The Effect of Mechanical Actions Occurring during Transport on Physicochemical Changes in Agaricus bisporus Mushrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Test Stand
2.3. The System of Experiments
- directly after harvesting (control sample)
- immediately after being subjected to the vibrations
- and after four days of refrigerated storage at 6 ±1 °C, after both the control samples and the samples that had been subjected to vibrations
2.4. Analytical Methods
2.4.1. Determination of Colour
2.4.2. Determination of Active Acidity
2.4.3. Determination of the Refractometric Total Extract Content
2.4.4. Determination of Dry Matter Content
2.4.5. Determination of Antioxidant Activity
2.4.6. Determination of Total Polyphenols
2.5. Statistical Analysis
3. Results
3.1. pH, Total Extract and Dry Matter
3.2. Antioxidant Activity
3.3. Polyphenol Content
3.4. Colour Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Wang, C. Investigating the effects of simulated transport vibration on tomato tissue damage based on vis/NIR spectroscopy. Postharvest Biol. Technol. 2014, 98, 41–47. [Google Scholar] [CrossRef]
- Fahmy, K.; Nakano, K. Effective Transport and Storage Condition for Preserving The Quality of ‘Jiro’ Persimmon in Export Market. Agric. Agric. Sci. Procedia 2016, 9, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.M.; Lee, S.; Lee, W.-H.; Cho, B.-K.; Lee, S.H. Effect of vibration stress on quality of packaged grapes during transportation. Eng. Agric. Environ. Food 2018, 11, 79–83. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Zhang, S.; Yang, Z. Damage caused by multiple impacts of litchi fruits during vibration harvesting. Comput. Electron. Agric. 2019, 162, 732–738. [Google Scholar] [CrossRef]
- Wei, X.; Xie, D.; Mao, L.; Xu, C.; Luo, Z.; Xia, M.; Zhao, X.; Han, X.; Lu, W. Excess water loss induced by simulated transport vibration in postharvest kiwifruit. Sci. Hortic. 2019, 250, 113–120. [Google Scholar] [CrossRef]
- Hryszko, K. Rynek Rolny, Anlizy, Tendencje, Oceny; Wydawnictwo IERiGŻ: Warszawa, Poland, 2019. [Google Scholar]
- Zmarlicki, K.; Brzozowski, P. Preferencje konsumentów Skierniewic przy zakupie pieczarek. Roczniki (Annals) 2018, 2018, 237–241. [Google Scholar] [CrossRef]
- Chang, S.-T. World Production of Cultivated Edible and Medicinal Mushrooms in 1997 with Emphasis on Lentinus edodes (Berk.) Sing, in China. Int. J. Med. Mushrooms 1999, 1, 291–300. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A.K.; Singh, B.; Sharma, H.K. Physico-chemical changes in white button mushroom (Agaricus biosporus) at different drying temperature. Mushroom Res. 1999, 8, 27–29. [Google Scholar]
- Siwulski, M.; Sokół, S.; Sobieralski, K.; Reguła, J.; Walkowiak-Tomczak, D.; Sas-Golak, I.; Szczepka, M.; Sztoch, R.; Sztoch, P.; Czuderna, J.G.R. Pieczarka Agaricus Gatunki, uprawa, Właściwości Prozdrowotne (Agaricus Species, Cultivation, Health Promoting Properties); Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2014; ISBN 978-83-7160-740-0. [Google Scholar]
- Mattila, P.; Suonpää, K.; Piironen, V. Functional properties of edible mushrooms. Nutrition 2009, 16, 694–696. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Rojowski, J.; Grzywacz, A.; Opoka, W. Composition and Biological Properties of Agaricus bisporus Fruiting Bodies A Review. Pol. J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Wu, Y.; Zhang, Z.; Song, S.; Zhuang, H.; Xu, Z.; Yao, L.; Sun, M. Purification, Identification, and Sensory Evaluation of Kokumi Peptides from Agaricus bisporus Mushroom. Foods 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Tritean, N.; Bărbieru, O.-G.; Constantinescu-Aruxandei, D.; Oancea, F. Extraction and Plastein Reaction of Bioactive Peptides from Agaricus Bisporus Mushrooms. Proceedings 2019, 29, 106. [Google Scholar] [CrossRef] [Green Version]
