Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China
Abstract
1. Introduction
2. Methods
2.1. Building Area Estimation Method
2.2. Mann–Kendall Trend Test
2.3. Exponential Smoothing Prediction Method
3. Results and Discussion
3.1. Analysis of C&D Waste Production
3.1.1. Trend Analysis
3.1.2. Spatial Distribution Characteristics Analysis
3.2. Prediction of C&D Waste Production
4. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- National Bureau of Statistics of the People’s Republic of China (NBSC). China City Statistical Yearbook; China Statistical Yearbook Press: Beijing, China, 2002–2018.
- Cheng, J.L. The current situation and suggestions of construction waste resource utilization in China. Constr. Sci. Technol. 2014, 1, 9–12. [Google Scholar]
- Banias, G.; Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Tarsenis, S. Assessing multiple criteria for the optimal location of a construction and demolition waste management facility. Build. Environ. 2010, 45, 2317–2326. [Google Scholar] [CrossRef]
- Ding, Z.K.; Shi, M.J.; Lu, C.; Wu, Z.Z.; Chong, D.; Gong, W.Y. Predicting renovation waste generation based on grey system theory: A case study of Shenzhen. Sustainability 2019, 11, 4326. [Google Scholar] [CrossRef]
- Mihai, F.C. Construction and demolition waste in Romania: The route from illegal dumping to building materials. Sustainability 2019, 11, 3179. [Google Scholar] [CrossRef]
- Wang, Q.F.; Wang, S.N.; Shi, D. Grey Verhulst prediction model of construction waste output. J. Shenyang Jianzhu Univ. (Soc. Sci.) 2016, 18, 175–179. [Google Scholar]
- Zheng, L.N.; Wu, H.Y.; Zhang, H.; Duan, H.B.; Wang, J.Y.; Jiang, W.P.; Dong, B.Q.; Liu, G.; Zuo, J.; Song, Q.B. Characterizing the generation and flows of construction and demolition waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef]
- Aoki-Suzuki, C.; Bengtsson, M.; Hotta, Y. International comparison and suggestions for capacity development in industrializing countries: Policy application of economy-wide Material Flow Accounting. J. Ind. Ecol. 2012, 16, 467–480. [Google Scholar] [CrossRef]
- Cochran, K.M.; Townsend, T.G. Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Manag. 2010, 30, 2247–2254. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.F. Study on the Treatment of Urban Construction Waste; South China University of Technology: Guangzhou, China, 2010. [Google Scholar]
- Chen, T.J. Study on Construction Waste Reduction and Resource Utilization in Chengdu; Southwest Jiaotong University: Chengdu, China, 2014. [Google Scholar]
- Wang, H.N. Study on Resource Utilization of Construction Waste in Xi’an; Chang’an University: Xi’an, China, 2014. [Google Scholar]
- Sáez, P.V.; Porras-Amores, C.; Del, R.M.M. New quantification proposal for construction waste generation in new residential constructions. J. Clean. Prod. 2015, 102, 58–65. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Zhang, Y.N.; Zhao, J. The construction waste production based on the Grey Prediction Model GM (1,1). J. Wuhan Univ. Technol. (Inf. Manag. Eng.) 2016, 38, 612–615. [Google Scholar]
