Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model
Abstract
:1. Introduction
2. Literature Review
2.1. Individual Characteristics
2.2. Built Environmental Characteristics Affecting Crashes
3. Data and Methods
3.1. Data
3.2. Methods
4. Results
4.1. Descriptive Statistical Analysis
4.2. Results of the Hierarchical Model
4.2.1. Indiviual Characteristics
Pedestrian Factors
Driver Factors
Crash Factors
4.2.2. Neighborhood Environmental Characteristics
Road Characteristics
Land Use Characteristics
Place Characteristics
Safety Zone Characteristics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurka, J.M.; Adams, M.A.; Todd, M.; Colburn, T.; Sallis, J.F.; Cain, K.L.; Glanz, K.; Frank, L.D.; Saelens, B.E. Patterns of neighborhood environment attributes in relation to children’s physical activity. Health Place 2015, 34, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, L.; Yang, Y.; Gou, Z. The association of built environment and physical activity in older adults: Using a citywide public housing scheme to reduce residential self-selection bias. Int. J. Environ. Res. Public Health 2018, 15, 1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcante, B.R.; Germano-Soares, A.H.; Gerage, A.M.; Leicht, A.; Tassitano, R.M.; Bortolotti, H.; de Mello Franco, F.G.; Wolosker, N.; Cucato, G.G.; Ritti-Dias, R.M. Association between physical activity and walking capacity with cognitive function in peripheral artery disease patients. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Vahlberg, B.; Holmbäck, U.; Eriksson, S.; Cederholm, T. Protocol and pilot study of a short message service–guided training after acute stroke/transient ischemic attack to increase walking capacity and physical activity. Prev. Med. Rep. 2018, 11, 109–114. [Google Scholar] [CrossRef]
- Said, C.M.; Morris, M.E.; McGinley, J.L.; Szoeke, C.; Workman, B.; Liew, D.; Hill, K.D.; Woodward, M.; Wittwer, J.E.; Churilov, L. Additional structured physical activity does not improve walking in older people (>60 years) undergoing inpatient rehabilitation: A randomised trial. J. Physiother. 2018, 64, 237–244. [Google Scholar] [CrossRef]
- Lee, C.; Moudon, A.V. Physical activity and environment research in the health field: Implications for urban and transportation planning practice and research. J. Plan. Lit. 2004, 19, 147–181. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; Van Cauwenberg, J.; Barnett, D.W.; Barnett, A. The neighbourhood physical environment and active travel in older adults: A systematic review and meta–analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Barnett, D.W.; Barnett, A.; Nathan, A.; Van Cauwenberg, J.; Cerin, E. Built environmental correlates of older adults’ total physical activity and walking: A systematic review and meta–analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 103. [Google Scholar] [CrossRef] [Green Version]
- Panter, J.R.; Jones, A.P.; Van Sluijs, E.M. Environmental determinants of active travel in youth: A review and framework for future research. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 34–47. [Google Scholar] [CrossRef]
- Li, F.; Fisher, K.J.; Brownson, R.C.; Bosworth, M. Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults. J. Epidemiol. Community Health 2005, 59, 558–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Im, H.; Choi, C. Built environment, walking trip for different purposes, and pedestrian satisfaction. J. Korea Plan. Assoc. 2016, 51, 145–159. (In Korean) [Google Scholar] [CrossRef]
- Yun, J.; Choi, D. Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City. J. Korean Soc. Geo. Inf. Sci. 2015, 23, 77–84. (In Korean) [Google Scholar] [CrossRef]
