A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipments
2.2. Materials
2.3. Procedure
- Treads were configured in the form of a butterfly using the metal mold and minor hand tools.
- Provisional ties were placed if necessary.
- Rows are formed with the butterflies folded, forming the interlocking system that is shown.
- The empty spaces were filled with compacted sand.
- The rest of the chamber was filled with compacted sand (Figure 9).
2.4. Theoretical Pullout Test
3. Results
- Tire arrangements 1 × 1, 1 × 3 and 1 × 6, loose density.
- 1 × 1 tire arrangements, standard and modified compact density.
- 1 × 3 tire arrangements, modified compact density.
4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sienkiewicz, M.; Kucinska-Lipka, J.; Janik, H.; Balas, A. Progress in used tyres management in the European Union: A review. Waste Manag. 2012, 32, 1742–1751. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Ghaneian, M.T.; Mahvi, A.H.; Conti, G.O.; Faramarzian, M.; Dehghani, M.; Ferrante, M. A new recycling technique for the waste tires reuse. Environ. Res. 2017, 158, 462–469. [Google Scholar] [CrossRef]
- Machin, E.B.; Pedroso, D.T.; De Carvalho, J.A. Energetic valorization of waste tires. Renew. Sustain. Energy Rev. 2017, 68, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Song, P.; Zhao, X.; Peng, Z.; Wang, S. Liquefaction of ground tire rubber at low temperature. Waste Manag. 2018, 71, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Burkhanbekov, K.; Aubakirov, Y.; Tashmukhambetova, Z.; Abildin, T. Thermal processing of waste tires with heavy oil residue in the presence of Tayzhuzgen zeolite. J. Mater. Cycles Waste Manag. 2019, 21, 633–641. [Google Scholar] [CrossRef]
- Luo, S.; Feng, Y. The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag. Energy Convers. Manag. 2017, 136, 27–35. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Krzyżyńska, R.; Jouhara, H.; Spencer, N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 2017, 134, 1121–1131. [Google Scholar] [CrossRef]
- Torretta, V.; Rada, E.C.; Ragazzi, M.; Trulli, E.; Istrate, I.A.; Cioca, L.I. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag. 2015, 45, 152–160. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Sayão, A.; Gerscovich, D.; Medeiros, L.; Sieira, A. Scrap Tire-An Attractive Material for Gravity Retaining Walls and Soil Reinforcement. J. Solid Waste Technol. Manag. 2009, 35, 135–155. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible, Ministerio de Ambiente y Desarrollo Sostenible 2017. Available online: http://www.minambiente.gov.co (accessed on 24 October 2019).
- Park, J.; Díaz-Posada, N.; Mejía-Dugand, S. Challenges in implementing the extended producer responsibility in an emerging economy: The end-of-life tire management in Colombia. Clean. Prod. 2018, 189, 754–762. [Google Scholar] [CrossRef]
- Uriarte-Miranda, M.-L.; Caballero-Morales, S.-O.; Martinez-Flores, J.-L.; Cano-Olivos, P.; Akulova, A.-A. Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model. Sustainability 2018, 10, 3398. [Google Scholar] [CrossRef] [Green Version]
- Ortíz-Rodríguez, O.O.; Ocampo-Duque, W.; Duque-Salazar, L.I. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia. Energies 2017, 10, 2117. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, J.C.; Suárez, A.F.; Hidalgo, C. Valoración de Residuos de Neumáticos Como Sustituto o Complemento de Agregado Grueso en Materiales Para Base Granular o Relleno; University of Medelllín: Antioquia, Colombia, 2004. [Google Scholar]
