Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Spray Application Equipment and Its Configurations Tested
2.2. Characterization of Droplet Size Spectra
2.3. Test Location and Experimental Plot Design
2.4. Weather Conditions—Measurements
2.5. Spray Liquid and Tracer Concentration
2.6. Determination of Tracer Deposit Amount
2.7. Drift Value (DV) and Relative Spray Drift Reduction Calculation
2.8. Contribution of Individual Row Spraying to the Total Ground Deposition Spray Drift
2.9. Statistical Analyses
3. Results and Discussion
3.1. Droplet Size Spectra Characteristics
3.2. Environmental Conditions during Field Trials
3.3. Evaluation of Spray Drift Generated by the Tested Configurations Using the Semi-Shielded and Not- Shielded Boom
Drift Reduction Achievable Using the Tested Spray Drift Reducing Techniques (SDRTs)
3.4. Evaluation of Spray Drift Generated by the Tested Configurations Using the Fully-Shielded Boom and Their Potential Drift Reduction
3.5. Contribution of Individual Row Spraying to the Total Ground Deposition Spray Drift
Drift Reduction Achievable through the Adoption of Cropped Buffer Zones
3.6. Fit Model for the Spray Drift Generated during Under-Row Band Herbicide Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Config & Replicates | Weather Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | RH | Wind Speed | Wind Direction | |||||||||
Mean | ∆ a | Mean | ∆ b | Min | Max | Mean | Outliers c | Mean | Centered d | Prevalent Direction | ||
°C | °C | % | % | m s−1 | m s−1 | m s−1 | % | ° az. | % | |||
XR015_No_H | R1 | 25.7 | 0.26 | 24.9 | 0.15 | 0.15 | 2.81 | 1.84 | 6.5 | 158.1 | 78 | SSE |
R2 | 32.4 | 0.29 | 38.3 | −0.55 | 1.21 | 2.74 | 2.11 | 0.0 | 199.5 | 83 | SSW | |
R3 | 31.8 | 0.14 | 34.0 | −0.40 | 1.31 | 3.44 | 2.08 | 0.0 | 184.1 | 87 | SSW | |
XR03_No_H | R1 | 25.7 | 0.30 | 24.2 | −0.27 | 0.57 | 4.61 | 1.98 | 7.6 | 160.0 | 88 | SSE |
R2 | 31.9 | 0.18 | 37.7 | −0.41 | 1.16 | 3.24 | 1.87 | 0.0 | 198.8 | 90 | SSW | |
R3 | 32.2 | 0.12 | 33.2 | −0.44 | 0.66 | 2.26 | 1.74 | 7.2 | 189.2 | 90 | S | |
AI015_No_H | R1 | 25.5 | 0.29 | 23.6 | 0.11 | 0.52 | 3.78 | 1.96 | 4.3 | 162.4 | 86 | SSE |
R2 | 31.7 | 0.15 | 35.8 | −0.28 | 0.87 | 3.64 | 2.02 | 2.0 | 156.0 | 89 | SSE | |
R3 | 32.4 | 0.07 | 34.1 | −0.42 | 1.13 | 3.03 | 1.91 | 0.0 | 181.9 | 86 | SSW | |
AI03_No_H | R1 | 25.8 | 0.40 | 23.6 | −0.48 | 1.30 | 3.84 | 2.36 | 0.0 | 167.2 | 85 | S |
R2 | 31.8 | 0.11 | 35.7 | −0.16 | 0.42 | 2.88 | 1.84 | 3.6 | 165.2 | 99 | SSE | |
R3 | 32.8 | 0.06 | 32.6 | −0.08 | 0.43 | 3.43 | 2.07 | 6.8 | 193.3 | 87 | S | |
XR015_Yes_H | R1 | 32.2 | 0.12 | 32.5 | −0.50 | 1.35 | 2.96 | 2.02 | 0.0 | 200.8 | 95 | SSW |
R2 | 29.1 | 0.07 | 44.1 | −0.20 | 0.77 | 3.39 | 1.98 | 3.8 | 185.7 | 100 | S | |
R3 | 25.0 | 0.13 | 53.3 | −0.02 | 0.79 | 3.53 | 2.16 | 1.1 | 179.9 | 95 | S | |
XR03_Yes_H | R1 | 32.1 | 0.08 | 32.1 | −0.28 | 1.17 | 4.11 | 2.37 | 0.0 | 172.9 | 100 | S |
R2 | 28.7 | 0.00 | 45.1 | −0.17 | 0.47 | 3.61 | 1.83 | 2.1 | 172.4 | 88 | S | |
R3 | 25.2 | 0.14 | 54.6 | −0.28 | 0.72 | 4.26 | 2.44 | 2.9 | 165.8 | 90 | S | |
AI015_Yes_H | R1 | 31.8 | 0.05 | 31.2 | −0.14 | 0.79 | 3.69 | 2.11 | 2.7 | 178.1 | 87 | S |
R2 | 24.3 | 0.17 | 59.6 | 0.01 | 0.95 | 3.73 | 2.01 | 0.5 | 163.0 | 90 | SSE | |
R3 | 25.0 | 0.14 | 57.3 | 0.72 | 0.82 | 4.47 | 2.16 | 3.0 | 200.6 | 85 | SSW | |
AI03_Yes_H | R1 | 32.8 | 0.04 | 30.8 | −0.14 | 1.31 | 3.13 | 1.93 | 0.0 | 187.5 | 96 | S |
R2 | 24.7 | 0.17 | 57.2 | −0.15 | 0.66 | 3.41 | 1.61 | 8.7 | 155.1 | 91 | SSE | |
R3 | 25.2 | 0.10 | 56.8 | 0.11 | 0.22 | 3.70 | 2.02 | 9.8 | 194.0 | 93 | SSW |
