The Method to Decrease Emissions from Ships in Port Areas
Abstract
:1. Introduction
- Are the emissions from ships in seaports influenced by ships masters’ and ports pilots’ qualification?
- What is the volume of emissions from ships that may be reduced during ships’ maneuvering operations in port area depending on responsible person’s qualification?
2. Literature Analysis
- -
- the problem of decreasing the emissions from ships is up-to-date and further solutions in this field should be developed;
- -
- there is a need to look for solutions to reduce the emissions from ships that will not require high volumes of investments;
- -
- human factor influence on poisonous substance emissions from ships has been analyzed so far to a small extent.
3. Materials and Methods
4. Results of Case Study Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Review of Maritime Transport 2019, UNCTAD. 2020. Available online: https://unctad.org/en/PublicationsLibrary/rmt2019_en.pdf (accessed on 25 May 2020).
- Buhaug, Ø.; Corbett, J.J.; Eyring, V.; Endresen, Ø. Second IMO GHG Study, Technical Report; International Maritime Organization (IMO): London, UK, 2009. [Google Scholar]
- Eyring, V.; Köhler, H.W.; Lauer, A.; Lemper, B. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J. Geophys. Res. 2005, 110, D17306. [Google Scholar] [CrossRef]
- IMO. Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating thereto (MARPOL Annex VI). 2008. Available online: http://www.imo.org/includes/blastDataOnly.asp/data_id%3D23760/176 (accessed on 25 May 2020).
- Adamowicz, K. Assessment of the average rate of changes in atmospheric CO emissions in OECD countries. Arch. Environ. Prot. 2018, 44, 97–102. [Google Scholar] [CrossRef]
- Brandt, J.; Silver, J.D.; Christensen, J.H.; Andersen, M.S.; Bønløkke, J.H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A.B.; Hansen, K.M.; et al. Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmos. Chem. Phys. 2013, 13, 7747–7764. [Google Scholar] [CrossRef] [Green Version]
- Colette, A.; Granier, C.Ø.; Hodnebrog, Ø.H.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D’Angiola, A.; D’Isidoro, M.; Gauss, M.; et al. Air quality trends in Europe over the past decade: A first multi-model assessment. Atmos. Chem. Phys. 2011, 11, 11657–11678. [Google Scholar] [CrossRef] [Green Version]
- Matthias, V.; Aulinger, A.; Backes, A.; Bieser, J.; Geyer, B.; Quante, M.; Zeretzke, M. The impact of shipping emissions on air pollution in the greater North Sea region–Part 2: Scenarios for 2030. Atmos. Chem. Phys. 2016, 16, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Waldhoff, S.T. Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos. Environ. 2000, 34, 363–374. [Google Scholar] [CrossRef]
- IMO. Marine Engine Regulations; IMO: London, UK, 2015. [Google Scholar]
- Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. WHO. 2006. Available online: http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf (accessed on 1 November 2017).
- Czermański, E.; Pawłowska, B.; Oniszczuk-Jastrząbek, A.; Cirella, G.T. Decarbonization of maritime transport: Analysis of external costs. Front. Energy Res. 2020, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Ma, F. A contingency view of the effects of sustainable shipping exploitation and exploration on business performance. Transp. Policy 2019, 77, 90–103. [Google Scholar] [CrossRef]
- Benamara, H.; Hoffmann, J.; Youssef, F. Maritime transport: The sustainability imperative. Sustain. Shipp. A Cross Discipl. View 2019, 1–31. [Google Scholar] [CrossRef]
- Karl, M.; Jonson, J.E.; Uppstu, A.; Aulinger, A.; Prank, M.; Sofiev, M.; Jalkanen, J.-P.; Johansson, L.; Quante, M.; Matthias, V. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys. 2019, 19, 7019–7053. [Google Scholar] [CrossRef] [Green Version]
- Cariou, P. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transp. Res. Part. D Transp. Environ. 2011, 16, 260–264. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Yang, H.-C. Integration of eco-centric views of sustainability in port planning. Sustainability 2020, 12, 2971. [Google Scholar] [CrossRef] [Green Version]
- Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A. The impact of shipping emissions on air pollution in the greater North Sea region–Part 1: Current emissions and concentrations. Atmos. Chem. Phys. 2016, 16, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, F.M.; Laxe, F.G.; Aguayo-Lorenzo, E. Assessment of the tools to monitor air pollution in the Spanish ports system. Air Qual. Atmos. Health 2019, 12, 651–659. [Google Scholar] [CrossRef]
- De Boer, W.P.; Slinger, J.H.; wa Kangeri, A.K.; Vreugdenhil, H.S.I.; Taneja, P.; Addo, K.A.; Vellinga, T. Identifying ecosystem-based alternatives for the design of a seaports marine infrastructure: The case of tema port expansion in Ghana. Sustainability 2019, 11, 6633. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, A.; Varriale, L. Management innovation for environmental sustainability in seaports: Managerial accounting instruments and training for competitive green ports beyond the regulations. Sustainability 2018, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- González-Cancelas, N.; Serrano, B.M.; Soler-Flores, F. Seaport sustainable: Use of artificial intelligence to evaluate liquid natural gas utilization in short sea shipping. Transp. J. 2019, 58, 197–221. [Google Scholar] [CrossRef]
- Langenus, M.; Dooms, M. Creating an industry-level business model for sustainability: The case of the European ports industry. J. Clean. Prod. 2018, 195, 949–962. [Google Scholar] [CrossRef]
- Lozano, R.; Fobbe, L.; Carpenter, A.; Sammalisto, K. Analysing sustainability changes in seaports: Experiences from the Gävle Port Authority. Sustain. Dev. 2019, 27, 409–418. [Google Scholar] [CrossRef]
- Pallis, A.A.; Vaggelas, G.K. Cruise Shipping and Green Ports: A Strategic Challenge. In Green Ports: Inland and Seaside Sustainable Transportation Strategies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–273. [Google Scholar] [CrossRef]
- Paulauskas, V. Ships Entering the Ports; N.I.M.S Publish House: Riga, Latvia, 2013; 240p, ISBN 9984-679-71-3. [Google Scholar]
- Williams, J. The circular regeneration of a seaport. Sustainability 2019, 11, 3424. [Google Scholar] [CrossRef] [Green Version]
- Ypsilantis, P.; Zuidwijk, R. Collaborative fleet deployment and routing for sustainable transport. Sustainability 2019, 11, 5666. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, P.; Montewka, J. Navigation safety assessment in an entrance channel, based on real experiments. In Proceedings of the 12th International Congress of the International Maritime Association of the Mediterranean (IMAM 2007), Varna, Bulgaria, 2–6 September 2007; pp. 1113–1117. [Google Scholar]
- Sharma, A.; Nazir, S.; Ernstsen, J. Situation awareness information requirements for maritime navigation: A goal directed task analysis. Saf. Sci. 2019, 120, 745–752. [Google Scholar] [CrossRef]
- Corrigan, S.; Kay, A.; Ryan, M.; Ward, M.E.; Brazil, B. Human factors and safety culture: Challenges and opportunities for the port environment. Saf. Sci. 2019, 119, 252–265. [Google Scholar] [CrossRef]
- Heinrich, L.; Koschinsky, A.; Markus, T.; Singh, P. Quantifying the fuel consumption, greenhouse gas emissions and air pollution of a potential commercial manganese nodule mining operation. Mar. Policy 2020, 114, 103678. [Google Scholar] [CrossRef]
- Simmons, E.; McLean, G. Understanding the paradigm shift in maritime education: The role of 4th Industrial Revolution technologies: An industry perspective. Worldw. Hosp. Tour. Themes 2020, 12, 90–97. [Google Scholar] [CrossRef]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. ESCAPE: A multicenter cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Bessagnet, B.; Colette, A.F.; Meleux, F.L.; Rouïl, L.; Ung, A.; Favez, O.; Cuvelier, C.; Thunis, P.; Tsyro, S.; Stern, R.; et al. The EURODELTA III exercise–Model evaluation with observations issued from the 2009 EMEP intensive period and standard measurements in Feb/Mar 2009. Tech. Rep. 2014, 1, 2014. [Google Scholar]