- Sumathi, V.R.; Natesan, U.; Sarkar, C. GIS-based approach for optimized sitting of municipal solid waste landfill. Waste Manag. 2008, 28, 2146–2160. [Google Scholar] [CrossRef] [PubMed]
- Feo, G.D.; Gisi, S.D. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal. Waste Manag. 2014, 34, 2225–2238. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.R.; Christensen, E.J. Solid and hazardous waste disposal site selection using digital geographic information system techniques. Sci. Total Environ. 1986, 56, 265–276. [Google Scholar] [CrossRef]
- Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J. Methodology to design a municipal solid waste generation and composition map: A case study. Waste Manag. 2014, 34, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, C.; Lasaridi, K. Benefits from GIs based modelling for municipal solid waste management. Integr. Waste Manag. 2011, 1, 417–436. [Google Scholar]
- Keser, S.; Duzgun, S.; Aksoy, A. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey. Waste Manag. 2012, 32, 359–371. [Google Scholar] [CrossRef]
- Ericsson, E.; Larsson, H.; Brundell-Freij, K. Optimizing route choice for lowest fuel consumption—Potential effects of a new driver support tool. Trans. Res. Part C 2006, 14, 369–383. [Google Scholar] [CrossRef]
- Anghinolfi, D.; Paolucci, M.; Robba, M.; Taramasso, A.C. A dynamic optimization model for solid waste recycling. Waste Manag. 2013, 33, 287–296. [Google Scholar] [CrossRef]
- Santos, L.; Coutinho-Rodrigues, J.; John, R. Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal. Curr. Trans. Res. Part A 2008, 42, 922–934. [Google Scholar] [CrossRef][Green Version]
- Zaman, A.U.; Lehmann, S. Urban growth and waste management optimization towards ‘zero waste city’. City Cult. Soc. 2011, 2, 177–187. [Google Scholar] [CrossRef]
- Wu, H.Y.; Duan, H.B.; Zheng, L.N.; Wang, J.Y.; Niu, Y.N.; Zhang, G.M. Demolition waste generation and recycling potentials in a rapidly developing flagship megacity of South China: Prospective scenarios and implications. Constr. Build. Mater. 2016, 113, 1007–1016. [Google Scholar] [CrossRef]
- Gallardo, A.; Bovea, M.D.; Colomer, F.; Prades, M.; Carlos, M. Comparison of different collection systems for sorted household waste in Spain. Waste Manag. 2010, 30, 2430–2439. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Duan, H.; Yang, L.O.; Huang, W.; Zuo, J. An innovative approach to managing demolition waste via GIS (geographic information system): A case study in Shenzhen city. Clean Prod. 2016, 112, 494–503. [Google Scholar] [CrossRef]
- Taylor, J. Multi-item sales forecasting with total and split exponential smoothing. J. Oper. Res. Soc. 2011, 62, 555–563. [Google Scholar] [CrossRef]
- Taylor, J. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003, 54, 799–805. [Google Scholar] [CrossRef]