Config & Replicates | Weather Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | RH | Wind Speed | Wind Direction | |||||||||
Mean | ∆ a | Mean | ∆ b | Min | Max | Mean | Outliers c | Mean | Centered d | Prevalent Direction | ||
°C | °C | % | % | m s−1 | m s−1 | m s−1 | % | ° az. | % | |||
XR015_No_L | R1 | 24.8 | 0.10 | 42.8 | −0.26 | 0.35 | 5.02 | 3.16 | 1.1 | 181.7 | 99 | S |
R2 | 23.8 | 0.06 | 48.7 | −0.16 | 0.83 | 4.11 | 2.71 | 1.1 | 184.8 | 100 | S | |
R3 | 22.1 | 0.01 | 57.6 | 0.06 | 0.93 | 3.94 | 2.14 | 2.2 | 199.9 | 92 | SSW | |
XR03_No_L | R1 | 24.5 | 0.15 | 43.2 | −0.29 | 1.51 | 4.64 | 3.15 | 0.0 | 177.0 | 100 | S |
R2 | 23.7 | 0.07 | 50.8 | −0.28 | 0.99 | 3.85 | 2.49 | 2.2 | 185.9 | 100 | S | |
R3 | 24.5 | 0.18 | 57.4 | −0.75 | 0.98 | 3.68 | 2.09 | 1.1 | 161.1 | 80 | SSE | |
AI015_No_L | R1 | 24.2 | 0.14 | 47.7 | −0.43 | 0.69 | 3.88 | 2.25 | 3.3 | 181.8 | 100 | S |
R2 | 23.3 | 0.04 | 51.9 | −0.16 | 0.82 | 3.00 | 1.73 | 3.3 | 184.6 | 99 | S | |
R3 | 24.2 | 0.18 | 58.0 | −0.68 | 0.79 | 4.50 | 2.38 | 2.2 | 162.0 | 89 | SSE | |
AI03_No_L | R1 | 24.0 | 0.09 | 46.3 | −0.36 | 1.46 | 3.75 | 2.60 | 0.0 | 176.9 | 100 | S |
R2 | 22.8 | 0.02 | 55.2 | −0.09 | 0.99 | 3.18 | 1.78 | 1.1 | 189.8 | 98 | S | |
R3 | 24.2 | 0.15 | 58.4 | −0.64 | 0.43 | 3.43 | 2.07 | 6.5 | 167.8 | 95 | SSE | |
XR015_Yes_L | R1 | 24.4 | 0.16 | 60.7 | −0.80 | 1.48 | 5.10 | 3.19 | 0.0 | 159.7 | 97 | SSE |
R2 | 23.8 | 0.14 | 59.5 | −0.54 | 1.04 | 3.35 | 2.00 | 0.0 | 170.3 | 95 | S | |
R3 | 23.6 | 0.09 | 59.6 | −0.46 | 1.15 | 2.97 | 2.08 | 0.0 | 157.3 | 99 | SSE | |
XR03_Yes_L | R1 | 24.2 | 0.13 | 60.0 | −0.66 | 0.89 | 4.09 | 2.55 | 1.1 | 151.6 | 83 | SSE |
R2 | 23.9 | 0.15 | 58.8 | −0.69 | 0.87 | 2.88 | 1.81 | 4.3 | 178.1 | 96 | S | |
R3 | 23.7 | 0.03 | 59.9 | −0.39 | 1.18 | 3.93 | 1.97 | 0.0 | 160.3 | 89 | SSE | |
AI015_Yes_L | R1 | 23.9 | 0.19 | 62.5 | −0.86 | 0.67 | 3.21 | 1.97 | 4.3 | 171.3 | 98 | SSE |
R2 | 23.8 | 0.17 | 59.0 | −0.72 | 0.95 | 3.02 | 2.08 | 1.1 | 185.3 | 99 | SSE | |
R3 | 23.3 | 0.06 | 62.4 | −0.35 | 1.16 | 4.08 | 2.73 | 0.0 | 153.8 | 100 | SSE | |
AI03_Yes_L | R1 | 23.9 | 0.13 | 59.7 | −0.62 | 0.75 | 3.41 | 2.21 | 1.1 | 200.6 | 98 | SSW |
R2 | 23.8 | 0.11 | 59.0 | −0.66 | 1.21 | 3.40 | 2.17 | 0.0 | 190.8 | 100 | SSW | |
R3 | 23.1 | 0.03 | 63.1 | −0.29 | 1.10 | 3.42 | 1.92 | 0.0 | 158.9 | 87 | SSE | |
AI015_Full_L | R1 | 25.5 | 0.32 | 29.7 | 0.37 | 1.21 | 3.30 | 2.30 | 0.0 | 189.8 | 100 | SSW |
R2 | 25.9 | 0.42 | 28.3 | −0.13 | 1.02 | 4.15 | 3.00 | 0.0 | 160.5 | 93 | SSE | |
R3 | 24.7 | 0.40 | 58.1 | −0.48 | 0.79 | 3.14 | 2.07 | 6.5 | 163.1 | 83 | SSE | |
AI03_Full_L | R1 | 25.9 | 0.21 | 29.5 | −0.21 | 1.33 | 3.90 | 2.41 | 0.0 | 178.2 | 98 | S |
R2 | 26.3 | 0.41 | 29.6 | 0.77 | 1.61 | 2.69 | 2.16 | 0.0 | 164.1 | 96 | SSE | |
R3 | 25.0 | 0.34 | 54.6 | −0.80 | 1.18 | 3.29 | 2.20 | 0.0 | 183.9 | 95 | SSW |
Config & Replicates | Row/s e | Weather Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | RH | Wind Speed | Wind Direction | ||||||||||
Mean | ∆ a | Mean | ∆ b | Min | Max | Mean | Outliers c | Mean | Centered d | Prevalent Direction | |||
°C | °C | % | % | m s−1 | m s−1 | m s−1 | % | ° az. | % | ||||
XR015_No_H | R1 | 1 | 15.4 | 0.33 | 52.5 | −0.52 | 1.18 | 3.20 | 2.43 | 0.0 | 199.4 | 98 | SSW |
2 | 15.2 | 0.31 | 54.8 | −0.28 | 0.88 | 2.68 | 1.70 | 3.7 | 174.2 | 86 | S | ||
3 | 15.7 | 0.31 | 53.6 | −0.08 | 1.35 | 3.08 | 2.28 | 0.0 | 156.0 | 91 | SSE | ||
4 | 16.2 | 0.21 | 51.1 | −0.18 | 1.43 | 4.02 | 2.46 | 0.0 | 197.8 | 93 | SSW | ||
5 & 6 | 16.5 | 0.21 | 50.0 | 0.07 | 1.59 | 3.98 | 2.40 | 0.0 | 195.6 | 95 | SSW | ||
7, 8 & 9 | 16.7 | 0.23 | 48.4 | −0.43 | 1.29 | 4.70 | 2.57 | 0.0 | 190.9 | 96 | S | ||