- Brodziak, L.; Majchrzak, R. Nutritive value of the mushroom Lentinus edodes (Berk.) Sing. (shiitake) compared with that of other edible mushrooms. Rocz. Państwowego Zakładu Hig. 1984, 35, 59–62. [Google Scholar]
- Vetter, J. Chemical composition of fresh conserved Agaricus bisporus mushroom. Eur. Food Res. Technol. 2003, 217, 10–12. [Google Scholar] [CrossRef]
- Chang, S.-T. The World Mushroom Industry: Trends and Technological Development. Int. J. Med. Mushrooms 2006, 8, 297–314. [Google Scholar] [CrossRef]
- Kim, K.M.; Ko, J.; Lee, J.-S.; Park, H.; Hanna, M. Effect of modified atmosphere packaging on the shelf life of coated whole and sliced mushroom. LWT Food Sci. Technol. 2006, 39, 365–372. [Google Scholar] [CrossRef]
- Kalac, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93. [Google Scholar] [CrossRef]
- Antmann, G.; Ares, G.; Lema, P.; Lareo, C. Influence of modified atmosphere packaging on sensory quality of shiitake mushrooms. Postharvest Biol. Technol. 2008, 49, 164–170. [Google Scholar] [CrossRef]
- Idaszewska, N.; Bieńczak, K.; Szymański, G.; Janeba-Bartoszewicz, E. Wpływ drgań generowanych podczas transportu na cechy fizykochemiczne pomidorów. Inżynieria I Apar. Chem. 2017, 56, 198–199. [Google Scholar]
- Idaszewska, N.; Szymański, G. Identyfikacja charakterystycznych parametrów sygnału drgań podczas transportu owoców i warzyw. In Proceedings of the Konferencja Naukowa VibDiag, Poznań, Poland, 17 October 2019; p. 26. [Google Scholar]
- CIE Recommendations on Uniform Color Spaces, Color-Difference Equations, and Metric Color Terms. Color Res. Appl. 1977, 2, 5–6. [CrossRef]
- Mieszkalska, A.; Piotrowski, D. Wykorzystanie modeli barwy do oceny suszonych surowców roślinnych. Postępy Tech. Przetwórstwa Spożywczego 2014, 2, 105–111. [Google Scholar]
- Wang, Y.; Zhao, H.; Deng, H.; Song, X.; Zhang, W.; Wu, S.; Wang, J. Influence of pretreatments on microwave vacuum drying kinetics, physicochemical properties and sensory quality of apple slices. Pol. J. Food Nutr. Sci. 2019, 69, 297–306. [Google Scholar] [CrossRef]
- PN-90/A-75101/06. Przetwory Owocowe i Warzywne Przygotowanie Próbek i Metody Badań Fizykochemicznych Oznaczanie pH Metodą Potencjometryczną; Polski Komitet Normalizacyjny: Warszawa, Polska, 1990. [Google Scholar]
- PN-90/A-75101/02 eqv ISO 2172- 1987 (E) i 2173 - 1978 (E). Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczanie Ekstraktu Ogólnego; Polski Komitet Normalizacyjny: Warszawa, Polska, 1990. [Google Scholar]
- PN-90/A-75101/03. Przetwory Owocowe i Warzywne Przygotowanie Próbek i Metody Badań Fizykochemicznych Oznaczanie Zawartości Suchej Masy Metodą Wagową; Polski Komitet Normalizacyjny: Warszawa, Polska, 1990. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, M.; Sun, Y.; Sun, J. How to Improve Bayberry (Myrica rubra Sieb. et Zucc.) Juice Color Quality: Effect of Juice Processing on Bayberry Anthocyanins and Polyphenolics. J. Agric. Food Chem. 2006, 54, 99–106. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Approximate pH of Foods and Food Products. Available online: http://www.cfsan.fda.gov/-comm/lacf-phs.html (accessed on 17 June 2020).