- Jang, J.; Choi, S.; Lee, H.; Kim, S.; Choo, S. A comparison analysis of factors to affect pedestrian volumes by land–use type using Seoul Pedestrian Survey. J. Korea Inst. Intell. Transp. Syst. 2015, 14, 39–53. (In Korean) [Google Scholar] [CrossRef]
- Ministry of Government Legislation (Korea). Pedestrian Safety and Convenience Enhancement Act. Available online: http://www.law.go.kr/lsInfoP.do?lsiSeq=195271&efYd=20170726#0000 (accessed on 11 November 2019). (In Korean)
- Sung, H.; Oh, J. Development of Safe Routes to School Program: Review on the Needs and Establishment of Its Program Promotion System. J. Transp. Res. 2011, 17, 1–134. (In Korean) [Google Scholar]
- Adler, M.W.; Ahrend, R. Traffic Safety in Korea. OECD Reg. Dev. Work. Pap. 2017. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H. Developing a Pedestrian Satisfaction Prediction Model Based on Machine Learning Algorithms. J. Korea Plan. Assoc. 2019, 6, 106–118. (In Korean) [Google Scholar] [CrossRef]
- Park, H.; Lee, K. The Effects of Neighborhood Environment on Elderly’s Walking Time and Quality of Life—A Case Study of Nokbeon–Dong in Seoul. J. Korea Plan. Assoc. 2019, 4, 109–121. (In Korean) [Google Scholar] [CrossRef]
- Park, G.; Lee, S. Structural Relationship between Neighborhood Environment, Daily Walking Activity, and Subjective Health Status: Application of Path Model. J. Korea Plan. Assoc. 2018, 2, 255–272. (In Korean) [Google Scholar] [CrossRef]
- Liu, J.; Hainen, A.; Li, X.; Nie, Q.; Nambisan, S. Pedestrian injury severity in motor vehicle crashes: An integrated spatio–temporal modeling approach. Accid. Anal. Prev. 2019, 132, 105272. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kho, S.Y.; Kim, D.K. Hierarchical ordered model for injury severity of pedestrian crashes in South Korea. J. Saf. Res. 2017, 61, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Park, S. The Effects of Individual and Neighborhood Environmental Characteristics on the Severity of Pedestrian Traffic Accidents in Daegu Metropolitan City. J. Korean Reg. Dev. Assoc. 2019, 31, 239–258. (In Korean) [Google Scholar]
- Park, S.-H.; Bae, M.-K. Exploring the Determinants of the Severity of Pedestrian Injuries by Pedestrian Age: A Case Study of Daegu Metropolitan City, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Ko, D. A Multilevel Model Approach for Investigating Individual Accident Characteristics and Neighborhood Environment Characteristics Affecting Pedestrian–Vehicle Crashes. Int. J. Environ. Res. Public Health 2020, 17, 3107. [Google Scholar] [CrossRef]
- Verzosa, N.; Miles, R. Severity of road crashes involving pedestrians in Metro Manila, Philippines. Accid. Anal. Prev. 2016, 94, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fan, W.D. A multinomial logit model of pedestrian–vehicle crash severity in North Carolina. Int. J. Transp. Sci. Technol. 2019, 8, 43–52. [Google Scholar] [CrossRef]
- Haleem, K.; Alluri, P.; Gan, A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid. Anal. Prev. 2015, 81, 14–23. [Google Scholar] [CrossRef]
- Ulfarsson, G.F.; Kim, S.; Booth, K.M. Analyzing fault in pedestrian–motor vehicle crashes in North Carolina. Accid. Anal. Prev. 2010, 42, 1805–1813. [Google Scholar] [CrossRef]