R2 | 1 | 18.8 | 0.12 | 47.1 | −0.05 | 1.33 | 4.25 | 2.45 | 0.0 | 176.3 | 92 | S | |
2 | 18.9 | 0.09 | 43.8 | 0.52 | 1.26 | 4.62 | 2.36 | 0.0 | 176.3 | 100 | S | ||
3 | 19.5 | 0.10 | 45.0 | 0.28 | 0.89 | 4.01 | 2.45 | 2.9 | 200.0 | 90 | SSW | ||
4 | 19.1 | 0.22 | 41.0 | −0.09 | 0.78 | 5.12 | 2.54 | 2.0 | 177.5 | 88 | S | ||
5 & 6 | 18.8 | 0.18 | 42.9 | 0.39 | 1.40 | 4.50 | 2.77 | 0.0 | 167.5 | 100 | S | ||
7, 8 & 9 | 19.5 | 0.11 | 38.6 | 0.53 | 0.97 | 4.31 | 2.78 | 1.1 | 177.2 | 99 | SSE | ||
R3 | 1 | 16.8 | 0.49 | 52.3 | −0.70 | 0.98 | 4.94 | 2.92 | 0.6 | 180.5 | 100 | S | |
2 | 16.2 | 0.31 | 54.2 | −0.07 | 1.00 | 4.04 | 2.39 | 0.0 | 166.6 | 89 | S | ||
3 | 16.3 | 0.31 | 53.0 | −0.65 | 0.96 | 4.51 | 2.65 | 2.4 | 175.0 | 87 | S | ||
4 | 16.6 | 0.34 | 53.6 | −0.29 | 1.78 | 4.88 | 3.44 | 0.0 | 176.1 | 99 | S | ||
5 & 6 | 16.4 | 0.31 | 54.4 | −0.49 | 1.27 | 5.40 | 3.19 | 0.0 | 180.9 | 97 | S | ||
7, 8 & 9 | 16.5 | 0.31 | 53.7 | −0.40 | 1.07 | 4.46 | 2.78 | 0.0 | 161.4 | 92 | SSE | ||
XR03_No_H | R1 | 1 | 17.0 | 0.23 | 47.0 | −0.33 | 1.43 | 3.16 | 2.05 | 0.0 | 191.3 | 91 | S |
2 | 17.3 | 0.29 | 52.0 | −0.15 | 1.25 | 4.80 | 2.90 | 0.0 | 184.5 | 100 | S | ||
3 | 17.5 | 0.20 | 50.6 | −0.13 | 1.36 | 4.08 | 2.67 | 0.0 | 161.0 | 92 | S | ||
4 | 17.7 | 0.20 | 49.5 | −0.24 | 1.78 | 4.62 | 2.95 | 0.0 | 168.8 | 98 | S | ||
5 & 6 | 18.1 | 0.22 | 48.0 | −0.32 | 1.76 | 5.59 | 3.30 | 0.0 | 165.8 | 85 | S | ||
7, 8 & 9 | 18.2 | 0.20 | 48.6 | −0.18 | 1.78 | 4.51 | 2.95 | 0.0 | 171.0 | 93 | S | ||
R2 | 1 | 19.7 | 0.12 | 41.9 | 1.07 | 0.78 | 4.27 | 2.38 | 2.3 | 176.2 | 88 | SSE | |
2 | 19.7 | 0.04 | 36.2 | 0.58 | 1.42 | 3.97 | 2.65 | 0.0 | 176.5 | 99 | S | ||
3 | 19.9 | 0.01 | 34.0 | −0.04 | 1.59 | 4.04 | 2.57 | 0.0 | 156.8 | 84 | SSE | ||
4 | 20.1 | 0.02 | 38.8 | 1.01 | 0.89 | 3.46 | 2.45 | 3.0 | 169.8 | 83 | SSE | ||
5 & 6 | 20.4 | 0.16 | 31.5 | 0.36 | 0.78 | 3.98 | 2.38 | 3.4 | 161.4 | 86 | SSE | ||
7, 8 & 9 | 20.5 | 0.11 | 34.4 | 0.85 | 1.60 | 5.15 | 2.81 | 0.0 | 189.9 | 99 | S | ||
R3 | 1 | 17.0 | 0.36 | 52.5 | −0.45 | 1.63 | 4.95 | 2.94 | 0.0 | 173.4 | 87 | S | |
2 | 17.2 | 0.38 | 52.0 | −0.62 | 0.90 | 3.99 | 2.47 | 0.9 | 162.8 | 90 | SSE | ||
3 | 17.0 | 0.27 | 53.0 | −0.36 | 1.39 | 4.79 | 3.00 | 0.0 | 174.6 | 96 | S | ||
4 | 17.5 | 0.26 | 53.7 | −0.22 | 1.92 | 5.10 | 3.17 | 0.0 | 202.6 | 85 | SSW | ||
5 & 6 | 17.3 | 0.32 | 54.9 | −0.26 | 0.85 | 5.10 | 3.07 | 1.4 | 198.0 | 97 | SSW | ||
7, 8 & 9 | 17.2 | 0.38 | 56.3 | −0.55 | 1.90 | 4.07 | 2.80 | 0.0 | 192.1 | 98 | S |
References
- International Organization of Vine and Wine. OIV Statistical Report on World Vitiviniculture. Available online: http://www.oiv.int/public/medias/6371/oiv-statistical-report-on-world-vitiviniculture-2018.pdf (accessed on 6 April 2020).
- Byrne, M.E.; Howell, G.S. Initial response of Baco Noir grapevines to pruning severity, sucker removal, and weed control. Am. J. Enol. Vitic. 1978, 29, 192–198. [Google Scholar]
- Moretti, M.L.; Peachey, E. Section N: Vegetation management in orchard, vineyard, and berry crops-vineyard and grape. In Pacific Northwest Weed Management Handbook; Peachey, E., Ed.; Oregon State University: Corvallis, OR, USA, 2019. [Google Scholar]
- Balsari, P.; Marucco, P.; Vidotto, F.; Tesio, F. Assessment of different techniques for weed control in vineyard. In Proceedings of the Giornate Fitopatologiche, Riccione, Italy, 27–29 March 2006; pp. 529–534. [Google Scholar]