- Eissa, H.A.A. Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. J. Food Qual. 2007, 30, 623–645. [Google Scholar] [CrossRef]
- Skąpska, S.; Owczarek, L.; Jasińska, U.; Hałasińska, A.; Danielczuk, J.; Sokolowska, B. Zmiany pojemności przeciwutleniającej grzybów jadalnych w procesie kiszenia. Żywność Nauk. Technol. Jakość 2008, 4, 243–250. [Google Scholar]
- Cherno, N.; Osolina, S.; Nikitina, A. Chemical Composition of Agaricus Bisporus and Pleurotus. Food Environ. Saf. J. Fac. Food Eng. 2013, XII, 291–299. [Google Scholar]
- Rózsa, S.; Gocan, T.M.; Lazăr, V.; Andreica, I.; Rózsa, M.; Măniuţiu, D.N.; Sima, R. The effect of processing on chemical constituents of Agaricus spp. mushrooms. Not. Bot. Horti. Agrobot. Cluj-Napoca 2017, 45, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Kałużewicz, A.; Sobieralski, K.; Frąszczak, B.; Golak-Siwulska, I.; Miran, D. The influence of the strain, flush and size of carpophores on the yield and dry matter content of button mushroom (Agaricus bisporus (Lange) Imbach) carpophores. Nauk. Przyr. Technol. 2016, 10, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Oms-Oliu, G.; Aguiló-Aguayo, I.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2010, 56, 216–222. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jia, L.; Kan, J.; Jin, C. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem. Toxicol. 2013, 51, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Dubost, N.; Ou, B.; Beelman, R. Quantification of polyphenols and ergothioneine in cultured mushrooms and correlation to total antioxidant capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Giannenas, I.; Tsalie, E.; Chronis, E.; Mavridis, S.; Tontis, D.; Kyriazakis, I. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology, and antioxidant status of turkey poults. Anim. Feed Sci. Technol. 2011, 165, 218–229. [Google Scholar] [CrossRef]
- Czapski, J. Antioxidant activity and phenolic content in some strains of mushrooms (Agaricus bisporus). Veg. Crop. Res. Bull. 2005, 62, 165–173. [Google Scholar]
- Bernaś, E.; Jaworska, G.K.W. Storage and processing of edible mushrooms. Acta Sci. Pol. Technol. Aliment. 2006, 5, 5–23. [Google Scholar]
Frequency [Hz] | Storage Time [days] | Fresh Produce | Time of Vibrations [h] | ||
---|---|---|---|---|---|
3 | 6 | ||||
pH | 46 | 0 | 6.5 ± 0.01 b | 6.42 ± 0.02 a | 6.43 ± 0.01 a |
4 | 6.46 ± 0.04 a,b | 6.38 ± 0.00 c | 6.43 ± 0.02 a | ||
28 | 0 | 6.40 ± 0.02 b | 6.39 ± 0.03 b | 6.35 ± 0.02 a | |
4 | 6.30 ± 0.01 c | 6.34 ± 0.01 a | 6.35 ± 0.01 a | ||
Total Extract | 46 | 0 | 7.0 ± 0.1 b | 7.6 ± 0.21 a | 8.0 ± 0.22 a |
4 | 8.6 ± 0.0 c | 8.2 ± 0.18 a | 8.2 ± 0.18 a | ||
28 | 0 | 7.6 ± 0.19 a | 7.5 ± 0.19 a | 7.7 ± 0.21 a | |
4 | 8.8 ± 0.22 b | 8.4 ± 0.22 b | 8.6 ± 0.23 b | ||
Dry Matter | 46 | 0 | 7.8 ± 0.33 b | 8.24 ± 0.39 a,b | 8.94 ±0.28 a |
4 | 9.3 ± 1.02 a | 9.23 ± 0.51 a | 9.24 ± 0.24 a | ||
28 | 0 | 9.3 ± 0.6 a | 9.5 ± 0.78 a,b | 9.4 ± 0.36 a | |
4 | 10.6 ± 0.06 b | 9.8 ± 0.71 a,b | 9.8 ± 0.25 a,b |
Frequency [Hz] | Storage Time [days] | Fresh Produce | Time of Vibration [h] | |
---|---|---|---|---|
3 | 6 | |||
46 | 0 | 127.2 ± 27.8 b | 230.7 ± 89.0 a | 130.7 ± 28.0 b |
4 | 196.4 ± 31.0 a,b | 263.8 ± 66.7 a | 203.0 ± 58.0 a,b | |
28 | 0 | 66.3 ± 3.8 b | 81.3 ± 15.8 b | 58.9 ± 6.8 b |
4 | 68.8 ± 20.1 b | 170.4 ± 48.9 a | 119.8 ± 69.4 a,b |