- Kim, J.K.; Ulfarsson, G.F.; Shankar, V.N.; Mannering, F.L. A note on modeling pedestrian–injury severity in motor–vehicle crashes with the mixed logit model. Accid. Anal. Prev. 2010, 42, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yau, K.K.; Chen, G. Risk factors associated with traffic violations and accident severity in China. Accid. Anal. Prev. 2013, 59, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.; Park, S. The Effects of Individual Accidents and Neighborhood Environmental Characteristics on the Severity of Pedestrian Traffic Accidents in Seoul. J. Archit. Inst. Korea Plan. Des. 2019, 35, 101–109. (In Korean) [Google Scholar] [CrossRef]
- Eluru, N.; Bhat, C.R.; Hensher, D.A. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accid. Anal. Prev. 2008, 40, 1033–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A multinomial logit model of pedestrian–vehicle crash severity. Int. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Yu, C.Y. Built environmental designs in promoting pedestrian safety. Sustainability 2015, 7, 9444–9460. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Lee, S. An Analysis of the Factors of Pedestrian Traffic Accident by Driver’s Age and Accident Severity. J. Urban Des. Inst. Korea 2016, 17, 63–80. (In Korean) [Google Scholar]
- Anastasopoulos, P.C.; Mannering, F.L. An empirical assessment of fixed and random parameter logit models using crash- and non-crash-specific injury data. Accid. Anal. Prev. 2011, 43, 1140–1147. [Google Scholar] [CrossRef]
- Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res. 2016, 57, 9–17. [Google Scholar] [CrossRef]
- Aziz, H.A.; Ukkusuri, S.V.; Hasan, S. Exploring the determinants of pedestrian–vehicle crash severity in New York City. Accid. Anal. Prev. 2013, 50, 1298–1309. [Google Scholar] [CrossRef]
- Park, H.-C.; Joo, Y.-J.; Kho, S.-Y.; Kim, D.-K.; Park, B.-J. Injury Severity of Bus–Pedestrian Crashes in South Korea Considering the Effects of Regional and Company Factors. Sustainability 2019, 11, 3169. [Google Scholar] [CrossRef] [Green Version]
- Sze, N.N.; Wong, S.C. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accid. Anal. Prev. 2007, 39, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Kim, D. The transportation safety of elderly pedestrians: Modeling contributing factors to elderly pedestrian collisions. Accid. Anal. Prev. 2019, 131, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, W.D. Modelling severity of pedestrian–injury in pedestrian–vehicle crashes with latent class clustering and partial proportional odds model: A case study of North Carolina. Accid. Anal. Prev. 2019, 131, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Gilliland, J.; Hess, P.; Tucker, P.; Irwin, J.; He, M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am. J. Public Health 2009, 99, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Harmer, P.A.; Cardinal, B.J.; Bosworth, M.; Acock, A.; Johnson-Shelton, D.; Moore, J.M. Built environment, adiposity, and physical activity in adults aged 50–75. Am. J. Prev. Med. 2008, 35, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heydari, S.; Miranda-Moreno, L.; Hickford, A.J. On the causal effect of proximity to school on pedestrian safety at signalized intersection: A heterogeneous endogenous economic model. Anal. Methods Accid. Res. 2020, 26, 100115. [Google Scholar] [CrossRef]
- Xin, C.; Guo, R.; Wang, Z.; Lu, Q.; Lin, P.-S. The effects of neighborhood characteristics and the built environment on pedestrian injury severity: A random parameters generalized ordered probability model with heterogeneity in means and variances. Anal. Methods Accid. Res. 2017, 16, 117–132. [Google Scholar] [CrossRef]
- Guo, R.; Xin, C.; Lin, P.-S.; Kourtellis, A. Mixed effects logistic model to address demographics and neighborhood environment on pedestrian injury severity. Transp. Res. Rec. 2017, 2659, 174–181. [Google Scholar] [CrossRef]