- Guan, P.; Wu, W.; Huang, D. Trends of reported human brucellosis cases in mainland China from 2007 to 2017: An exponential smoothing time series analysis. Environ. Health Prev. Med. 2018, 23, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Gayen, S.K. Simulation of meteorological drought using exponential smoothing models: A study on Bankura District, West Bengal, India. SN Appl. Sci. 2020, 2, 909. [Google Scholar] [CrossRef]
- Qian, L. Trend forecasting of rural residents’ income regional disparities in China: Based on second exponential smoothing and ARMA Model. J. Central Univ. Financ. Econ. 2014, 7, 78–82. [Google Scholar]
- Qin, M.; Yang, G.F.; Deng, M.J.; Zhang, W.Q.; Feng, B. Short-term traffic flow forecasting based on exponential smoothing and Kalman filter. J. Beihua Univ. (Nat. Sci.) 2015, 16, 814–817. [Google Scholar]
- Lee, D.; Kim, S.; Kim, S. Development of hybrid model for estimating construction waste for multifamily residential buildings using artificial neural networks and ant colony optimization. Sustainability 2016, 8, 870. [Google Scholar] [CrossRef]
- Shi, S.Y. Study on the Promotion Mechanism of Construction Waste Recycling in Chongqing; Chongqing University: Chongqing, China, 2013. [Google Scholar]
- Wang, Q.F.; Wang, S.N.; Li, X.F. Comparative and analysis of construction waste recycling policies at home and abroad. Constr. Econ. 2015, 36, 95–99. [Google Scholar]
- Zhao, W.; Ren, H.; Rotter, V.S. A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center–The case of Chongqing, China. Resour. Conserv. Recycl. 2011, 55, 933–944. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Wei, F.Y. Modern Climate Statistical Diagnosis and Prediction Technology; Meteorological Press: Beijing, China, 1999. [Google Scholar]
- Kang, S.Y.; Zhang, B.; Liu, J.F.; Yang, M.J. Analysis of the spatiotemporal distribution of precipitation in Zhangye City using Mann-Kendall method. Resour. Sci. 2009, 31, 501–508. [Google Scholar]
- Sun, L. Research on Forecasting of Energy Supply and Demand and Development Policy of Rural Energy in Liaoyang City; Shenyang Agriculture University: Shenyang, China, 2013. [Google Scholar]
- Um, M.; Heo, J.; Markus, M.; Wuebbles, D.J. Performance evaluation of four statistical tests for trend and non-stationarity and assessment of observed and projected annual maximum precipitation series in major United States cities. Water Resour. Manag. 2018, 32, 913–933. [Google Scholar] [CrossRef]
- Jin, M. Analysis of flood element changes in Shenyang district hydrological station based on M-K Test Method in recent 53 years. Ground Water 2019, 41, 119–121. [Google Scholar]
- Zhao, J.; Liu, Q.X.; Lin, L.Q.; Qian, G.R.; Xiao, J.Z. Evolution and comparison of construction waste of large cities in China. J. Cent. South Univ. (Sci. Technol.) 2013, 44, 1297–1304. [Google Scholar]
Model Accuracy Level | Mean Square Error Ratio C | Small Error Probability P |
---|---|---|
Excellent | <0.35 | 0.95–1 |
Qualified | 0.35–0.5 | 0.8–0.95 |
Reluctantly | 0.5–0.65 | 0.7–0.8 |
Unqualified | >0.65 | <0.7 |