- Ignatavicius, G.; Toleikiene, M. Optimisation of the conservation of rare and vulnerable plant species in the perspective of climate change in Lithuanian (nature) reserves. Arch. Environ. Prot. 2017, 43, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, J.; Li, L.; Li, L.; Li, L.; Zhou, J.; Tsai, S.-B.; Chen, Q. An Empirical Study of the Impact of the Air Transportation Industry Energy Conservation and Emission Reduction Projects on the Local Economy in China. Int. J. Environ. Res. Public Health 2018, 15, 812. [Google Scholar] [CrossRef] [Green Version]
- Lindstad, H.; Verbeek, R.; Blok, M.; van Zyl, S.; Hübscher, A.; Kramer, H.; Purwanto, J.; Ivanova, O.; Boonman, H. GHG emission reduction potential of EU-related maritime transport and on its impacts, TNO innovation of life, CLIMA.B.3/ETU/2013/0015. Eur. Comm. CLIMA B 2015, 3, 1–95. [Google Scholar]
- Gnap, J.; Varjan, P.; Ďurana, P.; Kostrzewski, M. Research on relationship between freight transport and transport infrastructure in selected European countries. Transp. Probl. 2019, 14, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Jonson, J.E.; Gauss, M.; Jalkanen, J.P.; Nyíri, A.; Johansson, L. EMEP model calculations of the effects of ship emissions in the Baltic Sea and the North Sea. Clean Shipp. Curr. 2014, 2, 21943–21974. [Google Scholar]
- Semenov, I.N.; Filina-Dawidowicz, L. Topology-based Approach to the Modernization of Transport and Logistics Systems with Hybrid Architecture. Part 1. Proof-of-Concept study. Arch. Transp. 2017, 43, 105–124. [Google Scholar] [CrossRef]
- Soto, C.G. The potential impacts of global climate change on marine protected areas. Rev. Fish. Biol. Fish. 2002, 11, 181–195. [Google Scholar] [CrossRef]
- Garg, C.P.; Kashav, V. Evaluating value creating factors in greening the transportation of Global Maritime Supply Chains (GMSCs) of containerized freight. Transp. Res. Part. D Transp. Environ. 2019, 73, 162–186. [Google Scholar] [CrossRef]
- Bagoulla, C.; Guillotreau, P. Maritime transport in the French economy and its impact on air pollution: An input-output analysis. Mar. Policy 2020, 116, 103818. [Google Scholar] [CrossRef]
- Agrawal, H.; Welch, W.A.; Miller, J.W.; Cocker, D.R. Emission measurements from a crude oil tanker at sea. Environ. Sci. Technol. 2008, 42, 7098–7103. [Google Scholar] [CrossRef] [Green Version]
- Cullinane, K.; Bergqvist, R. Emission control areas and their impact on maritime transport. Transp. Res. Part. D Transp. Environ. 2014, 28, 1–5. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–A review. Transp. Res. Part. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Vejvar, M.; Lai, K.-H.; Lo, C.K.Y. A citation network analysis of sustainability development in liner shipping management: A review of the literature and policy implications. Marit. Policy Manag. 2020, 47, 1–26. [Google Scholar] [CrossRef]
- Venturini, G.; Karlsson, K.; Münster, M. Impact and effectiveness of transport policy measures for a renewable-based energy system. Energy Policy 2019, 133, 110900. [Google Scholar] [CrossRef]
- Wang, D.; Ding, R.; Gong, Y.; Wang, R.; Wang, J.; Huang, X. Feasibility of the Northern Sea Route for oil shipping from the economic and environmental perspective and its influence on China’s oil imports. Mar. Policy 2020, 118, 104006. [Google Scholar] [CrossRef]
- Novac, V.; Rusu, E. Air emissions from ships–Western black sea case study. Int. Multidiscip. Sci. Geoconference Surv. Geol. Min. Ecol. Manag. Sgem. 2019, 19, 813–819. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Bucas, M.; Laukinaite, A. Alternative fuels for marine applications: Biomethanol-biodiesel-diesel blends. Fuel 2019, 248, 161–167. [Google Scholar] [CrossRef]
- Kušter Marić, M.; Ožbolt, J.; Balabanić, G. Reinforced concrete bridge exposed to extreme maritime environmental conditions and mechanical damage: Measurements and numerical simulation. Eng. Struct. 2020, 205, 110078. [Google Scholar] [CrossRef]
