Learning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of SEGAE
2.1.1. Overall Description
2.1.2. Underlying Model
2.1.3. Pedagogical Activities
- “Sandbox”: Players explore the game’s strategic dimensions and related practices, with the easy goal of simply improving sustainability. This scenario helps players begin to understand impacts of practices and relations between animal and crop production.
- “Systems thinking”: Players must improve overall sustainability by changing practices related to either crop or animal production. Usually, the improvement in overall sustainability is lower in this scenario than in the “sandbox”. This scenario helps players understand more deeply the close interconnections between crop and animal production.
- “Indicator oriented”: Players must improve a specific indicator of the farm (e.g., animal welfare) by developing a step-by-step strategy with other players. This scenario allows players to exchange viewpoints and knowledge, so it can be particularly interesting for a group of students with different backgrounds.
- “Sustainability oriented”: Players must improve overall sustainability without decreasing the score of each pillar below a certain threshold. It can be played alone or by small groups of students. This scenario helps players more deeply understand potential trade-offs and synergies among the pillars of sustainability.
2.2. Evaluation of SEGAE
2.2.1. The Workshop
2.2.2. Design of Surveys
- Concentration: The game must provide activities that encourage players’ concentration while minimizing stress from learning overload.
- Clear goal: Tasks should be clearly defined at the beginning of game sessions.
- Feedback: Regular feedback should be given to allow players to determine the gap between their current stage of knowledge and the target stage.
- Challenge: The game should offer challenges that fit players’ skill levels.
- Autonomy: Players should enjoy taking initiatives in game sessions and asserting total control over their choices.
- Immersion: The game should lead players into a state of immersion, which is characterized in particular by an altered sense of time.
- Social interaction: Tasks in the game should favor social interactions between players.
- Knowledge acquisition: The game should increase players’ knowledge.
2.2.3. Analysis of Survey Results
3. Results
3.1. Results of Knowledge Acquisition
3.2. Perception of SEGAE and its Evaluation Through Flow Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Grouping of Data (and Number of Students) | Pre-Test | Post-Test | Increase |
---|---|---|---|
All students | 42.7 (2.4) | 51.4 (2.3) | 8.7 *** |
By curriculum | |||
• Veterinary science (9) | 40.2 (2.6) | 53.9 (3.9) | 13.7 * |
• Crop science (9) | 42.5 (3.0) | 53.6 (3.7) | 11.1 ** |
• Multidisciplinary (30) | 43.6 (3.6) | 50.0 (3.3) | 6.4 ** |
By discipline of specialization | |||
• Veterinary science (9) | 40.2 (2.6) | 53.9 (3.9) | 13.7 * |
• Agroecology (2) | 46.2 (2.6) | 57.7 (1.3) | 11.5 ns |
• Animal science (6) | 35.9 (10.1) | 45.7 (7.9) | 9.8 ns |
• Environmental science (3) | 36.8 (3.1) | 45.3 (5.2) | 8.6 ns |
• Crop science (21) | 50.9 (2.8) | 57.8 (2.3) | 6.8** |
• Mechatronics (4) | 14.1 (4.0) | 20.5 (6.8) | 6.4 ns |
• Economics (3) | 48.7 (6.5) | 53.9 (7.4) | 5.1 ns |
By theme of the questions | |||
• Crop production | 44.2 (3.0) | 50.4 (2.3) | 6.1 ** |
• Animal production | 52.9 (3.3) | 65.1 (3.1) | 12.2 *** |
• General | 35.7 (2.8) | 45.1 (3.2) | 9.4 ** |
References
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef][Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef][Green Version]
- Gliessman, S.R. Agroecology: The Ecology of Sustainable Food Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4987-2846-1. [Google Scholar]
- Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The ecology of food systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Dalgaard, T.; Hutchings, N.J.; Porter, J.R. Agroecology, scaling and interdisciplinarity. Agric. Ecosyst. Environ. 2003, 100, 39–51. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef][Green Version]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Fares, M. Designing agroecological transitions; A review. Agron. Sustain. Dev. 2015, 35, 1237–1257. [Google Scholar] [CrossRef][Green Version]
- Valley, W.; Wittman, H.; Jordan, N.; Ahmed, S.; Galt, R. An emerging signature pedagogy for sustainable food systems education. Renew. Agric. Food Syst. 2018, 33, 467–480. [Google Scholar] [CrossRef][Green Version]
- Wezel, A.; Goette, J.; Lagneaux, E.; Passuello, G.; Reisman, E.; Rodier, C.; Turpin, G. Agroecology in Europe: Research, education, collective action networks, and alternative food systems. Sustainability 2018, 10, 1214. [Google Scholar] [CrossRef][Green Version]
- Francis, C.A.; Lieblein, G.; Breland, T.A.; Salomonsson, L.; Geber, U.; Sriskandarajah, N.; Langer, V. Transdisciplinary research for a sustainable agriculture and food sector. Agron. J. 2008, 100, 771–776. [Google Scholar] [CrossRef]
- Francis, C.A.; Jordan, N.; Porter, P.; Breland, T.A.; Lieblein, G.; Salomonsson, L.; Sriskandarajah, N.; Wiedenhoeft, M.; DeHaan, R.; Braden, I.; et al. Innovative education in agroecology: Experiential learning for a sustainable agriculture. Crit. Rev. Plant Sci. 2011, 30, 226–237. [Google Scholar] [CrossRef][Green Version]
- Hilimire, K.; Gillon, S.; McLaughlin, B.C.; Dowd-Uribe, B.; Monsen, K.L. Food for thought: Developing curricula for sustainable food systems education programs. Agroecol. Sust. Food 2014, 38, 722–743. [Google Scholar] [CrossRef]
- Brekken, C.; Peterson, H.; King, R.; Conner, D. Writing a recipe for teaching sustainable food systems: Lessons from three university courses. Sustainability 2018, 10, 1898. [Google Scholar] [CrossRef][Green Version]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- Louah, L.; Visser, M.; Blaimont, A.; de Cannière, C. Barriers to the development of temperate agroforestry as an example of agroecological innovation: Mainly a matter of cognitive lock-in? Land Use Policy 2017, 67, 86–97. [Google Scholar] [CrossRef]
- Lieblein, G.; Østergaard, E.; Francis, C. Becoming an agroecologist through action education. Int. J. Agr. Sustain. 2004, 2, 147–153. [Google Scholar] [CrossRef]
- Schroeder-Moreno, M.S. Enhancing active and interactive learning online—Lessons learned from an online introductory agroecology course. NACTA J. 2010, 54, 21–30. [Google Scholar]
- Kiili, K. Digital game-based learning: Towards an experiential gaming model. Internet High. Educ. 2005, 8, 13–24. [Google Scholar] [CrossRef]
- Qian, M.; Clark, K.R. Game-based learning and 21st century skills: A review of recent research. Comput. Hum. Behav. 2016, 63, 50–58. [Google Scholar] [CrossRef]
- Squire, K. From content to context: Videogames as designed experience. Educ. Res. 2006, 35, 19–29. [Google Scholar] [CrossRef][Green Version]
- Wu, J.S.; Lee, J.J. Climate change games as tools for education and engagement. Nat. Clim. Chang. 2015, 5, 413–418. [Google Scholar] [CrossRef]
- Wiek, A.; Iwaniec, D. Quality criteria for visions and visioning in sustainability science. Sustain. Sci. 2014, 9, 497–512. [Google Scholar] [CrossRef]
- García-Barrios, L.; Perfecto, I.; Vandermeer, J. Azteca chess: Gamifying a complex ecological process of autonomous pest control in shade coffee. Agric. Ecosyst. Environ. 2016, 232, 190–198. [Google Scholar] [CrossRef]