- Pergher, G.; Gubiani, R.; Mainardis, M. Field testing of a biomass-fueled flamer for in-row weed control in the vineyard. Agriculture 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Pergher, G.; Gubiani, R.; Mainardis, M. A biomass-fueled flamer for in-row weed control in vineyards: An economic evaluation. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production, Lecture Notes in Civil Engineering; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 381–388. [Google Scholar] [CrossRef]
- Martelloni, L.; Frasconi, C.; Sportelli, M.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A. The use of different hot foam doses for weed control. Agronomy 2019, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Manzone, M.; Demeneghi, M.; Marucco, P.; Grella, M.; Balsari, P. Technical solutions for under-row weed control in vineyards: Efficacy, costs and environmental aspects analysis. J. Agric. Eng. 2020, 51, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Moreira, I. Reduced rates of residual and post-emergence herbicides for weed control in vineyards. Weed Res. 2004, 44, 117–128. [Google Scholar] [CrossRef]
- Lembo, S.; Ravizza, G. Gestione nel vigneto di polloni ed infestanti sottofila. L’Informatore Agrario 2000, 19, 57–61. [Google Scholar]
- Valenti, L.; Maccarrone, G. Confronto tra diverse tecniche di spollonatura della vite. L’Informatore Agrario 1996, 52, 61–66. [Google Scholar]
- Hellman, E.W. Grapevine structure and function. In Oregon Viticulture; Hellman, E.W., Ed.; Oregon State University Press: Corvallis, OR, USA, 2003; pp. 5–19. [Google Scholar]
- Dolci, M.; Galeotti, F.; Curir, P.; Schellino, L.; Gay, G. New 2-naphthyloxyacetates for trunk sucker growth control on grapevine (Vitis vinifera L.). Plant Growth Regul. 2004, 44, 47–52. [Google Scholar] [CrossRef]
- Kang, F.; Wang, H.J.; Pierce, F.; Zhang, Q.; Wang, S. Sucker Detection of Grapevines for Targeted Spray Using Optical Sensors. Trans. ASABE 2012, 55, 2007–2014. [Google Scholar] [CrossRef]
- Paliotti, A.; Poni, S.; Silvestroni, O. Interventi in verde. Spollonatura. In La nuova Viticoltura. Innovazioni Tecniche per Modelli Produttivi Efficienti e Sostenibili; Edagricole: Milano, Italy, 2015; p. 141. [Google Scholar]
- Lanini, W.T.; McGourty, G.T.; Thrupp, L.A. Weed management for organic vineyards. In Organic Winegrowing Manual; McGourty, G., Ed.; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2011; pp. 69–82. [Google Scholar]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology current strategies and future prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [Green Version]
- Ahmedullah, M.; Wolfe, W.H. Control of sucker growth on Vitis vinifera L. cultivar Sauvignon Blanc with naphthalene acetic acid. Am. J. Enol. Vitic. 1982, 33, 198–200. [Google Scholar]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.K. Chapter 39 -Herbicides and fungicides. In Reproductive and Developmental Toxicology; Gupta, R.C., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 503–521. [Google Scholar]
- Hewitt, A.J. Spray drift: Impact of requirements to protect the environment. Crop Prot. 2000, 19, 623–627. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsen, S.C.K.; Spliid, N.H.; Svensmark, B. Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 2006, 64, 778–786. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Sud, M. Managing the Biodiversity Impacts of Fertiliser and Pesticide Use: Overview and Insights from Trends and Policies Across Selected OECD Countries; OECD Publishing: Paris, France, 2020; Volume 155. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAO International Code of Conduct on the Distribution and Use of Pesticides. Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/code.pdf (accessed on 6 April 2020).