- Hinostroza, M.A.; Xu, H.; Guedes Soares, C. Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment. Ocean. Eng. 2019, 183, 132–154. [Google Scholar] [CrossRef]
- Lion, S.; Vlaskos, I.; Taccani, R. A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Convers. Manag. 2020, 207, 112553. [Google Scholar] [CrossRef]
- Lang, X.; Zhang, C.; Jonasson, L.; Mao, W.; Eriksson, L.; Zhang, D. Comparison between full-scale measurements and theoretical fuel consumption model in a real arctic ship navigation. Proc. Int. Offshore Polar Eng. Conf. 2019, 1, 886–892. [Google Scholar]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. D Atmos. 2003, 108, ACH 14-1–ACH 14-22. [Google Scholar] [CrossRef]
- Le, L.T.; Lee, G.; Kim, H.; Woo, S.-H. Voyage-based statistical fuel consumption models of ocean-going container ships in Korea. Marit. Policy Manag. 2020, 47, 304–331. [Google Scholar] [CrossRef]
- Pinchasik, D.R.; Hovi, I.B.; Mjøsund, C.S.; Grønland, S.E.; Fridell, E.; Jerksjö, M. Crossing borders and expanding modal shift measures: Effects on mode choice and emissions from freight transport in the Nordics. Sustainability 2020, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Bieser, J.; Aulinger, A.; Matthias, V.; Quante, M.; Builtjes, P. SMOKE for Europe–adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci. Model. Dev. 2011, 4, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Lack, D.A.; Corbett, J.J. Black carbon from ships: A review of the effects of ship speed, fuel quality and exhaust gas scrubbing. Atmos. Chem. Phys. 2012, 12, 3985–4000. [Google Scholar] [CrossRef] [Green Version]
- Paulauskas, V.; Filina-Dawidowicz, L.; Paulauskas, D. Ships speed limitations for reliable maintenance of the quay walls of navigation channels in ports. Eksploat. I Niezawodn. Maint. Reliab. 2020, 22, 306–315. [Google Scholar] [CrossRef]
- Sorte, S.; Rodrigues, V.; Borrego, C.; Monteiro, A. Impact of harbour activities on local air quality: A review. Environ. Pollut. 2020, 257, 113542. [Google Scholar] [CrossRef] [PubMed]
- Pallotta, G.; Vespe, M.; Bryan, K. Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction. Entropy 2013, 15, 2218–2245. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, A. Safety evaluation of ship’s maneuvers carried out on the basis of integrated navigational system (INS) indications. J. Kobin 2008, 4, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, A.; Varriale, L.; Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Dachev, Y.; Lazarov, I. Impact of the marine environment on the health and efficiency of seafarers. Wseas Trans. Bus. Econ. 2019, 16, 282–287. [Google Scholar]
- Kartal, Ş.E.; Uğurlu, Ö.; Kaptan, M.; Arslanoğlu, Y.; Wang, J.; Loughney, S. An analysis and comparison of multinational officers of the watch in the global maritime labor market. Marit. Policy Manag. 2019, 46, 757–780. [Google Scholar] [CrossRef]
- Mou, J.M.; Chen, P.F.; He, Y.X.; Yip, T.L.; Li, W.H.; Tang, J.; Zhang, H.Z. Vessel traffic safety in busy waterways: A case study of accidents in western shenzhen port. Accid. Anal. Prev. 2019, 123, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Byun, D.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; United States Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1999.
- Denier van der Gon, H.; Hulskotte, J. Methodologies for Estimating Shipping Emissions in the Netherlands; BOP Reports 500099012, Netherlands Environmental Assessment Agency, (PBL), PO BOX 303, 3720 AH Bilthoven, The Netherlands; Publication of the Netherlands Research Program on Particulate Matter: Bilthoven, The Netherlands, 2010. [Google Scholar]
- Gunning, P.; Horgan, J.M.; Yancey, W. Geometric stratification of accounting data. Rev. Contad. Y Adm. 2004, 214. [Google Scholar]