- Dourmad, J.-Y.; Adji, K.; Boulestreau-Boulay, A.L.; Emeraud, L.; Espagnol, S. A 3D-Serious Game for Teaching the Environmental Sustainability of Pig Farming Systems; Wageningen Academic Publishers: Nantes, France, 2013; Volume 19, p. 660. [Google Scholar]
- Martin, G.; Felten, B.; Duru, M. Forage rummy: A game to support the participatory design of adapted livestock systems. Environ. Modell. Sofw. 2011, 26, 1442–1453. [Google Scholar] [CrossRef]
- Loriot, M.; Gowthorpe, J. Jeu Ruralis; ACTA éditions/RMT Biodiversité et Agriculture: Paris, France, 2017. [Google Scholar]
- Vaulot, Q.; Rzewuki, D.; Rousval, V. Agro Challenges; Educagri Editions: Dijon, France, 2018. [Google Scholar]
- Bellotti, F.; Kapralos, B.; Lee, K.; Moreno-Ger, P.; Berta, R. Assessment in and of Serious Games: An Overview. Adv. Hum. Comput. Interact. 2013, 2013, 136864. [Google Scholar] [CrossRef][Green Version]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper Perennial: New York, NY, USA, 1990. [Google Scholar]
- Bachen, C.M.; Hernández-Ramos, P.; Raphael, C.; Waldron, A. How do presence, flow, and character identification affect players’ empathy and interest in learning from a serious computer game? Comput. Hum. Behav. 2016, 64, 77–87. [Google Scholar] [CrossRef][Green Version]
- Sweetser, P.; Wyeth, P. GameFlow: A model for evaluating player enjoyment in games. Comput. Entertain. 2005, 3, 3. [Google Scholar] [CrossRef]
- Fu, F.-L.; Su, R.-C.; Yu, S.-C. EGameFlow: A scale to measure learners’ enjoyment of e-learning games. Comp. Educ. 2009, 52, 101–112. [Google Scholar] [CrossRef]
- Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–1043. [Google Scholar] [CrossRef][Green Version]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef][Green Version]
- Fourichon, C.; Seegers, H.; Beaudeau, F.; Verfaille, L.; Bareille, N. Health-control costs in dairy farming systems in western France. Livest. Prod. Sci. 2001, 68, 141–156. [Google Scholar] [CrossRef]
- Clough, Y.; Holzschuh, A.; Gabriel, D.; Purtauf, T.; Kleijn, D.; Kruess, A.; Steffan-Dewenter, I.; Tscharntke, T. Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. J. Appl. Ecol. 2007, 44, 804–812. [Google Scholar] [CrossRef]
- Dugard, P.; Todman, J. Analysis of pre-test-post-test control group designs in educational research. Educ. Psychol. 1995, 15, 181–198. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Vogel, J.J.; Vogel, D.S.; Cannon-Bowers, J.; Bowers, C.A.; Muse, K.; Wright, M. Computer gaming and interactive simulations for learning: A meta-analysis. J. Educ. Comput. Res. 2006, 34, 229–243. [Google Scholar] [CrossRef]
- Freeman, S.; Eddy, S.L.; McDonough, M.; Smith, M.K.; Okoroafor, N.; Jordt, H.; Wenderoth, M.P. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. USA 2014, 111, 8410–8415. [Google Scholar] [CrossRef][Green Version]
- Østergaard, E.; Lieblein, G.; Breland, T.A.; Francis, C. Students learning agroecology: Phenomenon-based education for responsible action. J. Agric. Educ. Ext. 2010, 16, 23–37. [Google Scholar] [CrossRef]
- Stock, P.; Burton, R.J.F. Defining terms for integrated (multi-inter-trans-disciplinary) sustainability research. Sustainability 2011, 3, 1090–1113. [Google Scholar] [CrossRef][Green Version]
- Francis, C.; King, J.; Lieblein, G.; Breland, T.A.; Salomonsson, L.; Sriskandarajah, N.; Porter, P.; Wiedenhoeft, M. Open-ended cases in agroecology: Farming and food systems in the Nordic region and the US Midwest. J. Agric. Educ. Ext. 2009, 15, 385–400. [Google Scholar] [CrossRef]
- De Tourdonnet, S. MOOC Agroécologie; Montpellier SupAgro—FUN MOOC: Montpellier, France, 2020. [Google Scholar]
- Batifol-Garandel, V.; Couix, N.; Giuliano, S.; Hazard, L.; Magrini, M.-B.; Sarthou, J.-P. Dictionary of Agroecology. Available online: https://dicoagroecologie.fr/en/ (accessed on 17 April 2020).