- World Health Organization; WHO Chemical Safety. Available online: https://www.who.int/health-topics/chemical-safety#tab=tab_1 (accessed on 6 April 2020).
- EC. Directive 2009/128/EC of the European parliament and the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off. J. Eur. Union L 2009, 309, 71–86. [Google Scholar]
- Muscutt, A.D.; Harris, G.L.; Bailey, S.W.; Davies, B.D. Buffer zones to improve water quality: A review of their potential use in UK agriculture. Agric. Ecosyst. Environ. 1993, 45, 59–77. [Google Scholar] [CrossRef]
- Brown, R.B.; Carter, M.H.; Stephenson, G.R. Buffer zone and windbreak effects on spray drift deposition in a simulated wetland. Pest Manag. Sci. 2004, 60, 1085–1090. [Google Scholar] [CrossRef]
- van de Zande, J.C.; Huijsmans, J.F.M.; Porskamp, H.A.J.; Michielsen, J.M.G.P.; Stallinga, H.; Holterman, H.J.; de Jong, A. Spray techniques: How to optimise spray deposition and minimise spray drift. Environmentalist 2008, 28, 9–17. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO22866:2005: Equipment for Crop Protection-Methods for Field Measurements of Spray Drift; International Organization for Standardization: Geneva, Switzerland, 2005; pp. 1–17. [Google Scholar]
- Felsot, A.S.; Unsworth, J.B.; Linders, J.B.H.J.; Roberts, G. Agrochemical spray drift; assessment and mitigation—A review. J. Environ. Sci. Health B 2011, 46, 1–23. [Google Scholar] [CrossRef]
- Lahr, J.; Gadji, B.; Dia, D. Predicted buffer zones to protect temporary pond invertebrates from groundbased insecticide applications against desert locusts. Crop Prot. 2000, 19, 489–500. [Google Scholar] [CrossRef]
- Dabrowski, J.M.; Schulz, R. Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa. Comparison of runoff and spray drift. Environ. Toxicol. Chem. 2003, 22, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M.; Baker, B.P. Perspective on dietary risk assessment of pesticide residues in organic food. Sustainability 2014, 6, 3552–3570. [Google Scholar] [CrossRef] [Green Version]
- Butler Ellis, M.C.; Lane, A.G.; O’Sullivan, C.M.; Miller, P.C.H.; Glass, C.R. Bystander exposure to pesticide spray drift: New data for model development and validation. Biosyst. Eng. 2010, 107, 162–168. [Google Scholar] [CrossRef]
- Butler Ellis, M.C.; Lane, A.G.; O’Sullivan, C.M.; Alanis, R.; Harris, A.; Stallinga, H.; van de Zande, J.C. Bystander and resident exposure to spray drift from orchard applications: Field measurements, including a comparison of spray drift collectors. Asp. Appl. Biol. 2014, 122, 187–194. [Google Scholar]
- van den Berg, F.; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; van der Linden, A.M.A. Emission of Pesticides into the Air. Water Air Soil Pollut. 1999, 115, 195–218. [Google Scholar] [CrossRef]
- Landers, A. Equipment for Weed Control in Vineyards. Available online: https://extension.umd.edu/sites/extension.umd.edu/files/_docs/programs/viticulture/WeedControlVineyards2005.pdf (accessed on 6 April 2020).
