Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BSF Larvae and Experimental Household Organic Waste
2.2. Chemical Composition of BSFR and Commercial Compost
2.3. Analysis of Microbiota in BSFR and Commercial Compost by Amplicon Sequencing
2.4. Plant Cultivation Test 1
2.5. Plant Cultivation Test 2
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of BSFR and Commercial Compost
3.2. PCA of the Chemical Composition
3.3. Relative Abundance in Microbiota of BSFR and Commercial Compost
3.4. Analysis of Microbial Diversity for between Groups
3.5. Plant Cultivation Test 1 (Same Amount of Nitrogen)
3.6. Plant Cultivation Test 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzi, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Dickinson, M.; Wakefield, M.E.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E.; et al. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Sarpong, D.; Oduro-Kwarteng, S.; Gyasi, S.F.; Buamah, R.; Donkor, E.; Awuah, E.; Baah, M.K. Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae. Int. J. Recycl. Org. Waste Agric. 2019, 8, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Parra Paz, A.S.; Carrejo, N.S.; Gómez Rodríguez, C.H. Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valorization 2015, 6, 1059–1065. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black Soldier Fly (Diptera: Stratiomyidae) Larvae Reduce Escherichia coli in Dairy Manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B.; et al. Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef]
- Nakamura, S.; Ichiki, R.T.; Shimoda, M.; Morioka, S. Small-scale rearing of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), in the laboratory: low-cost and year-round rearing. Appl. Entomol. Zool. 2016, 51, 161–166. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.I.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Horwitz, W., Ed.; AOAC international: Gaithersburg, MA, USA, 2002; ISBN 0-93558-67-6. [Google Scholar]
- Klindworth, A.; Peplies, J.; Pruesse, E.; Schweer, T.; Glöckner, F.O.; Quast, C.; Horn, M. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Food and Agricultural Materials Inspection Center (FAMIC). Method and Explanation of Cultivation Test for Plants; FAMIC: Saitama, Japan, 2017. [Google Scholar]
- National Agricuiture and Food Research Organization. A Simple Method for Evaluating The Quality of Compost by Juvenile Plant Tests. Available online: https://www.naro.affrc.go.jp/training/files/20031006-08-2.pdf (accessed on 8 June 2020).
- Hammer, Ø.; David, A.T.H.; Paul, D.R. PAST: Paleontological statistics package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- Kolay, A.K. Fertilisers: Properties and Uses. In Manures and Fertilizers; ATLANTIC: New Delhi, India, 2007; pp. 78–116. ISBN 978-8126908103. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; MacDonald, J.D.; Pelster, D.E.; Bertrand, N. NH3 volatilization, soil NH4+concentration and soil pH following subsurface banding of urea at increasing rates. Can. J. Soil Sci. 2013, 93, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Wellburn, A.R. Tansley Review No. 24 Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol. 1990, 115, 395–429. [Google Scholar] [CrossRef]