Category | Practice | Indicators | |||
---|---|---|---|---|---|
Technical | Environmental | Social | Economic | ||
Winter Wheat Yield | Pollinator Abundance | Animal Welfare | Machinery Cost | ||
Tillage management | Conventional tillage | 1.00 | 1.00 | 1.00 | |
Reduced tillage | 1.00 | 1.01 | 0.90 | ||
No tillage | 0.92 | 1.03 | 0.80 | ||
Fungicides | Systematic use of chemical molecules | 1.00 | 1.00 | 1.00 | |
Sound approach of chemical molecules | 1.00 | 1.01 | 0.90 | ||
Biocontrol product | 0.85 | 1.02 | 0.85 | ||
None | 0.85 | 1.03 | 0.80 | ||
Temporary grassland | Grassland-grass | 1.00 | |||
Grassland-grass-legume mixture | 1.02 | ||||
Grassland-complex mixture | 1.05 | ||||
Cropping plan a | Maize-wheat | 1.00 | 1.00 | 1.00 | |
Rapeseed-wheat-maize-wheat | 1.02 | 1.02 | 1.00 | ||
Faba bean-wheat-rapeseed-maize | 1.03 | 1.04 | 1.10 | ||
Grassland (3 years)-maize-wheat | 1.02 | 1.03 | 0.70 | ||
Grassland-maize-wheat-faba bean-rapeseed | 1.03 | 1.05 | 0.80 | ||
Green infrastructure a | None | 0.80 | |||
Wildflower strip | 1.30 | ||||
Hedgerows | 1.20 | ||||
Grass margins | 1.05 | ||||
In-field agroforestry | 1.10 | ||||
Cow housing | Tie-stalls with straw | 1.00 | |||
Cubicles with straw | 1.50 | ||||
Cubicles with slatted floor | 1.13 | ||||
Free-stall (deep bedding) | 1.65 | ||||
Free-stall (slatted floor) | 1.20 | ||||
Feeding system a | Indoors all year, maize, soybean | 1.00 | |||
Indoors all year, maize + alfalfa, soybean | 1.00 | ||||
4 months grazing, soybean | 1.31 | ||||
8 months grazing, faba bean | 1.63 | ||||
9 months grazing, without supplement | 1.70 | ||||
Management of the risk of mastitis b | Systematic antibiotic treatment | 1.00 | |||
Selective antibiotic treatment | 1.00 | ||||
Preventive measures of hygiene | 0.98 |
University | Country | Engineering (Multidisciplinary) | Veterinary Science | Crop Science | |||||
---|---|---|---|---|---|---|---|---|---|
Agroecology | Animal Science | Crop Science | Economics | Environmental Science | Mechatronics | ||||
ESA | France | 3 | 6 | ||||||
Institut Agro | France | 4 | 2 | 3 | |||||
Oniris | France | 8 | |||||||
ULiège | Belgium | 2 | 4 | 3 | |||||
UAK | Poland | 3 | 4 | 1 | |||||
UNIBO | Italy | 9 | |||||||
TOTAL | 6 | 6 | 12 | 3 | 3 | 4 | 9 | 9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouan, J.; De Graeuwe, M.; Carof, M.; Baccar, R.; Bareille, N.; Bastian, S.; Brogna, D.; Burgio, G.; Couvreur, S.; Cupiał, M.; et al. Learning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAE. Sustainability 2020, 12, 4351. https://doi.org/10.3390/su12114351
Jouan J, De Graeuwe M, Carof M, Baccar R, Bareille N, Bastian S, Brogna D, Burgio G, Couvreur S, Cupiał M, et al. Learning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAE. Sustainability. 2020; 12(11):4351. https://doi.org/10.3390/su12114351
Chicago/Turabian StyleJouan, Julia, Mireille De Graeuwe, Matthieu Carof, Rim Baccar, Nathalie Bareille, Suzanne Bastian, Delphine Brogna, Giovanni Burgio, Sébastien Couvreur, Michał Cupiał, and et al. 2020. "Learning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAE" Sustainability 12, no. 11: 4351. https://doi.org/10.3390/su12114351