- Christiansen, L.B.; Cerin, E.; Badland, H.; Kerr, J.; Davey, R.; Troelsen, J.; Van Dyck, D.; Mitáš, J.; Schofield, G.; Sugiyama, T. International comparisons of the associations between objective measures of the built environment and transport-related walking and cycling: IPEN adult study. J. Transp. Health 2016, 3, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xiao, Y.; Ye, Y. Urban density, diversity and design: Is more always better for walking? A study from Hong Kong. Prev. Med. 2017, 103, S99–S103. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Gou, Z.; Wang, R.; Liu, Y.; Lu, Y. Association between street greenery and walking behavior in older adults in Hong Kong. Sustain. Cities Soc. 2019, 51, 101747. [Google Scholar] [CrossRef]
- Wang, J.; Huang, H.; Xu, P.; Xie, S.; Wong, S.C. Random parameter probit models to analyze pedestrian red-light violations and injury severity in pedestrian–motor vehicle crashes at signalized crossing. J. Transp. Saf. Secur. 2019, 1–20. [Google Scholar] [CrossRef]
- Dannenberg, A.L.; Cramer, T.W.; Gibson, C.J. Assessing the walkability of the workplace: A new audit tool. Am. J. Health Promot. 2005, 20, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Narayanamoorthy, S.; Paleti, R.; Bhat, C.R. On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transp. Res. Part B Method. 2013, 55, 245–264. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.; Emond, J.A.; Badland, H.; Reis, R.; Sarmiento, O.; Carlson, J.; Sallis, J.F.; Cerin, E.; Cain, K.; Conway, T. Perceived neighborhood environmental attributes associated with walking and cycling for transport among adult residents of 17 cities in 12 countries: The IPEN study. Environ. Health Perspect. 2016, 124, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Li, J.; Liang, Y.; Wang, Z.; Hong, X.; Ware, R.S.; Leslie, E.; Sugiyama, T.; Owen, N. Associations of residential density with adolescents’ physical activity in a rapidly urbanizing area of Mainland China. J. Urban Health 2010, 87, 44–53. [Google Scholar] [CrossRef]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of Walk Score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1148. [Google Scholar] [CrossRef]
- Berke, E.M.; Koepsell, T.D.; Moudon, A.V.; Hoskins, R.E.; Larson, E.B. Association of the built environment with physical activity and obesity in older persons. Am. J. Public Health 2007, 97, 486–492. [Google Scholar] [CrossRef]
- Moudon, A.V.; Lee, C.; Cheadle, A.D.; Garvin, C.; Johnson, D.B.; Schcd, T.L.; Weathers, R.D. Attributes of environments supporting walking. Am. J. Health Promot. 2007, 21, 448–459. [Google Scholar] [CrossRef]
- Traffic Accident Analysis System (TAAS). Available online: http://taas.koroad.or.kr/gis/mcm/mcl/initMap.do?menuId=GIS_GMP_STS_RSN (accessed on 5 September 2019). (In Korean).
- Lee, H.; Noh, S. Advanced Statistical Analysis, 2nd ed.; MoonWoo: Goyang, Korea, 2013. (In Korean) [Google Scholar]
- Diez-Roux, A.V. Bringing context back into epidemiology: Variables and fallacies in multilevel analysis. Am. J. Public Health 1998, 88, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Guo, X.-H.; Jia, Z.-W.; Li, H.-K.; Liang, Z.-G.; Li, K.-C.; He, Q. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur. J. Radiol. 2010, 74, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Choi, J.; Kim, T. Analyzing Driving Environment Effects on Severity of Elderly Driver’s Traffic Accidents. J. Transp. Res. 2017, 24, 79–94. (In Korean) [Google Scholar] [CrossRef]