- Sasaki, N.; Suehara, K.-I.; Kohda, J.; Nakano, Y.; Yang, T. Effects of ratio and pH of raw materials on oil degradation efficiency in a compost fermentation process. J. Biosci. Bioeng. 2003, 96, 47–52. [Google Scholar] [CrossRef]
- Sundberg, C.; Smårs, S.; Jönsson, H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour. Technol. 2004, 95, 145–150. [Google Scholar] [CrossRef]
- de Bertoldi, M.; Vallini, G.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- An, S.Q.; Potnis, N.; Dow, M.; Vorhölter, F.J.; He, Y.Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2019, 44, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA). Update of the Xylella spp. host plant database. EFSA J. 2018, 16. [Google Scholar]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of pierce’s disease of grapevine and other emergent diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.P.; Vorhölter, F.-J.; Potnis, N.; Jones, J.B.; Van Sluys, M.-A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat. Rev. Microbiol. 2011, 9, 344–355. [Google Scholar] [CrossRef] [PubMed]
Group | EHOW | BSFR | Cow | Horse | Poultry | |
---|---|---|---|---|---|---|
A | Amount Applied (g) | 10.25 | 4.72 | 6.44 | 14.72 | 3.09 |
Nitrogen a (mg) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
Phosphorus a (mg) | 6.54 | 2.34 | 5.99 | 3.62 | 3.41 | |
Potassium a (mg) | 267.28 | 89.68 | 90.14 | 1020.77 | 20.22 | |
B | Amount Applied (g) | 20.50 | 9.43 | 12.87 | 29.43 | 6.19 |
Nitrogen a (mg) | 200.00 | 200.00 | 200.00 | 200.00 | 200.00 | |
Phosphorus a (mg) | 13.08 | 4.69 | 11.99 | 7.24 | 6.83 | |
Potassium a (mg) | 534.56 | 179.37 | 180.28 | 2041.55 | 40.43 |
Group | Control | BSFR1 | BSFR2 | BSFR3 | Cow | Horse | Poultry |
---|---|---|---|---|---|---|---|
Amount applied (g) | 0.00 | 25.18 | 12.60 | 8.33 | 25.20 | 25.52 | 12.49 |
Items | EHOW | BSFR | Cow | Horse | Poultry | SEM | p-Value |
---|---|---|---|---|---|---|---|
Moisture (%) | 78.01a | 55.60b | 39.98c | 27.80d | 14.21e | 5.93 | <0.01 |
C (%) | 45.43a | 35.84b | 25.34c | 35.12d | 27.40e | 1.90 | <0.01 |
N (%) | 0.98ad | 2.16b | 1.55ac | 0.68d | 3.23bc | 0.25 | <0.01 |
C/N | 48.09 | 16.61a | 16.31a | 53.88 | 8.58b | 5.22 | <0.01 |
NH4+-N (%) | 0.07a | 0.88b | 0.08a | 0.25c | 0.48d | 0.08 | <0.01 |
NO3-N (%) | 0.04a | 0.10b | 0.57c | 0.15ab | 1.25d | 0.12 | <0.01 |
P (%) | 0.06a | 0.05b | 0.09c | 0.02d | 0.11e | 0.01 | <0.01 |
K (%) | 0.12a | 0.07 | 0.18 | 0.16b | 0.19 | 0.02 | 0.12 |
Na (%) | 0.04a | 0.08 | 0.10b | 0.11b | 0.09b | 0.01 | <0.01 |
Cu (%) | 0.00a | 0.01b | 0.03c | 0.14d | 0.06e | 0.01 | <0.01 |
Ca (%) | 0.09a | 1.00b | 0.13c | 1.25b | 2.14b | 0.21 | <0.01 |
Fe (%) | 0.03a | 0.24b | 1.15c | 7.15d | 1.04c | 0.71 | <0.01 |
Mg (%) | 0.02a | 0.09b | 0.13c | 0.20abc | 0.21bc | 0.02 | <0.01 |
Zn (%) | 0.00a | 0.01a | 0.17b | 0.44c | 0.36d | 0.05 | <0.01 |
Mn (%) | 0.00a | 0.01a | 0.23b | 0.14c | 0.29b | 0.03 | <0.01 |
Ash (%) | 1.04a | 12.65b | 18.00c | 33.74d | 38.74d | 3.70 | <0.01 |
pH | 6.20a | 7.40a | 9.10a | 8.17b | 8.30ab | 0.26 | <0.01 |
EC (mS/cm) | 3.67a | 9.67b | 5.53c | 2.30d | 7.27e | 0.70 | <0.01 |
No. | EHOW | BSFR | Cow | Horse | Poultry | |||||
---|---|---|---|---|---|---|---|---|---|---|