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 18,143.6 | 21,085.0 | 24,175.0 | 29,355.6 | 30,260.7 | 39,620.6 | 45,538.2 | 50,271.4 | 53,568.2 | 59,785.5 | 68,826.2 | 76,259.1 | 85,817.5 | 97,022.4 | 105,729.7 | 103,218.3 | 106,764.4 | 113,372.0 |
Jinan | 2454.8 | 2849.5 | 2966.4 | 3932.2 | 3244.8 | 5057.6 | 5154.6 | 5820.9 | 6094.4 | 6510.7 | 6768.8 | 8222.7 | 9423.7 | 11,111.8 | 12,912.4 | 14,367.4 | 14,644.3 | 16,025.7 |
Qingdao | 2659.6 | 3291.5 | 4130.0 | 4648.0 | 6260.8 | 5847.4 | 6561.2 | 8130.7 | 8333.8 | 9066.7 | 10,250.8 | 10,208.1 | 11,881.2 | 13,299.1 | 15,392.8 | 15,732.7 | 18,416.0 | 19,455.9 |
Zibo | 1233.0 | 1639.7 | 1964.8 | 2583.5 | 1497.2 | 3723.3 | 5350.8 | 5271.4 | 4948.2 | 5583.7 | 6822.2 | 8071.7 | 9608.2 | 11,105.1 | 11,573.1 | 10,319.5 | 10,166.7 | 10,841.7 |
Zaozhuang | 739.2 | 760.1 | 829.0 | 959.1 | 846.4 | 1458.6 | 1660.5 | 1997.4 | 2038.4 | 2283.5 | 2498.0 | 2846.6 | 3236.8 | 4023.5 | 3815.0 | 3705.8 | 3503.2 | 4086.7 |
Dongying | 410.6 | 509.3 | 516.2 | 625.6 | 1590.0 | 960.1 | 1271.4 | 1245.7 | 1164.0 | 1262.1 | 1250.3 | 1299.3 | 1360.9 | 1505.2 | 1473.4 | 1292.5 | 1230.2 | 1058.5 |
Yantai | 1585.0 | 2035.0 | 2286.0 | 2801.9 | 3086.6 | 3691.8 | 4119.7 | 4541.8 | 4711.0 | 4947.4 | 6109.5 | 6018.7 | 6112.9 | 6490.6 | 6124.8 | 5663.8 | 5857.0 | 6113.8 |
Weifang | 1482.9 | 1829.1 | 2048.1 | 2520.6 | 2194.4 | 3425.0 | 4191.1 | 4624.0 | 5637.0 | 6970.8 | 8046.3 | 8812.1 | 9561.5 | 10,680.1 | 10,992.3 | 10,629.5 | 10,117.0 | 10,861.5 |
Jining | 1027.0 | 963.9 | 1329.5 | 1520.2 | 1571.0 | 2174.4 | 2014.5 | 2415.7 | 2679.5 | 3089.0 | 4059.5 | 4278.6 | 5242.3 | 6675.8 | 7785.1 | 7615.5 | 7754.9 | 6959.7 |
Taian | 1866.7 | 2025.7 | 2263.1 | 2149.1 | 1177.3 | 3067.1 | 3421.5 | 3715.0 | 4368.6 | 4842.7 | 5393.2 | 5736.9 | 5889.4 | 6005.1 | 5701.7 | 518.39 | 4624.7 | 4365.2 |
Weihai | 803.6 | 935.7 | 1176.3 | 1228.3 | 2497.6 | 1845.3 | 2103.9 | 2542.9 | 2757.1 | 2934.7 | 3232.4 | 3814.4 | 3721.8 | 3887.1 | 3806.3 | 3588.9 | 3803.0 | 3705.8 |
Rizhao | 304.0 | 417.4 | 470.8 | 565.0 | 722.7 | 1009.7 | 989.2 | 1082.7 | 1077.9 | 1233.5 | 1099.2 | 1433.1 | 1833.0 | 1986.1 | 2207.2 | 2247.8 | 2838.0 | 2860.8 |
Laiwu | 269.1 | 279.8 | 351.9 | 448.9 | 232.4 | 539.2 | 765.9 | 808.0 | 709.0 | 708.2 | 674.5 | 720.9 | 1613.9 | 820.4 | 765.4 | 741.0 | 694.9 | 714.0 |
Linyi | 1262.5 | 1377.4 | 1547.4 | 1767.4 | 137.54 | 2458.4 | 2852.7 | 3032.4 | 3446.4 | 3844.0 | 4993.9 | 5931.4 | 6725.5 | 8686.2 | 10,609.7 | 10,988.6 | 11,316.2 | 13,026.2 |
Dezhou | 496.0 | 604.1 | 530.7 | 717.4 | 1076.1 | 1028.1 | 1053.0 | 1140.8 | 1390.0 | 1764.0 | 1958.5 | 2206.3 | 2382.8 | 2691.5 | 2956.9 | 2731.3 | 3016.5 | 3539.3 |
Liaocheng | 552.0 | 599.3 | 747.3 | 1189.3 | 925.5 | 1121.5 | 1107.7 | 1159.5 | 116.17 | 1610.8 | 2157.1 | 2627.4 | 2958.9 | 3607.9 | 4882.4 | 3658.4 | 3788.3 | 4188.6 |
Binzhou | 627.0 | 599.6 | 650.8 | 807.7 | 958.2 | 971.5 | 1362.6 | 1190.5 | 1270.9 | 1180.5 | 1363.0 | 1812.2 | 1968.5 | 1853.0 | 1955.6 | 1849.0 | 1873.1 | 1979.5 |
Heze | 370.5 | 367.7 | 367.0 | 891.4 | 989.6 | 1241.6 | 1558.0 | 1551.9 | 1780.3 | 1953.4 | 2149.1 | 2218.7 | 2296.3 | 2594.0 | 2775.6 | 2902.7 | 3120.4 | 3588.9 |
