Research Progress on Soil Seed Bank: A Bibliometrics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Records Collection
2.2. Analysis Tools
2.3. Parameters in Citespace
2.4. Network Interpretation Method
3. Results and Discussion
3.1. Annual Distribution of Publications
- Beginning period (1918–1977): Within this time range, publications per year fluctuated in very low numbers. The average annual number of publications was 0.42, showing that little attention was paid to SSB in this period.
- Slow growth period (1978–1990): The average annual number of publications in this period rose to 11.08. This is the period when the term “seed bank” was formed.
- Rapid growth period (1991–2006): With the publication of the first book on SSB (Ecology of Soil Seed Banks) [8], the foundational theory study of SSB gradually matured. During this period, the number of publications grew rapidly. A total of 2542 articles were published within 16 years, with an average of 158.88 articles per year.
- Stable growth period (2007–2019): The growth rate slowed down and the publications reached a peak with 324 publications in 2018. The ratio of SSB publications to all publications has declined since 2006 (Figure 1). Although the number of publications still increased, it did not keep pace with the development of other disciplines. This may be due to the SSB research not enjoying the benefits or without breakthroughs of new methods and technologies, such as molecular biology techniques and other rapid, satisfied and advanced SSB-species-identification methods.
3.2. Distribution of Study Subjects
3.3. Country/Region Collaboration Status
3.4. Status of Institution Collaboration
3.5. Status of Author Collaboration
3.6. Reference Co-Citation
3.7. Emerging Research Trends
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gioria, M.; Pyšek, P.; Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 2012, 84, 327–350. [Google Scholar]
- Shang, Z.; Xu, P.; Ren, G.; Long, R. Review of soil seed bank studies-soil seed bank function in natural ecosystem. Acta Prataculturae Sin. 2009, 18, 175–183. [Google Scholar]
- Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859. [Google Scholar]
- Brenchley, W.E. Buried weed seeds. J. Agr. Sci. Camb. 1918, 9, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Vandervalk, A.G.; Davis, C.B. The seed banks of prairie glacial marshes. Can. J. Bot. 1976, 54, 1832–1838. [Google Scholar]
- Moore, P.D. Soil seed banks. Nature 1980, 284, 123–124. [Google Scholar] [CrossRef]
- Leck, M.A.; Parker, V.T.; Simpson, R.L. Ecology of Soil Seed Banks; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- Wang, Y.; Jiang, D.; Toshio, O.; Zhou, Q. Recent advances in soil seed bank research. Contemp. Probl. Ecol. 2013, 6, 520–524. [Google Scholar] [CrossRef]
- Csontos, P. Seed banks: Ecological definitions and sampling considerations. Community Ecol. 2007, 8, 75–85. [Google Scholar] [CrossRef]
- Hopfensperger, K.N. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 2007, 116, 1438–1448. [Google Scholar] [CrossRef]
- Bossuyt, B.; Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 2008, 19, 875–884. [Google Scholar] [CrossRef]
- Honnay, O.; Bossuyt, B.; Jacquemyn, H.; Shimono, A.; Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population? Oikos 2008, 117, 1–5. [Google Scholar] [CrossRef]
- Kiss, R.; Deák, B.; Török, P.; Tóthmérész, B.; Valkó, O. Grassland seed bank and community resilience in a changing climate. Restor. Ecol. 2018, 26, S141–S150. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X. Trends of DDT research during the period of 1991 to 2005. Scientometrics 2008, 75, 111–122. [Google Scholar]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, J.; Zhang, J.; Xiang, H.; Wei, H. A Bibliometric Analysis of Research on Acid Rain. Sustainability 2019, 11, 3077. [Google Scholar] [CrossRef] [Green Version]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; van Groenendael, J.M.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Newman, M.E. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [Google Scholar] [CrossRef]
