of wind turbine [m/s]
vci cut-in wind speed of wind turbine [m/s]
vco cut-out wind speed of wind turbine [m/s]
yg,t boot prompt variable of the gth generator at t moment, {0,1}
zg,t stop prompt variable of the gth generator at t moment, {0,1}
ug,t

h operating state of the gth turbine at t moment, {0,1}
ug,t

CHP operating state of the gth generator at t moment, {0,1}
δCHP heat-power ratio
θ depreciation per unit power
ηc

BESS charging efficiency about BESS
ηd

BESS discharging efficiency
ηc

ev charging efficiency about EV
πs the probability of s scenario
β coefficient of risk aversion
λt electricity price at t moment
τs auxiliary variable of CVaR
ε auxiliary variable of CVaR
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