- Jang, T. Traffic Accident Damage Severity of Old Age Drivers by Multilevel Analysis Model. J. Korea Soc. Civ. Eng. 2014, 34, 561–571. (In Korean) [Google Scholar] [CrossRef]
- Korea Consumer Agency. Safety Survey of Speed Humps; Safety Report; Editorial Department: Eumseong, Korea, 2015. (In Korean) [Google Scholar]
- Nykiforuk, C.I.; McGetrick, J.A.; Crick, K.; Johnson, J.A. Check the score: Field validation of street smart walk score in Alberta, Canada. Prev. Med. Rep. 2016, 4, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuniga-Teran, A.A.; Orr, B.J.; Gimblett, R.H.; Chalfoun, N.V.; Marsh, S.E.; Guertin, D.P.; Going, S.B. Designing healthy communities: Testing the walkability model. Front. Archit. Res. 2017, 6, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Koschinsky, J.; Talen, E.; Alfonzo, M.; Lee, S. How walkable is Walker’s paradise? Environ. Plan. B Urban Anal. City Sci. 2017, 44, 343–363. [Google Scholar] [CrossRef]
Classification | Variables | Units | |
---|---|---|---|
Dependent variable; Model 1: aged less than 18 years Model 2: aged 19–64 years Model 3: aged over 65 years | Severity of pedestrian injury | Logit (1 = fatal injury, 0 = other) | |
Individual characteristics (lower level) | Pedestrian factor | Pedestrian gender | Dummy (1 = male, 0 = female) |
Driver factors | Driver age | Number (#) | |
Driver gender | Dummy (1 = male, 0 = female) | ||
Crash factors | Vehicle type | Dummy (1 = truck or van, 0 = other) | |
Weather | Dummy (1 = inclement, 0 = other) | ||
Neighborhood environmental characteristics (upper level) | Road characteristics | Hump | Density (#/km2) |
Signalized crosswalk | |||
Non-signalized crosswalk | |||
Signalized intersection | |||
Non-signalized intersection | |||
Posted speed | Average (km/hr) | ||
Land use characteristics | Residential area | Proportion (%) | |
Commercial area | |||
Place characteristics | Park | Density (#/km2) | |
Convenience store | |||
Restaurant | |||
Safety zone characteristics | School zone | Dummy (1 = present, 0 = absent) | |
Silver zone |
Level | Variables | Under 18 years (Model 1) | 19–64 years (Model 2) | Over 65 years (Model 3) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |||
Severity of pedestrian injury (1 = fatal injury, 0 = other) | 0.32 | 0.46 | 0.39 | 0.48 | 0.63 | 0.48 | ||
Pedestrian | Pedestrian gender | 0.57 | 0.49 | 0.55 | 0.49 | 0.37 | 0.48 | |
factors | (1 = male, 0 = female) | |||||||
Driver factors | Driver age | 49.08 | 13.22 | 49.09 | 13.49 | 49.90 | 13.08 | |
Lower | Driver gender | 0.75 | 0.43 | 0.82 | 0.38 | 0.81 | 0.39 | |
level | (1 = male, 0 = female) | |||||||
Crash factors | Vehicle type | 0.19 | 0.39 | 0.20 | 0.39 | 0.31 | 0.46 | |
(1 = truck or van, 0 = other) | ||||||||
Weather | 0.10 | 0.29 | 0.13 | 0.33 | 0.11 | 0.31 | ||
(1 = inclement, 0 = other) | ||||||||
Hump | 21.65 | 18.21 | 21.63 | 18.50 | 21.68 | 18.53 | ||
Signalized | 23.00 | 13.08 | 22.95 | 13.30 | 23.03 | 13.27 | ||
crosswalk | ||||||||
Road | Non-signalized crosswalk | 46.30 | 29.33 | 46.61 | 29.71 | 46.73 | 29.73 | |
characteristics | Signalized | 44.44 | 28.19 | 44.39 | 28.36 | 44.50 | 28.37 | |
intersection | ||||||||
Non-signalized intersection | 161.94 | 113.38 | 161.11 | 112.31 | 161.55 | 112.33 | ||
Upper | Posted speed | 49.94 | 4.89 | 49.96 | 4.96 | 50.00 | 4.93 | |
level | Land use | Residential area | 70.96 | 28.46 | 70.77 | 28.77 | 70.76 | 28.78 |
characteristics | Commercial area | 4.87 | 11.47 | 5.26 | 13.07 | 5.29 | 13.10 | |
Place characteristics | Park | 3.01 | 2.67 | 2.96 | 2.66 | 2.93 | 2.62 | |
Convenience store | 13.67 | 9.98 | 13.65 | 9.98 | 13.64 | 9.97 | ||