- Templeton, A.R.; Levin, D.A. Evolutionary Consequences of Seed Pools. Am. Nat. 1979, 114, 232–249. [Google Scholar] [CrossRef]
- Brown, J.S.; Venable, D.L. Evolutionary Ecology of Seed-Bank Annuals in Temporally Varying Environments. Am. Nat. 1986, 127, 31–47. [Google Scholar] [CrossRef]
- McGraw, B.J. Seed-bank properties of an Appalachian sphagnum bog and a model of the depth distribution of viable seeds. Can. J. Bot. 1987, 65, 2028–2035. [Google Scholar] [CrossRef]
- Schulz, B.; Durka, W.; Danihelka, J.; Eckstein, R.L. Eckstein Differential role of a persistent seed bank for genetic variation in early vs. late successional stages. PLoS ONE 2018, 13, e209840. [Google Scholar] [CrossRef]
- Chambers, J.C.; MacMahon, J.A. A Day in the Life of a Seed: Movements and Fates of Seeds and Their Implications for Natural and Managed Systems. Annu. Rev. Ecol. Syst. 1994, 25, 263–292. [Google Scholar] [CrossRef]
- Bakker, J.P. Nature Management by Grazing and Cutting; Springer: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Dalling, J.W.; Davis, A.S.; Schutte, B.J.; Elizabeth Arnold, A. Seed survival in soil: Interacting effects of predation, dormancy and the soil microbial community. J. Ecol. 2011, 99, 89–95. [Google Scholar] [CrossRef]
- Paulsen, T.R.; Colville, L.; Kranner, I.; Daws, M.I.; Högstedt, G.; Vandvik, V.; Thompson, K. Physical dormancy in seeds: A game of hide and seek? New Phytol. 2013, 198, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Long, R.L.; Panetta, F.D.; Steadman, K.J.; Probert, R.; Bekker, R.M.; Brooks, S.; Adkins, S.W. Seed Persistence in the Field May Be Predicted by Laboratory-Controlled Aging. Weed Sci. 2008, 56, 523–528. [Google Scholar] [CrossRef]
- Thompson, K.; Ceriani, R.M.; Bakker, J.P.; Bekker, R.M. Are seed dormancy and persistence in soil related? Seed Sci. Res. 2003, 13, 97–100. [Google Scholar] [CrossRef]
- Long, R.L.; Gorecki, M.J.; Renton, M.; Scott, J.K.; Colville, L.; Goggin, D.E.; Commander, L.E.; Westcott, D.A.; Cherry, H.; Finch-Savage, W.E. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. 2015, 90, 31–59. [Google Scholar] [CrossRef]
- Skálová, H.; Moravcová, L.; Čuda, J.; Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. Neobiota 2019, 50, 75–95. [Google Scholar] [CrossRef]
- Phillips, M.L.; Murray, B.R. Invasiveness in exotic plant species is linked to high seed survival in the soil. Evol. Ecol. Res. 2012, 14, 83–94. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Thompson, K.; Band, S.R.; Hodgson, J.G. Seed Size and Shape Predict Persistence in Soil. Funct. Ecol. 1993, 7, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Bekker, R.M.; Bakker, J.P.; Grandin, U.; Kalamees, R.; Milberg, P.; Poschlod, P.; Thompson, K.; Willems, J.H. Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct. Ecol. 1998, 12, 834–842. [Google Scholar] [CrossRef]
- Goodson, J.M.; Gurnell, A.M.; Angold, P.G.; Morrissey, I.P. Riparian seed banks: Structure, process and implications for riparian management. Prog. Phys. Geogr. Earth Environ. 2001, 25, 301–325. [Google Scholar] [CrossRef]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Thompson, K.; Bakker, J.P.; Bekker, R.M.; Hodgson, J.G. Ecological Correlates of Seed Persistence in Soil in the North-West European Flora. J. Ecol. 1998, 86, 163–169. [Google Scholar] [CrossRef]
- Ter Heerdt, G.N.J.; Verweij, G.L.; Bekker, R.M.; Bakker, J.P. An Improved Method for Seed-Bank Analysis: Seedling Emergence after Removing the Soil by Sieving. Funct. Ecol. 1996, 10, 144–151. [Google Scholar] [CrossRef]