- Balsari, P.; Marucco, P.; Tamagnone, M. A test bench for the classification of boom sprayers according to drift risk. Crop Prot. 2007, 26, 1482–1489. [Google Scholar] [CrossRef]
- Nuyttens, D.; De Schampheleire, M.; Baetens, K.; Sonck, B. The influence of operator-controlled variables on spray drift from field crop sprayers. Trans. ASABE 2007, 50, 1129–1140. [Google Scholar] [CrossRef]
- Guler, H.; Zhu, H.; Ozkan, H.E.; Derksen, R.C.; Yu, Y.; Krause, C.R. Spray characteristics and drift reduction potential with air-induction and conventional flat fan nozzles. Trans. ASABE 2007, 50, 745–754. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- van de Zande, J.C.; Holterman, H.J.; Wenneker, M. Nozzle classification for drift reduction in orchard spraying: Identification of drift reduction class threshold nozzles. Agric. Eng. Int. 2008, 10, 1–12. [Google Scholar]
- Southcombe, E.S.E.; Miller, P.C.H.; Ganzelmeier, H.; van de Zande, J.C.; Miralles, A.; Hewitt, A.J. The international (BCPC) spray classification system including a drift potential factor. In Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, 17–20 November 1997; pp. 371–380. [Google Scholar]
- Klingman, D.L.; Bovey, R.W.; Knake, E.L.; Lange, A.H.; Meade, J.A.; Skroach, W.A.; Stewart, R.E.; Wyse, D.L. Systemic Herbicides for Weed Control: Phenoxy Herbicides, Dicamba, Picloram, Amitrole, and Glyphosate; Published and Distributed in Cooperation with the Extension Service; U.S. Department of Agriculture: Washington, DC, USA, 1983.
- Ramsdale, B.K.; Messersmith, C.G. Drift-reducing nozzle effects on herbicide performance. Weed Technol. 2001, 15, 453–460. [Google Scholar] [CrossRef]
- Jensen, P.K. Herbicide performance with low volume low-drift and airinclusion nozzles. In Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, 15–18 November 1999; pp. 371–380. [Google Scholar]
- Wolf, T.M. Low-drift nozzle efficacy with respect to herbicide mode of action. Asp. Appl. Biol. 2000, 57, 29–34. [Google Scholar]
- Cawood, P.N.; Robinson, T.H.; Whittaker, S. An investigation of alternative application techniques for the control of blackgrass. In Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, 20–23 November 1995; pp. 521–528. [Google Scholar]
- Adams, A.J.; Chapple, A.C.; Hall, F.R. Droplet spectra for some agricultural fan nozzles, with respect to drift and biological efficiency. In Pesticide Formulations and Application Systems: Tenth Symposium; Bode, L.E., Hazen, J.L., Chasin, D.G., Eds.; ASTM STP 1078; American Society for Testing and Materials: Philadelphia, PA, USA, 1990; pp. 156–169. [Google Scholar]
- Foster, H.C.; Sperry, B.P.; Reynolds, D.B.; Kruger, G.R. Reducing Herbicide Particle Drift: Effect of Hooded Sprayer and Spray Quality. Weed Technol. 2018, 32, 714–721. [Google Scholar] [CrossRef]
- Balsari, P.; Bozzer, C.; Manzone, M.; Tamagnone, M. Drift assessment during chemical weed control. Acta Hortic. 2013, 978, 205–209. [Google Scholar] [CrossRef]
- Wise, A.; Senesac, A. Postemergence Weed Control in Vineyards. Available online: https://blogs.cornell.edu/nnygrapeupdate/2014/05/14/postemergence-weed-control-in-vineyards/ (accessed on 6 April 2020).
- Rautmann, D.; Streloke, M.; Winkler, R. New basic drift values in the authorization procedure for plant protection products. Mitteilungen aus der Biologischen Bundesanstaltd fur Land-und Forstwirtschaft 2001, 383, 133–141. [Google Scholar]
- Gil, E.; Llorens, J.; Montserrat Gallart, M.; Gil-Ribes, J.A.; Miranda-Fuentes, A. First attempts to obtain a reference drift curve for traditional olive grove’s plantations following ISO 22866. Sci. Total Environ. 2018, 627, 349–360. [Google Scholar] [CrossRef]
- Garcerá, C.; Moltó, E.; Chueca, P. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Sci. Total Environ. 2017, 599–600, 1344–1362. [Google Scholar] [CrossRef]
- Grella, M.; Montserrat Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground deposition and airborne spray drift assessment in vineyard and orchard: The influence of environmental variables and sprayer settings. Sustainability 2017, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Grella, M.; Marucco, P.; Manzone, M.; Gallart, M.; Balsari, P. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus. spp.). Sci. Total Environ. 2017, 578, 427–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Zande, J.C.; Wenneker, M.; Michielsen, J.M.G.P.; Stallinga, H. Spray drift and resident risk in orchard spraying; reference and spray drift reducing techniques. In Proceedings of the 13th Workshop on Spray Application in Fruit Growing—Suprofruit2015, Lindau, Germany, 15–18 July 2015; pp. 40–41. [Google Scholar]
- Nuyttens, D.; De Schampheleire, M.; Baetens, K.; Brusselman, E.; Dekeyser, D.; Verboven, P. Drift from field crop sprayers using and integrated approach results of a five year study. Trans. ASABE 2011, 54, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, D.A.; Johnson, P.D.; Kelsey, A.; Warren, N.D. Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manag. Sci. 2009, 65, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Ravier, I.; Haouisee, E.; Clément, M.; Seux, R.; Briand, O. Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manag. Sci. 2005, 61, 728–736. [Google Scholar] [CrossRef] [PubMed]
- van de Zande, J.C.; Rautmann, D.; Holterman, H.J.; Huijsmans, J.F.M. Joined Spray Drift Curves for Boom Sprayers in The Netherlands and Germany. Available online: https://edepot.wur.nl/353554 (accessed on 19 June 2020).