Frequency [Hz] | Storage Time [days] | Fresh Produce | Time of Vibration [h] | |
---|---|---|---|---|
3 | 6 | |||
46 | 0 | 766 ± 28 c | 817 ± 51 a,b,c | 791 ± 16 b,c |
4 | 789 ± 83 b,c | 818 ± 45 a,b | 864 ± 73 a | |
28 | 0 | 441 ± 4 e | 500 ± 30 d | 459 ± 31 e |
4 | 607 ± 12 b | 555 ± 47 c | 640 ± 12 a |
Time of Vibration [h] | Time of Storage [days] | L *(D65) | a *(D65) | b *(D65) | C *(D65) | h(D65) | ΔE |
---|---|---|---|---|---|---|---|
Fresh Mushrooms | 0 | 86.4 ± 2.5 a | 1.2 ± 0.9 d | 13.3 ± 2.8 d | 13.4 ± 2.9 d | 85.3 ± 3.1 a | |
4 | 82.9 ± 3.1 a,d | 2.1 ± 1.2 c,d | 17.2 ± 3.8 b,c | 17.3 ± 3.9 b,c | 83.4 ± 2.7 a,b | 5.3 | |
3 | 0 | 83.7 ± 3.2 a | 2.1 ± 1.0 c,d | 15.0 ± 3.2 c,d | 15.2 ± 3.3 c,d | 82.3 ± 2.3 b,c | 3.3 |
4 | 79.2 ± 4.4 c,d | 2.9 ± 1.5 b,c | 18.4 ± 3.1 a,b | 18.7 ± 3.3 a,b | 81.3 ± 3.3 b,c | 9.0 | |
6 | 0 | 76.7 ± 4.6 b,c | 3.9 ± 2.9 a,b | 20.9 ± 3.0 a | 21.3 ± 3.2 a | 79.6 ± 2.6 c | 12.6 |
4 | 72.7 ± 3.4 b | 5.1 ± 1.4 a | 18.5 ± 2.5 a,b | 19.3 ± 3.0 a,b | 75.3 ± 3.4 d | 15.1 |
Time of Vibration [h] | Time of Storage [days] | L *(D65) | a *(D65) | b *(D65) | C *(D65) | h(D65) | ΔE |
---|---|---|---|---|---|---|---|
Fresh Mushrooms | 0 | 87.4 ± 1.7 a | 0.5 ± 0.6 a | 11.4 ± 1.4 a | 11.4 ± 1.4 a | 87.6 ± 2.3 a | |
4 | 84.4 ± 2.7 b,c | 1.8 ± 1.2 b | 15.7 ± 2.2 c,d | 15.8 ± 2.3 c,d | 83.8 ± 3.8 b | 5.4 | |
3 | 0 | 86.0 ± 2.7 a,b | 1.5 ± 1.0 a,b | 12.7 ± 1.8 a,b | 12.3 ± 1.9 a,b | 83.6 ± 3.1 b | 2.2 |
4 | 82.7 ± 3.4 c | 2.2 ± 0.4 b | 16.8 ± 3,0 d | 16.9 ± 3.1 d | 83.0 ± 3.4 b | 7.4 | |
6 | 0 | 85.0 ± 2.8 a,b,c | 1.3 ± 0.8 a,b | 13.8 ± 2.3 b,c | 13.9 ± 2.4 b,c | 85.2 ± 2.7 a,b | 3.5 |
4 | 76.7 ± 3.9 d | 4.8 ± 0.6 c | 20.4 ± 3.6 e | 21.0 ± 4.0 e | 77.6 ± 4.5 c | 14.7 |
Frequency [Hz] | Storage Time [days] | Time of Vibrations [h] | ||
---|---|---|---|---|
3 | 6 | |||
[%] | ||||
pH | 46 | 0 | −1 | −1 |
4 | −1 | 0 | ||
28 | 0 | 0 | −1 | |
4 | 1 | 1 | ||
Total Extract | 46 | 0 | 9 | 14 |
4 | −5 | −5 | ||
28 | 0 | −1 | 1 | |
4 | −5 | −2 | ||
Dry Matter | 46 | 0 | 6 | 15 |
4 | −1 | −1 | ||
28 | 0 | 2 | 1 | |
4 | −8 | −8 | ||
Antioxidant Activity | 46 | 0 | 82 | 3 |
4 | 35 | 4 | ||
28 | 0 | 23 | −11 | |
4 | 146 | 74 | ||
Polyphenol Content | 46 | 0 | 7 | 3 |
4 | 4 | 10 | ||
28 | 0 | 13 | 4 | |
4 | −9 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walkowiak-Tomczak, D.; Idaszewska, N.; Bieńczak, K.; Kómoch, W. The Effect of Mechanical Actions Occurring during Transport on Physicochemical Changes in Agaricus bisporus Mushrooms. Sustainability 2020, 12, 4993. https://doi.org/10.3390/su12124993
Walkowiak-Tomczak D, Idaszewska N, Bieńczak K, Kómoch W. The Effect of Mechanical Actions Occurring during Transport on Physicochemical Changes in Agaricus bisporus Mushrooms. Sustainability. 2020; 12(12):4993. https://doi.org/10.3390/su12124993
Chicago/Turabian StyleWalkowiak-Tomczak, Dorota, Natalia Idaszewska, Krzysztof Bieńczak, and Wiktoria Kómoch. 2020. "The Effect of Mechanical Actions Occurring during Transport on Physicochemical Changes in Agaricus bisporus Mushrooms" Sustainability 12, no. 12: 4993. https://doi.org/10.3390/su12124993
APA StyleWalkowiak-Tomczak, D., Idaszewska, N., Bieńczak, K., & Kómoch, W. (2020). The Effect of Mechanical Actions Occurring during Transport on Physicochemical Changes in Agaricus bisporus Mushrooms. Sustainability, 12(12), 4993. https://doi.org/10.3390/su12124993