- Yoon, S.; Prezzi, M.; Zia Siddiki, N.; Kim, B. Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Manag. 2005, 26, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, A.; Khan, R.A. Design of unsurfaced roads constructed with large-size shredded rubber tires: A case study. Resour. Conserv. Recycl. 2005, 44, 318–332. [Google Scholar] [CrossRef]
- Ghazavi, M.; Sakhi, M. Influence of optimized tire shreds on shear strength parameters of sand. Int. J. Geotech. 2005, 5, 58–65. [Google Scholar] [CrossRef]
- Humphrey, D.; Sandford, T.; Cribbs, M.; Manison, W. Shear strength and compressibility of tire chips for use as retaining wall backfill. Transp. Res. Rec. 1993, 1422, 29–35. [Google Scholar]
- Foose, G.; Benson, C.; Bosscher, P. Sand reinforced with shredded waste. J. Geotech. Eng. 1996, 122, 760–767. [Google Scholar] [CrossRef]
- Wu, W.; Benda, C.; Cauley, R. Triaxial determination of shear strength of tire chips. J. Geotech. Geoenviron. Eng. 1997, 123, 479–482. [Google Scholar] [CrossRef]
- Tatlisoz, N.; Edil, T.; Benson, C. Interaction between reinforcing geosynthetics and soil–tire chip mixtures. J. Geotech. Geoenviron. Eng. 1998, 124, 1109–1119. [Google Scholar] [CrossRef]
- Edinçliler, A. Using waste tire–soil mixtures for embankment construction. international workshop on scrap tire derived geomaterials ‘‘opportunities and challenges”. Kanto Branch Jpn. Geotech. Soc. 2007, 319–328, 319–328. [Google Scholar]
- Yoon, Y.W.; Cheon, S.H.; Kang, D.S. Bearing capacity and settlement of tyre-reinforced sands. Geotext. Geomembr. 2004, 22, 439–453. [Google Scholar] [CrossRef]
- Yoon, Y.W.; Heo, S.B.; Kim, K.S. Geotechnical performance of waste tires for soil reinforcement from chamber tests. Geotext. Geomembr. 2008, 26, 100–107. [Google Scholar] [CrossRef]
- Huat, B.B.; Aziz, A.A.; Chuan, L.W. Application of scrap tires as earth reinforcement for repair of tropical residual soil slope. Electron. J. Geotech. Eng. 2008, 13, 1–9. [Google Scholar]
- Edinçliler, A.; Baykal, G.; Saygılı, A. Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Manag. 2010, 30, 1073–1080. [Google Scholar] [CrossRef]
- Kim, K.S.; Yoon, Y.W.; Yoon, G.L. Pullout behavior of cell-type tyres in reinforced soil structures. KSCE J. Civ. Eng. 2011, 15, 1209–1217. [Google Scholar] [CrossRef]
- Li, L.; Xiao, H.; Ferreira, P.; Cui, X. Study of a small scale tyre-reinforced embankment. Geotext. Geomembr. 2016, 44, 201–208. [Google Scholar] [CrossRef]
- Li, L.H.; Chen, Y.J.; Ferreira, P.M.; Liu, Y.; Xiao, H.L. Experimental investigations on the pull-out behavior of tire strips reinforced sands. Materials 2017, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, J. Evaluación de un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso Para Carreteras Terciarias; University of Medellín: Medellín, Colombia, 2016. [Google Scholar]
- Loaiza, T. Evaluación del Proceso Constructivo de un Muro de Contención Mediante un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso; University of Medellín: Medellín, Colombia, 2017. [Google Scholar]
- Jimenez, M. Evaluación Técnica, Ambiental y Económica en la Construcción de Muros de Contención, Innovando el Uso de Reciclaje de Neumáticos; University of Medellín: Medellín, Colombia, 2018. [Google Scholar]