- Bakker, J.P.; Berendse, F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol. Evol. 1999, 14, 63–68. [Google Scholar] [CrossRef]
- Bekker, R.M.; Verweij, G.; Smith, R.; Reiné, R.; Bakker, J.; Schneider, S. Soil Seed Banks in European Grasslands: Does Land Use Affect Regeneration Perspectives? J. Appl. Ecol. 1997, 34, 1293–1310. [Google Scholar] [CrossRef]
- Milberg, P. Soil Seed Bank after Eighteen Years of Succession from Grassland to Forest. Oikos 1995, 72, 3–13. [Google Scholar] [CrossRef]
- Klimkowska, A.; Van Diggelen, R.; Grootjans, A.P.; Kotowski, W. Prospects for fen meadow restoration on severely degraded fens. Perspect. Plant. Ecol. Evol. Syst. 2010, 12, 245–255. [Google Scholar] [CrossRef]
- Barendregt, A.; Wassen, M.J.; Schot, P.P. Hydrological systems beyond a nature reserve, the major problem in wetland conservation of Naardermeer. Biol. Conserv. 1995, 72, 393–405. [Google Scholar] [CrossRef]
- Diggelen, R.V.; Sijtsma, F.J.; Strijker, D.; van den Burg, J. Relating land-use intensity and biodiversity at the regional scale. Basic Appl. Ecol. 2005, 6, 145–159. [Google Scholar] [CrossRef]
- Bossuyt, B.; Heyn, M.; Hermy, M. Seed Bank and Vegetation Composition of Forest Stands of Varying Age in Central Belgium: Consequences for Regeneration of Ancient Forest Vegetation. Plant. Ecol. 2002, 162, 33–48. [Google Scholar] [CrossRef]
- Thompson, K. The Occurrence of Buried Viable Seeds in Relation to Environmental Gradients. J. Biogeogr. 1978, 5, 425–430. [Google Scholar] [CrossRef]
- Ortega, M.; Levassor, C.; Peco, B. Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. J. Biogeogr. 1997, 24, 177–195. [Google Scholar] [CrossRef]
- Shang, Z.; Rren, G.; Long, R. Review of soil seed bank studies: Size, patern and impacting factors. Acta Prataculturae Sin. 2009, 18, 144–154. [Google Scholar]
- Jaunatre, R.; Buisson, E.; Dutoit, T. Can ecological engineering restore Mediterranean rangeland after intensive cultivation? A large-scale experiment in southern France. Ecol. Eng. 2014, 64, 202–212. [Google Scholar] [CrossRef]
- Colbach, N.; Dürr, C.; Roger-Estrade, J.; Chauvel, B.; Caneill, J. AlomySys: Modelling black-grass (Alopecurus myosuroides Huds.) germination and emergence, in interaction with seed characteristics, tillage and soil climate: I. Construction. Eur. J. Agron. 2006, 24, 95–112. [Google Scholar] [CrossRef]
- Baskin, C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Andersson, L.; Milberg, P. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Bot. 1997, 75, 1998–2004. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; Team, R.C.: Vienna, Austria, 2016. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.; Holmes, P.M.; Pauchard, A.O.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar]
- Gibson, M.R.; Richardson, D.M.; Marchante, E.; Marchante, H.; Rodger, J.G.; Stone, G.N.; Byrne, M.; Fuentes-Ramírez, A.; George, N.; Harris, C.; et al. Reproductive biology of Australian acacias: Important mediator of invasiveness? Divers. Distrib. 2011, 17, 911–933. [Google Scholar] [CrossRef]
- Vandvik, V.; Klanderud, K.; Meineri, E.; Måren, I.E.; Töpper, J. Seed banks are biodiversity reservoirs: Species–area relationships above versus below ground. Oikos 2016, 125, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Stroh, P.A.; Hughes, F.M.R.; Sparks, T.H.; Mountford, J.O. The Influence of Time on the Soil Seed Bank and Vegetation across a Landscape-Scale Wetland Restoration Project. Restor. Ecol. 2012, 20, 103–112. [Google Scholar] [CrossRef]
- Saatkamp, A.; Cochrane, A.; Commander, L.; Guja, L.K.; Jimenez-Alfaro, B.; Larson, J.; Nicotra, A.; Poschlod, P.; Silveira, F.; Cross, A.T.; et al. A research agenda for seed-trait functional ecology. New Phytol. 2019, 221, 1764–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakeman, R.J.; Small, J.L.; Torvell, L. Edaphic factors influence the longevity of seeds in the soil. Plant. Ecol. 2012, 213, 57–65. [Google Scholar] [CrossRef]