Restaurant | 9.74 | 15.84 | 9.93 | 16.09 | 9.97 | 16.11 | ||
School zone | 0.97 | 0.16 | 0.97 | 0.16 | 0.97 | 0.16 | ||
Safety zone | (1 = present, 0 = other) | |||||||
characteristic | Silver zone | 0.21 | 0.41 | 0.21 | 0.40 | 0.21 | 0.40 | |
(1 = present, 0 = other) |
Classification | Variables | Under 18 Years (Model 1) | 19–64 Years (Model 2) | Over 65 Years (Model 3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Std. Error | Odds Ratio | Coefficient | Std. Error | Odds Ratio | Coefficient | Std. Error | Odds Ratio | |||
Individual characteristics (lower level) | Pedestrian factors | Pedestrian gender | −0.030 | 0.094 | 0.970 | −0.229 *** | 0.034 | 0.795 | −0.370 *** | 0.063 | 0.690 |
Driver factors | Driver age | −0.002 | 0.003 | 0.998 | 0.003 ** | 0.001 | 1.003 | 0.004 * | 0.002 | 1.004 | |
Driver gender | −0.017 | 0.114 | 0.983 | 0.076 | 0.047 | 1.078 | 0.158 ** | 0.080 | 1.171 | ||
Crash factors | Vehicle type | 0.316 *** | 0.121 | 1.371 | 0.178 *** | 0.447 | 1.194 | −0.162 ** | 0.066 | 0.850 | |
Weather | −0.050 | 0.161 | 0.951 | 0.226 *** | 0.047 | 1.253 | 0.287 ** | 0.114 | 1.332 | ||
Neighborhood environmental characteristics (upper level) | Hump | −0.001 | 0.002 | 0.999 | 0.003 *** | 0.001 | 1.003 | 0.004 ** | 0.002 | 1.004 | |
Signalized | 0.000 | 0.005 | 1.000 | 0.003 | 0.002 | 1.003 | 0.005 | 0.003 | 1.005 | ||
crosswalk | |||||||||||
Non-signalized | −0.004 * | 0.002 | 0.996 | −0.000 | 0.001 | 1.000 | −0.002 * | 0.001 | 0.998 | ||
Road | crosswalk | ||||||||||
characteristics | Signalized | 0.006 * | 0.003 | 1.006 | 0.001 | 0.001 | 1.001 | −0.001 | 0.002 | 0.999 | |
intersection | |||||||||||
Non-signalized | −0.002 *** | 0.000 | 0.998 | −0.000 * | 0.004 | 1.000 | −0.000 | 0.000 | 1.000 | ||
intersection | |||||||||||
Posted speed | −0.000 | 0.010 | 1.000 | −0.001 | 0.004 | 0.009 | 0.017 ** | 0.007 | 1.017 | ||
Land use characteristics | Residential area | 0.002 | 0.002 | 1.002 | 0.000 | 0.000 | 1.000 | −0.000 | 0.001 | 1.000 | |
Commercial area | −0.001 | 0.006 | 0.999 | 0.004 ** | 0.001 | 1.004 | 0.001 | 0.002 | 1.001 | ||
Place characteristics | Park | −0.048 ** | 0.020 | 0.953 | −0.005 | 0.008 | 0.995 | −0.007 | 0.013 | 0.993 | |
Convenience store | 0.016 *** | 0.006 | 1.016 | −0.010 *** | 0.002 | 0.990 | −0.004 | 0.004 | 0.996 | ||
Restaurant | −0.004 | 0.003 | 0.996 | −0.004 *** | 0.001 | 0.996 | −0.003 * | 0.002 | 0.997 | ||
Safety zone characteristics | School zone | −0.362 | 0.355 | 0.696 | −0.019 | 0.122 | 0.981 | −0.043 | 0.181 | 0.957 | |
Silver zone | −0.001 | 0.006 | 0.999 | −0.001 | 0.048 | 0.999 | −0.066 | 0.070 | 0.936 | ||
AIC | 3161.3 | 22,698.0 | 6916.1 | ||||||||
BIC | 3393.8 | 23,007.9 | 7178.8 | ||||||||
ICC | 0.040 | 0.028 | 0.031 | ||||||||
Number of obs. | 2472 | 17097 | 5257 | ||||||||
Number of groups | 410 | 424 | 422 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Ko, D. Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model. Sustainability 2020, 12, 4239. https://doi.org/10.3390/su12104239
Park S, Ko D. Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model. Sustainability. 2020; 12(10):4239. https://doi.org/10.3390/su12104239
Chicago/Turabian StylePark, Seunghoon, and Dongwon Ko. 2020. "Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model" Sustainability 12, no. 10: 4239. https://doi.org/10.3390/su12104239
APA StylePark, S., & Ko, D. (2020). Investigating the Factors Influencing Pedestrian–Vehicle Crashes by Age Group in Seoul, South Korea: A Hierarchical Model. Sustainability, 12(10), 4239. https://doi.org/10.3390/su12104239