Taxonomy | (%) | Taxonomy | (%) | Taxonomy | (%) | Taxonomy | (%) | Taxonomy | (%) | |
1 | Lactobacillales | 31.33 | Bacillaceae | 22.91 | Halomonas | 15.27 | Bacillales | 16.52 | Bacillaceae | 51.31 |
2 | Carnobacterium | 21.55 | Sporosarcina | 13.21 | Georgenia | 10.27 | [Weeksellaceae] | 9.61 | Bacillales | 21.69 |
3 | Escherichia | 16.68 | Xanthomonadaceae | 9.82 | Bacillaceae | 7.75 | Pseudomonas | 6.64 | Corynebacterium | 5.79 |
4 | Enterococcus | 11.16 | Corynebacterium | 9.49 | Sphingobacteriaceae | 7.20 | Jonesiaceae | 4.41 | Yaniella | 4.99 |
5 | Lactococcus | 5.06 | Bacillus | 8.05 | Flavobacteriaceae | 6.68 | Bacillus | 3.45 | Aerococcaceae | 2.55 |
6 | Vagococcus | 3.63 | Virgibacillus | 6.22 | Promicromonosporaceae | 4.73 | Corynebacterium | 3.34 | Virgibacillus | 2.15 |
7 | Lactobacillus | 2.54 | Trichococcus | 4.54 | Marinimicrobium | 3.42 | Porphyromonadaceae | 3.32 | Bacillus | 1.93 |
8 | Proteus | 1.47 | Aerococcaceae | 4.51 | KSA1 | 2.83 | Alcaligenaceae | 3.04 | Lactobacillus | 0.94 |
9 | Pseudomonas | 1.18 | Natronobacillus | 3.39 | Clostridia | 2.83 | Georgenia | 2.49 | Salinicoccus | 0.88 |
10 | Enterococcaceae | 1.06 | Erysipelotrichaceae | 2.92 | Bacillales | 2.39 | Bacillaceae | 2.17 | Lentibacillus | 0.65 |
Total | 95.66 | 85.05 | 63.36 | 54.99 | 92.88 |
Group | EHOW | BSFR | Cow | Horse | Poultry | SEM | p-value | |
---|---|---|---|---|---|---|---|---|
A | Germination rate (%) | 72.22 | 70.00 | 67.78 | 72.22 | 70.00 | 3.01 | 0.99 |
Fresh weight (mg/strain) | 141.36 | 172.10 | 157.49 | 171.49 | 129.60 | 7.41 | 0.29 | |
Dry weight (mg/strain) | 9.35 | 11.45 | 10.96 | 8.67 | 8.71 | 0.40 | 0.04 | |
B | Germination rate (%) | 42.22 | 42.22 | 51.11 | 32.22 | 44.44 | 2.59 | 0.25 |
Fresh weight (mg/strain) | 68.71a | 149.98bc | 124.41bc | 156.41c | 99.48ab | 9.05 | <0.01 | |
Dry weight (mg/strain) | 5.09a | 11.45b | 9.16 | 10.30 | 7.97 | 0.65 | <0.01 |
Group | Control | BSFR1 | BSFR2 | BSFR3 | Cow | Horse | Poultry | SEM | p-value |
---|---|---|---|---|---|---|---|---|---|
Germination rate (%) | 85.00 | 53.75 a | 73.75 | 75.00 | 78.75 | 86.25 b | 57.50 ac | 2.57 | <0.01 |
Total leaf number | 30.40 a | 17.50 ab | 49.20 c | 47.60 c | 41.80 cd | 35.60 ad | 10.20 b | 2.50 | <0.01 |
Fresh weight (g/plant) | 1.05 a | 0.60 ac | 4.53 b | 3.51 b | 2.77 b | 1.54 ac | 0.39 c | 0.27 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, K.; Kawasaki, T.; Hirayasu, H.; Matsumoto, Y.; Fujitani, Y. Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens). Sustainability 2020, 12, 4920. https://doi.org/10.3390/su12124920
Kawasaki K, Kawasaki T, Hirayasu H, Matsumoto Y, Fujitani Y. Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens). Sustainability. 2020; 12(12):4920. https://doi.org/10.3390/su12124920
Chicago/Turabian StyleKawasaki, Kiyonori, Toshiya Kawasaki, Hirofumi Hirayasu, Yoshiki Matsumoto, and Yasuhiro Fujitani. 2020. "Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens)" Sustainability 12, no. 12: 4920. https://doi.org/10.3390/su12124920
APA StyleKawasaki, K., Kawasaki, T., Hirayasu, H., Matsumoto, Y., & Fujitani, Y. (2020). Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens). Sustainability, 12(12), 4920. https://doi.org/10.3390/su12124920