- Sitter, R.R.; Wu, C. Efficient estimation of quadratic finite population functions in the presence of auxiliary information. J. Am. Stat. Assoc. 2002, 97, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Plikusas, A.; Pumputis, D. Estimation of the finite population covariance using calibration. Nonlinear Anal. Model. Control. 2010, 15, 325–340. [Google Scholar] [CrossRef]
- Tulasi, L.C.; Rao, A.R. Review on theory of constraints. Int. J. Adv. Eng. Technol. 2012, 3, 334–344. [Google Scholar]
- Chauhan, S.; Patil, C.; Sinha, M.; Halder, A. Fuzzy state noise-driven Kalman filter for sensor fusion. Proc. Inst. Mech. Eng. Part. G J. Aerosp. Eng. 2009, 223, 1091–1097. [Google Scholar] [CrossRef]
Principal Types | 2018 | 2019 | Percentage Change 2019/2018 |
---|---|---|---|
Oil tankers | 562,035 | 567,533 | 0.98 |
Bulk carriers | 818,921 | 842,438 | 2.87 |
General cargo ships | 73,951 | 74,000 | 0.07 |
Container ships | 253,275 | 265,668 | 4.89 |
Gas carriers | 64,407 | 69,078 | 7.25 |
Chemical tankers | 44,457 | 46,297 | 4.14 |
Offshore vessels | 78,269 | 80,453 | 2.79 |
Ferries and passenger ships | 6922 | 7097 | 2.53 |
Other/not available | 23,946 | 23,929 | -0.07 |
World total | 1,926,183 | 1,976,491 | 2.61 |
Operator | |||
---|---|---|---|
1 | 37.5 | 6460 | 910 |
2 | 38.2 | 6410 | 960 |
3 | 36.9 | 6520 | 1020 |
4 | 38.5 | 6420 | 980 |
5 | 37.8 | 6460 | 950 |
6 | 37.0 | 6610 | 1015 |
7 | 39.2 | 6380 | 925 |
8 | 38.1 | 6220 | 890 |
9 | 36.7 | 6610 | 1050 |
10 | 38.2 | 6510 | 990 |
Real Ship | 37.5 | 6220 | 880 |
Operator, No. | |||||
---|---|---|---|---|---|
1 | 2821/2002 | 0.91/0 | 32.3/22.6 | 6.5/4.5 | 3.23/0.32 |
2 | 2976/2112 | 0.96/0 | 32.1/22.4 | 6.4/4.5 | 3.21/0.32 |
3 | 3162/2244 | 1.02/0 | 32.6/22.8 | 6.5/4.6 | 3.26/0.33 |
4 | 3038/2156 | 0.98/0 | 32.1/22.5 | 6.4/4.5 | 3.21/0.32 |
5 | 2945/2090 | 0.95/0 | 32.3/22.6 | 6.5/4.5 | 3.23/0.32 |
6 | 3146/2233 | 1.02/0 | 33.1/23.1 | 6.6/4.6 | 3.31/0.33 |
7 | 2868/2035 | 0.93/0 | 31.9/22.3 | 6.4/4.5 | 3.19/0.32 |
8 | 2759/1958 | 0.89/0 | 31.1/21.8 | 6.2/4.4 | 3.11/0.31 |
9 | 3255/2310 | 1.05/0 | 33.05/23.1 | 6.6/4.6 | 3.31/0.33 |
10 | 3069/2178 | 0.99/0 | 32.6/22.8 | 6.5/4.6 | 3.26/0.33 |
Real LNG tanker | 2759/1958 | 0.89/0 | 32.1/22.5 | 6.4/4.5 | 3.21/0.32 |
Parameter | Mathematical Expectation | Parameter’s Band Received by Dispersion Method | Parameter’s Band Received by Maximal Distribution Method |
---|---|---|---|
Sailing time, min | 37.9 | 37.1–38.7 | 37.1–38.7 |
Engine power, kW | 6456 | 6346–6566 | 6329–6583 |
Fuel consumption, kg | 962 | 908–1016 | 910–1014 |
(diesel fuel), kg | 2991 | 2822–3160 | 2830–3152 |
(LNG fuel), kg | 2116 | 1996–2236 | 2002–2230 |
(diesel fuel), kg | 32.3 | 31.8–32.9 | 31.7–32.9 |
(LNG fuel), kg | 22.6 | 22.2–23.0 | 22.2–23.0 |
(diesel fuel), kg | 6.5 | 6.37–6.63 | 6.37–6.63 |
(LNG fuel), kg | 4.5 | 4.41–4.59 | 4.43–4.57 |
(diesel fuel), kg | 3.23 | 3.17–3.29 | 3.16–3.30 |
(LNG fuel), kg | 0.32 | 0.30–0.34 | 0.31–0.33 |
(diesel fuel), kg | 0.96 | 0.90–1.02 | 0.91–1.01 |
(LNG fuel), kg | 0 | 0 | 0 |
Ship’s Sailing and Emission Parameters | Parameter’s Band Received by Dispersion Method, % | Parameter’s Band Received by Maximal Distribution Method, % |
---|---|---|
Sailing time | 4.2 | 4.2 |
Engine power | 3.4 | 3.9 |
Fuel consumption | 11.2 | 10.8 |
(diesel fuel) | 11.3 | 10.8 |
(LNG fuel) | 11.3 | 10.8 |
(diesel fuel) | 3.4 | 3.7 |
(LNG fuel) | 3.5 | 3.5 |
(diesel fuel) | 4.0 | 4.0 |
(LNG fuel) | 4.0 | 3.1 |
(diesel fuel) | 3.7 | 4.3 |
(LNG fuel) | 6.5 | 6.2 |
(diesel fuel) | 12.5 | 10.4 |
(LNG fuel) | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulauskas, V.; Filina-Dawidowicz, L.; Paulauskas, D. The Method to Decrease Emissions from Ships in Port Areas. Sustainability 2020, 12, 4374. https://doi.org/10.3390/su12114374
Paulauskas V, Filina-Dawidowicz L, Paulauskas D. The Method to Decrease Emissions from Ships in Port Areas. Sustainability. 2020; 12(11):4374. https://doi.org/10.3390/su12114374
Chicago/Turabian StylePaulauskas, Vytautas, Ludmiła Filina-Dawidowicz, and Donatas Paulauskas. 2020. "The Method to Decrease Emissions from Ships in Port Areas" Sustainability 12, no. 11: 4374. https://doi.org/10.3390/su12114374