City | Trend | p-Value | |
---|---|---|---|
Shandong Province | 15.24 | Rise significantly | <0.01 |
Jinan | 5.27 | Rise significantly | <0.01 |
Qingdao | 5.18 | Rise significantly | <0.01 |
Zibo | 4.64 | Rise significantly | <0.01 |
Zaozhuang | 5.00 | Rise significantly | <0.01 |
Dongying | 3.38 | Rise significantly | <0.01 |
Yantai | 4.73 | Rise significantly | <0.01 |
Weifang | 5.09 | Rise significantly | <0.01 |
Jining | 5.09 | Rise significantly | <0.01 |
Taian | 4.19 | Rise significantly | <0.01 |
Weihai | 4.55 | Rise significantly | <0.01 |
Rizhao | 5.09 | Rise significantly | <0.01 |
Laiwu | 3.11 | Rise significantly | <0.01 |
Linyi | 5.09 | Rise significantly | <0.01 |
Dezhou | 5.00 | Rise significantly | <0.01 |
Liaocheng | 4.73 | Rise significantly | <0.01 |
Binzhou | 4.37 | Rise significantly | <0.01 |
Heze | 5.00 | Rise significantly | <0.01 |
Different Periods | 2001–2005 | 2006–2010 | 2011–2015 |
---|---|---|---|
Change of construction and demolition waste production (1000 tons) | (+)18,535.6 | (+)23,288.0 | (+)26,959.2 |
Year | Estimated Value | Predicted Value | Absolute Error | Relative Error% |
---|---|---|---|---|
2000 | 18,143.6 | - | - | - |
2001 | 21,085.0 | 23,357.5 | 2272.5 | 10.78 |
2002 | 24,175.0 | 22,828.7 | −1346.3 | −5.57 |
2003 | 29,355.6 | 24,490.9 | −4864.7 | −16.57 |
2004 | 30,260.7 | 31,038.1 | 777.4 | 2.57 |
2005 | 39,620.6 | 40,898.4 | 1277.8 | 3.23 |
2006 | 45,538.2 | 36,366.0 | −9172.2 | −20.14 |
2007 | 50,271.4 | 57,655.4 | 7384.0 | 14.69 |
2008 | 53,568.2 | 62,909.7 | 9341.5 | 17.44 |
2009 | 59,785.5 | 64,902.9 | 5117.4 | 8.56 |
2010 | 68,826.2 | 64,646.2 | −4180.0 | −6.07 |
2011 | 76,259.1 | 74,446.1 | −1813.0 | −2.38 |
2012 | 85,817.5 | 89,913.8 | 4096.3 | 4.77 |
2013 | 97,022.4 | 97,161.5 | 139.1 | 0.14 |
2014 | 105,729.7 | 110,018.1 | 4288.4 | 4.06 |
2015 | 103,218.3 | 125,410.6 | 22,192.3 | 21.5 |
2016 | 106,764.4 | 131,497.5 | 24,733.1 | 23.17 |
2017 | 113,372.0 | 108,665.6 | −4706.4 | −4.15 |
Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
---|---|---|---|---|---|---|---|---|
Predicted value | 114,123.3 | 117,972.5 | 121,821.7 | 125,670.9 | 129,520.0 | 133,369.2 | 137,218.4 | 141,067.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, L.; Liu, D.; Yuan, X.; Wang, Q.; Ma, Q. Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China. Sustainability 2020, 12, 5094. https://doi.org/10.3390/su12125094
Qiao L, Liu D, Yuan X, Wang Q, Ma Q. Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China. Sustainability. 2020; 12(12):5094. https://doi.org/10.3390/su12125094
Chicago/Turabian StyleQiao, Liang, Doudou Liu, Xueliang Yuan, Qingsong Wang, and Qiao Ma. 2020. "Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China" Sustainability 12, no. 12: 5094. https://doi.org/10.3390/su12125094
APA StyleQiao, L., Liu, D., Yuan, X., Wang, Q., & Ma, Q. (2020). Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China. Sustainability, 12(12), 5094. https://doi.org/10.3390/su12125094