- Marín, F. Evaluación experimental de la resistencia al arrancamiento de un sistema de refuerzo de suelo Utilizando Llantas en Desuso; University of Medellín: Medellín, Colombia, 2018. [Google Scholar]
- Tajabadipour, M.; Dehghani, M.; Kalantari, B.; Lajevardi, S.H. Laboratory pullout investigation for evaluate feasibility use of scrap tire as reinforcement element in mechanically stabilized earth walls. J. Clean. Prod. 2019, 237, 117726. [Google Scholar] [CrossRef]
- Edil, T.B. A review of environmental impacts and environmental applications of shredded scrap tires. In Proceedings of the International Workshop on Scrap Tire derived Geomaterials, Yokosuka, Japan, 23–24 March 2007; Hazarika, H., Yasuhara, K., Eds.; Taylor and Francis: London, UK, 2008; pp. 3–18. [Google Scholar]
- Hennebert, P.; Lambert, S.; Fouillen, F.; Charrasse, B. Assessing the Environmental Impact of Shredded Tires as Embankment Fill Material. Can. Geotech. J. 2014, 51, 469–478. [Google Scholar] [CrossRef]
- Tatlisoz, N.; Edil, T.B.; Benson, C.H.; Park, J.K.; Kim, J.Y. Review of environmental suitability of scrap tires. In Environmental Geotechnics Report No: 96–97; Department of Civil and Environmental Engineering, University of Wisconsin: Madison, WI, USA, 1996. [Google Scholar]
- O’Shaughnessy, V.; Garga, K.V. Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design. Can. Geotech. J. 2000, 37, 97–116. [Google Scholar] [CrossRef]
Data | Thickness (cm) | Height (cm) | Diameter (cm) | Mass (kg) |
---|---|---|---|---|
Mean | 0.78 | 17.27 | 52.99 | 3.78 |
Median | 0.76 | 17.28 | 53.10 | 3.64 |
Standard deviation | 0.14 | 1.74 | 3.71 | 0.77 |
Parameter | Normative | Value |
---|---|---|
Classification USCS | ASTM C 136–01 | SP |
Uniformity Coefficient, Cu | ASTM C 136–01 | 4.54 |
Curvature Coefficient, Cc | ASTM C 136–01 | 0.96 |
Maximum Dry Density Standard, γdmax (kN/m3) | ASTM D-698 | 19.71 |
Moisture Content Standard, wopt (%) | ASTM D-2216 | 10.20 |
Maximum Dry Density Standard, γdmax (kN/m3) | ASTM D-1557 | 20.61 |
Moisture Content Modified, wopt (%) | ASTM D-2216 | 9.40 |
Friction Angle Φ (Degree) | ASTM D3080-90 | 43.0 |
Cohesion, C (kPa) | ASTM D3080-90 | 8.9 |
Campaign 1 | ||||
Test | Arrangement | Tire Quantity | Density | Normal Load (kN) |
1 | 1 × 1 Loose | 1 | Loose | 14 |
2 | 1 × 3 Loose | 5 | Loose | |
3 | 1 × 3 Compact | 5 | Dense | |
4 | 1 × 1 Loose | 1 | Loose | 25 |
5 | 1 × 3 Loose | 5 | Loose | |
6 | 1 × 3 Dense | 5 | Dense | |
7 | 1 × 1 Loose | 1 | Loose | 40 |
8 | 1 × 3 Loose | 5 | Loose | |
9 | 1 × 3 Compact | 5 | Dense | |
Campaign 2 | ||||
1 | 1 × 1 Loose | 1 | Loose | 14 |
2 | 1 × 6 Loose | 6 | Loose | |
3 | 1 × 3 Loose | 5 | Loose | |
4 | 1 × 1 Compacted | 1 | Standard Proctor Compacted | |
5 | 1 × 1 Compacted | 1 | Modified Proctor Compacted | |
6 | 1 × 3 Compacted | 5 | Modified Proctor Compacted | |
7 | 1 × 1 Loose | 1 | Loose | 25 |
8 | 1 × 6 Loose | 6 | Loose | |
9 | 1 × 3 Loose | 5 | Loose | |
10 | 1 × 1 Compacted | 1 | Standard Proctor Compacted | |
11 | 1 × 1 Compacted | 1 | Modified Proctor Compacted | |
12 | 1 × 3 Compacted | 5 | Modified Proctor Compacted | |
13 | 1 × 1 Loose | 1 | Loose | 40 |
14 | 1 × 6 Loose | 6 | Loose | |
15 | 1 × 3 Loose | 5 | Loose | |
16 | 1 × 1 Compacted | 1 | Standard Proctor Compacted | |
17 | 1 × 1 Compacted | 1 | Modified Proctor Compacted | |