- Lorenz, D.; Eichorn, D.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Vitic. Enol. Sci. 1994, 49, 66–70. [Google Scholar]
- Grella, M.; Marucco, P.; Balsari, P. Valutazione della deriva generata dalle barre irroratrici impiegate per l’applicazione degli erbicidi in vigneto: Prime esperienze di campo e proposta di una nuova metodologia di prova. In Proceedings of the Giornate Fitopatologiche, Chianciano Terme, Italy, 6–9 March 2018; pp. 641–649. [Google Scholar]
- Pergher, G. Recovery rate and tracers dye used for spray deposit assessment. Trans. ASAE 2001, 44, 787–794. [Google Scholar] [CrossRef]
- ISO. ISO22401:2015: Equipment for Crop Protection—Method for Measurement of Potential Drift from Horizontal Boom Sprayer Systems by the Use of a Test Bench; International Organization for Standardization: Geneva, Switzerland, 2015; p. 12. [Google Scholar]
- Taylor, W.A.; Cooper, S.E.; Miller, P.C.H. An appraisal of nozzles and sprayers abilities to meet regulatory demands for reduced airborne drift and downwind fallout from arable crop spraying. In Proceedings of the Brighton Crop Protection Conference-Weeds, Brighton, UK, 15–18 November 1999; pp. 447–452. [Google Scholar]
- Nuyttens, D.; Taylor, W.A.; De Schampheleire, M.; Verboven, P.; Dekeyser, D. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods. Biosyst. Eng. 2009, 103, 271–280. [Google Scholar] [CrossRef]
- Grella, M.; Marucco, P.; Balsari, P. Toward a new method to classify the airblast sprayers according to their potential drift reduction: Comparison of direct and new indirect measurement methods. Pest Manag. Sci. 2019, 75, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- ISO. ISO22369–1:2006(E): Crop Protection Equipment—Drift Classification of Spraying Equipment—Part 1: Classes; International Organization for Standardization: Geneva, Switzerland, 2006; p. 1. [Google Scholar]
- Wenneker, M.; Michielsen, J.M.G.P.; Heijne, B.; van de Zande, J.C. Contribution of individual tree row sprayings to the total spray drift deposition next to an apple orchard. In Proceedings of the 8th Workshop on Spray Application Techniques in Fruit Growing—Suprofruit 2005, Barcelona, Spain, 29 June–1 July 2005; pp. 47–53. [Google Scholar]
- Martinson, D. Smoothed Curve Fittin. In Quantitative Methods of Data Analysis for the Physical Sciences and Engineering, 1st ed.; Cambridge University Press: Cambridge, UK, 2018; pp. 128–177. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model. Dev. 2014, 7, 1525–1534. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, T.; Bergström, L.; Kreuger, J. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements. Pest Manag. Sci. 2011, 67, 725–733. [Google Scholar] [CrossRef]
- Baetens, K.; Ho, Q.T.; Nuyttens, D.; de Schampheleire, M.; Endalew, A.; Hertog, M.; Nicolai, B.; Ramon, H.; Verboven, P. Development of a 2-D-diffusion advection model for fast prediction of field drift. Atmos. Environ. 2008, 43, 1674–1682. [Google Scholar] [CrossRef]
- Gil, E.; Gallart, M.; Balsari, P.; Marucco, P.; Almajano, M.P.; Llop, J. Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agric. For. Meteorol. 2015, 202, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Reichard, D.L.; Fox, R.D.; Brazee, R.D.; Ozkan, H.E. Simulation of drift of discrete sizes of water droplets from field sprayers. Trans. ASAE 1994, 37, 1401–1407. [Google Scholar] [CrossRef]
- Bird, S.L.; Esterly, D.M.; Perry, S.G. Off-target deposition of pesticides from agricultural aerial spray application. J. Environ. Qual. 1996, 25, 1095–1104. [Google Scholar] [CrossRef]
- Threadgill, E.D.; Smith, D.B. Effect of physical and meteorological parameters on drift of controlled size droplets. Trans. ASAE 1975, 18, 51–56. [Google Scholar]
- Combellack, J.H.; Western, N.M.; Richardson, R.G. A comparison of the drift potential of a novel twin fluid nozzle with conventional low volume flat fan nozzles when using a range of adjuvants. Crop Prot. 1996, 15, 147–152. [Google Scholar] [CrossRef]
- Arvidsson, T.; Bergström, L.; Kreuger, J. Spray drift as influenced by meteorological and technical factors. Pest Manag. Sci. 2011, 67, 586–598. [Google Scholar] [CrossRef]
- Crabbe, R.S.; Mc Cooeye, M.; Mickle, R.E. The influence of atmospheric stability on wind drift from ultra-low volume aerial forest spray applications. J. Appl. Meteorol. 1994, 33, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Duga, A.T.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolaï, B.M.; Verboven, P. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics. Crop Prot. 2015, 67, 200–213. [Google Scholar] [CrossRef]
- FOCUS. FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Available online: https://esdac.jrc.ec.europa.eu/projects/surface-water (accessed on 19 June 2020).