- Willis, C.G.; Baskin, C.C.; Baskin, J.M.; Auld, J.R.; Venable, D.L.; Cavender-Bares, J.; Donohue, K.; Rafael, R.D.C.; NESCent, G.W.G.; The, N.G.W.G. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 2014, 203, 300–309. [Google Scholar] [CrossRef]
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Daibes, L.F.; Zupo, T.; Silveira, F.A.O.; Fidelis, A. A field perspective on effects of fire and temperature fluctuation on Cerrado legume seeds. Seed Sci. Res. 2017, 27, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Ooi, M.K.J. Seed bank persistence and climate change. Seed Sci. Res. 2012, 22, S53–S60. [Google Scholar] [CrossRef] [Green Version]
- Alstad, A.O.; Damschen, E.I.; Ladwig, L.M. Fire as a Site Preparation Tool in Grassland Restoration: Seed Size Effects on Recruitment Success. Ecol. Restor. 2018, 36, 219–225. [Google Scholar] [CrossRef]
- Jernigan, A.B.; Caldwell, B.A.; Cordeau, S.; DiTommaso, A.; Drinkwater, L.E.; Mohler, C.L.; Ryan, M.R. Weed Abundance and Community Composition following a Long-Term Organic Vegetable Cropping Systems Experiment. Weed Sci. 2017, 65, 639–649. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, T.; Das, S.; Meena, S.K. Weed Seed Bank: Impacts and Management for Future Crop. Production; Springer Singapore: Singapore, 2019. [Google Scholar]
Cluster ID | Mean Year | Silhouette | Size | Label |
---|---|---|---|---|
#0 | 1988 | 0.618 | 242 | ecological genetic-variation |
#1 | 2011 | 0.669 | 227 | physical dormancy |
#2 | 1996 | 0.662 | 179 | seed size |
#3 | 2001 | 0.72 | 136 | fen meadow restoration |
#4 | 2008 | 0.752 | 130 | seasonal dynamics |
Title | Year | Strength | Range (2010–2019) |
---|---|---|---|
R: A Language and Environment for Statistical Computing [54] | 2016 | 15.94 | ▂▂▂▂▂▂▂▃▃▃ |
Fitting Linear Mixed-Effects Models using lme4 [55] | 2015 | 9.21 | ▂▂▂▂▂▂▂▃▃▃ |
Impacts of invasive Australian acacias: Implications for management and restoration [58] | 2011 | 6.25 | ▂▂▂▂▂▂▂▃▃▃ |
The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants [64] | 2014 | 5.88 | ▂▂▂▂▂▂▂▃▃▃ |
Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics [2] | 2012 | 5.84 | ▂▂▂▂▂▂▂▃▃▃ |
A general and simple method for obtaining R2 from generalized linear mixed-effects models [56] | 2013 | 5.64 | ▂▂▂▂▂▂▂▃▃▃ |
Seed banks are biodiversity reservoirs: Species–area relationships above versus below ground [60] | 2016 | 5.17 | ▂▂▂▂▂▂▂▃▃▃ |
The Influence of Time on the Soil Seed Bank and Vegetation across a Landscape-Scale Wetland Restoration Project [61] | 2012 | 5.14 | ▂▂▂▂▂▂▂▃▃▃ |
Fire in Mediterranean Ecosystems: Ecology, Evolution and Management [65] | 2012 | 4.70 | ▂▂▂▂▂▂▂▃▃▃ |
Edaphic factors influence the longevity of seeds in the soil [63] | 2012 | 4.04 | ▂▂▂▂▂▂▂▃▃▃ |
Reproductive biology of Australian acacias: Important mediator of invasiveness? [59] | 2011 | 3.30 | ▂▂▂▂▂▂▂▃▃▃ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Zhang, J.; Wei, H. Research Progress on Soil Seed Bank: A Bibliometrics Analysis. Sustainability 2020, 12, 4888. https://doi.org/10.3390/su12124888
Shi Z, Zhang J, Wei H. Research Progress on Soil Seed Bank: A Bibliometrics Analysis. Sustainability. 2020; 12(12):4888. https://doi.org/10.3390/su12124888
Chicago/Turabian StyleShi, Zhaoji, Jiaen Zhang, and Hui Wei. 2020. "Research Progress on Soil Seed Bank: A Bibliometrics Analysis" Sustainability 12, no. 12: 4888. https://doi.org/10.3390/su12124888
APA StyleShi, Z., Zhang, J., & Wei, H. (2020). Research Progress on Soil Seed Bank: A Bibliometrics Analysis. Sustainability, 12(12), 4888. https://doi.org/10.3390/su12124888