18 | 1 × 3 Compacted | 5 | Modified Proctor Compacted |
Normal Force (kN) | Arrangement | Maximum Pullout Load (kN) | Maximum Displacement (mm) |
---|---|---|---|
14 | 1 × 1 Loose | 0.8 | 121 |
1 × 3 Loose | 3.1 | 174 | |
1 × 3 Dense | 7.4 | 103 | |
25 | 1 × 1 Loose | 1.2 | 149 |
1 × 3 Loose | 3.4 | 162 | |
1 × 3 Dense | 10.3 | 182 | |
40 | 1 × 1 Loose | 2.9 | 158 |
1 × 3 Loose | 4.1 | 176 | |
1 × 3 Dense | 14.4 | 111 |
Normal Force (kN) | Arrangement | Maximum Pullout Load (kN) | Maximum Displacement (mm) |
---|---|---|---|
14 | 1 × 1 Loose | 1.7 | 89 |
1 × 6 Loose | 3.6 | 150 | |
1 × 3 Loose | 5.6 | 152 | |
1 × 1 Standard Proctor Dense | 12.2 | 104 | |
1 × 1 Modified Proctor Dense | 12.9 | 85 | |
1 × 3 Modified Proctor Dense | 17.1 | 116 | |
25 | 1 × 1 Loose | 4.1 | 89 |
1 × 6 Loose | 3.3 | 102 | |
1 × 3 Loose | 5.6 | 125 | |
1 × 1 Standard Proctor Dense | 18.8 | 97 | |
1 × 1 Modified Proctor Dense | 20.9 | 106 | |
1 × 3 Modified Proctor Dense | 17.5 | 144 | |
40 | 1 × 1 Loose | 4.7 | 108 |
1 × 6 Loose | 3.9 | 149 | |
1 × 3 Loose | 6.5 | 154 | |
1 × 1 Standard Proctor Dense | 20.1 | 71 | |
1 × 1 Modified Proctor Dense | 29.1 | 109 | |
1 × 3 Modified Proctor Dense | 22.1 | 133 |
Arrangement | Friction Coefficient (Ø) | Intercept with the Y-Axis (kN) |
---|---|---|
1 × 1 Loose | 6.3 | 0.6 |
1 × 6 Loose | 0.9 | 3.2 |
1 × 3 Loose | 2.1 | 4.9 |
1 × 1 Standard Proctor Compacted | 16.1 | 9.4 |
1 × 1 Modified Proctor Compacted | 32.7 | 3.7 |
1 × 3 Modified Proctor Compacted | 11.1 | 13.5 |
Arrangement | Normal Force (kN) | Friction Force (kN) | Passive Force (kN) | Maximum Theoretical Pullout Force (kN) | Maximum Experimental Pullout Force (kN) |
---|---|---|---|---|---|
1 × 1 Loose | 14 | 0.9 | 3.4 | 4.4 | 1.7 |
1 × 1 Loose | 25 | 1.4 | 5.2 | 6.5 | 4.1 |
1 × 1 Loose | 40 | 1.9 | 7.6 | 9.4 | 4.7 |
1 × 6 Loose | 14 | 3.5 | |||
1 × 6 Loose | 25 | 3.3 | |||
1 × 6 Loose | 40 | 3.9 | |||
1 × 3 Loose | 14 | 0.9 | 3.4 | 8.8 | 5.6 |
1 × 3 Loose | 25 | 1.4 | 5.2 | 13.1 | 5.6 |
1 × 3 Loose | 40 | 1.9 | 7.6 | 18.9 | 6.5 |
1 × 1 Standard Proctor Compacted | 14 | 1.1 | 3.7 | 4.70 | 12.2 |
1 × 1 Standard Proctor Compacted | 25 | 1.4 | 5.4 | 6.8 | 18.8 |
1 × 1 Standard Proctor Compacted | 40 | 1.9 | 7.8 | 9.7 | 20.1 |
1 × 1 Modified Proctor Compacted | 14 | 1.1 | 3.7 | 4.8 | 12.9 |
1 × 1 Modified Proctor Compacted | 25 | 1.5 | 5.4 | 6.9 | 20.9 |
1 × 1 Modified Proctor Compacted | 40 | 1.9 | 7.8 | 9.8 | 29.0 |
1 × 3 Modified Proctor Compacted | 14 | 1.1 | 3.7 | 9.6 | 17.1 |
1 × 3 Modified Proctor Compacted | 25 | 1.5 | 5.5 | 13.8 | 17.5 |
1 × 3 Modified Proctor Compacted | 40 | 1.9 | 7.8 | 19.6 | 22.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, C.A.; Bustamante-Hernández, J.J. A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests. Sustainability 2020, 12, 4582. https://doi.org/10.3390/su12114582
Hidalgo CA, Bustamante-Hernández JJ. A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests. Sustainability. 2020; 12(11):4582. https://doi.org/10.3390/su12114582
Chicago/Turabian StyleHidalgo, César Augusto, and Juan José Bustamante-Hernández. 2020. "A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests" Sustainability 12, no. 11: 4582. https://doi.org/10.3390/su12114582
APA StyleHidalgo, C. A., & Bustamante-Hernández, J. J. (2020). A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests. Sustainability, 12(11), 4582. https://doi.org/10.3390/su12114582