- Golla, B.; Strassemeyer, J.; Gutsche, V.; Kotch, H. Method for a stochastic simulation of spray drift values as basis for a probabilistic and spatially explicit exposure assessment of surface waters. In Proceedings of the 10th Workshop on Spray Application in Fruit Growing—Suprofruit2009, Wageningen, The Netherlands, 30 September–2 October 2009; pp. 118–119. [Google Scholar]
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J. 2013, 11, 3290. [CrossRef]
- Holterman, H.J.; van der Zande, J.C.; Huijsmans, J.F.M.; Wenneker, M. Development of a spray drift model for spray applications in fruit orchards. In Wageningen Plant Research Rapport; No. WPR-566; Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems Research: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef]
Configuration ID a | Nozzle Type | N° of Active Nozzles | Working Pressure (Mpa) | Total Liquid Flow Rate (L min−1) | Forward Speed (m s−1) | Volume Rate Applied (L ha−1) | Boom Height (m) | Boom Shielding |
---|---|---|---|---|---|---|---|---|
XR015_No_H | XR110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.50 | None |
XR03_No_H | XR11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.50 | None |
AI015_No_H | AI110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.50 | None |
AI03_No_H | AI11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.50 | None |
XR015_Yes_H | XR110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.50 | Semi |
XR03_Yes_H | XR11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.50 | Semi |
AI015_Yes_H | AI110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.50 | Semi |
AI03_Yes_H | AI11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.50 | Semi |
XR015_No_L | XR110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.25 | None |
XR03_No_L | XR11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.25 | None |
AI015_No_L | AI110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.25 | None |
AI03_No_L | AI11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.25 | None |
XR015_Yes_L | XR110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.25 | Semi |
XR03_Yes_L | XR11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.25 | Semi |
AI015_Yes_L | AI110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.25 | Semi |
AI03_Yes_L | AI11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.25 | Semi |
XR015_Full_L | XR110015VS | 2 | 0.3 | 1.18 | 1.11 | 141.6 | 0.25 | Fully |
XR03_Full_L | XR11003VS | 2 | 0.3 | 2.36 | 2.22 | 141.6 | 0.25 | Fully |
Nozzle Type | Spray Angle (°) | Nozzle Size | Working Pressure (Mpa) | Flow Rate (L min−1) | D[v,0.1] a (µm) | D[v,0.5] a (µm) | D[v,0.9] a (µm) | V100 b (%) |
---|---|---|---|---|---|---|---|---|
XR110015VS | 110 | 015 | 0.3 | 0.59 | 62 | 132 | 300 | 37.73 |
XR11003VS | 110 | 03 | 0.3 | 1.18 | 69 | 164 | 398 | 28.26 |
AI110015VS | 110 | 015 | 0.3 | 0.59 | 161 | 434 | 819 | 4.80 |
AI11003VS | 110 | 03 | 0.3 | 1.18 | 214 | 513 | 965 | 3.11 |
Sources | Sum of Squares | df | Mean Square | F | p | Signif. a |
---|---|---|---|---|---|---|
Nozzles type –Nt- | 511.97 | 1 | 511.97 | 364.77 | 4.666 × 10−19 | *** |
Nozzles size –Ns- | 26.75 | 1 | 26.75 | 19.06 | 1.242 × 10−4 | *** |
Boom shielding –Bs- | 11.55 | 1 | 11.55 | 8.23 | 0.007 | ** |
Boom height –Bh- | 534.56 | 1 | 534.56 | 380.86 | 2.466 × 10−19 | *** |
Nt * Ns | 24.95 | 1 | 24.95 | 17.78 | 1.901 × 10−4 | *** |
Nt * Bs | 5.61 | 1 | 5.61 | 4.00 | 0.054 | NS |
Nt * Bh | 163.47 | 1 | 163.47 | 116.46 | 3.402 × 10−12 | *** |
Ns * Bs | 0.72 | 1 | 0.72 | 0.51 | 0.480 | NS |
Ns * Bh | 3.09 | 1 | 3.09 | 2.20 | 0.148 | NS |
Bs * Bh | 2.41 | 1 | 2.41 | 1.72 | 0.199 | NS |
Nt * Ns * Bs | 3.46 | 1 | 3.46 | 2.47 | 0.126 | NS |
Nt * Ns * Bh | 13.41 | 1 | 13.41 | 9.55 | 0.004 | ** |
Nt * Bs * Bh | 0.59 | 1 | 0.59 | 0.42 | 0.521 | NS |
Ns * Bs * Bh | 0.03 | 1 | 0.03 | 0.02 | 0.877 | NS |
Nt * Ns * Bs * Bh | 1.36 | 1 | 1.36 | 0.97 | 0.333 | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grella, M.; Marucco, P.; Balafoutis, A.T.; Balsari, P. Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques. Sustainability 2020, 12, 5068. https://doi.org/10.3390/su12125068
Grella M, Marucco P, Balafoutis AT, Balsari P. Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques. Sustainability. 2020; 12(12):5068. https://doi.org/10.3390/su12125068
Chicago/Turabian StyleGrella, Marco, Paolo Marucco, Athanasios T. Balafoutis, and Paolo Balsari. 2020. "Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques" Sustainability 12, no. 12: 5068. https://doi.org/10.3390/su12125068
APA StyleGrella, M., Marucco, P., Balafoutis, A. T., & Balsari, P. (2020). Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques. Sustainability, 12(12), 5068. https://doi.org/10.3390/su12125068