A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method
Abstract
:1. Introduction
2. Vehicle Procurement Criteria
3. Building an Evaluation Model for Vehicle Procurement
3.1. Defining Criteria Relative Weights with DANP Method
3.2. Establishing a Group of Observed Vehicles–Defining Alternatives
3.3. Determination of Criteria Parameters Values for Each Alternative
3.4. Ranking of Observed Alternatives with TOPSIS Method
3.5. Selecting The Best Vehicle Model
4. Model Application
4.1. Calculating Criteria Relative Weights
4.2. Establishing and Ranking the Vehicles and Selecting the Best Vehicle for Procurement
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alvarez, J.F.; Tsilingiris, P.; Engebrethsen, E.S.; Kakalis, N.M.P. Robust fleet sizing and deployment for industrial and independent bulk ocean shipping companies. INFOR 2011, 49, 93–107. [Google Scholar] [CrossRef]
- Hoff, A.; Andersson, H.; Christiansen, M.; Hasle, G.; Løkketangen, A. Industrial aspects and literature survey: Fleet composition and routing. Comput. Oper. Res. 2010, 37, 2041–2061. [Google Scholar] [CrossRef] [Green Version]
- Vujanović, D.; Momcilović, V.; Medar, O. Influence of an integrated maintenance management on the vehicle fleet energy efficiency. Therm. Sci. 2018, 22, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- Mørch, O.; Fagerholt, K.; Pantuso, G.; Rakke, J. Maximizing the rate of return on the capital employed in shipping capacity renewal. Omega 2017, 67, 42–53. [Google Scholar] [CrossRef]
- Patricksson, Ø.S.; Fagerholt, K.; Rakke, J.G. The fleet renewal problem with regional emission limitations: Case study from Roll-on/Roll-off shipping. Transp. Res. Part C Emerg. Technol. 2015, 56, 346–358. [Google Scholar] [CrossRef]
- Ansaripoor, A.H.; Oliveira, F.S.; Liret, A. A risk management system for sustainable fleet replacement. Eur. J. Oper. Res. 2014, 237, 701–712. [Google Scholar] [CrossRef]
- Figliozzi, M.A.; Boudart, J.A.; Feng, W. Economic and environmental optimization of vehicle fleets. Transp. Res. Rec. J. Transp. Res. Board 2011, 2252, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Figliozzi, M. An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transp. Res. Part C Emerg. Technol. 2013, 26, 135–145. [Google Scholar] [CrossRef]
- Ansaripoor, A.H.; Oliveira, F.S.; Liret, A. Recursive expected conditional value at risk in the fleet renewal problem with alternative fuel vehicles. Transp. Res. Part C Emerg. Technol. 2016, 65, 156–171. [Google Scholar] [CrossRef]
- Pantuso, G.; Fagerholt, K.; Wallace, S.W. Uncertainty in Fleet Renewal: A Case from Maritime Transportation. Transp. Sci. 2016, 50, 390–407. [Google Scholar] [CrossRef]
- Lee, W.S.; Huang, A.Y.; Chang, Y.Y.; Cheng, C.M. Analysis of decision making factors for equity investment by DEMATEL and Analytic Network Process. Expert Syst. Appl. 2011, 38, 8375–8383. [Google Scholar] [CrossRef]
- Sufiyan, M.; Haleem, A.; Khan, S.; Khan, M.I. Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustain. Prod. Consum. 2019, 20, 40–57. [Google Scholar] [CrossRef]
- Gudiel Pineda, P.J.; Liou, J.J.H.; Hsu, C.C.; Chuang, Y.C. An integrated MCDM model for improving airline operational and financial performance. J. Air Transp. Manag. 2018, 68, 103–117. [Google Scholar] [CrossRef]
- Hsu, C.C.; Liou, J.J.H.; Lo, H.W.; Wang, Y.C. Using a hybrid method for evaluating and improving the service quality of public bike-sharing systems. J. Clean. Prod. 2018, 202, 1131–1144. [Google Scholar] [CrossRef]
- Kumar, A.; Anbanandam, R. Analyzing interrelationships and prioritising the factors influencing sustainable intermodal freight transport system: A grey-DANP approach. J. Clean. Prod. 2020, 252, 119769. [Google Scholar] [CrossRef]
- Vujanović, D.B.; Momcilović, V.M.; Vasić, M.B. A hybrid multi-criteria decision making model for the vehicle service center selection with the aim to increase the vehicle fleet energy efficiency. Therm. Sci. 2018, 22, 1549–1561. [Google Scholar] [CrossRef]
- Sakthivel, G.; Ilangkumaran, M.; Gaikwad, A. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Eng. J. 2015, 6, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, G.; Li, T.; Wei, X. Comprehensive evaluation of the sustainable development of battery electric vehicles in China. Sustainability 2019, 11, 5635. [Google Scholar] [CrossRef] [Green Version]
- Hamurcu, M.; Eren, T. Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation. Sustainability 2020, 12, 2777. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, B.M.; Godoy, L.P.; Campos, L.M.S. Performance evaluation of green suppliers using entropy-TOPSIS-F. J. Clean. Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Sureeyatanapas, P.; Sriwattananusart, K.; Niyamosoth, T.; Sessomboon, W.; Arunyanart, S. Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method. Oper. Res. Perspect. 2018, 5, 69–79. [Google Scholar] [CrossRef]
- Hoseinpour, M.; Sadrnia, H.; Tabasizadeh, M.; Ghobadian, B. Evaluation of the effect of gasoline fumigation on performance and emission characteristics of a diesel engine fueled with B20 using an experimental investigation and TOPSIS method. Fuel 2018, 223, 277–285. [Google Scholar] [CrossRef]
- Sabaghi, M.; Mascle, C.; Baptiste, P. Application of DOE-TOPSIS technique in decision-making problems. IFAC-PapersOnLine 2015, 48, 773–777. [Google Scholar] [CrossRef]
- Anthony, P.; Behnoee, B.; Hassanpour, M.; Pamucar, D. Financial performance evaluation of seven Indian chemical companies. Decis. Mak. Appl. Manag. Eng. 2019, 2, 19–37. [Google Scholar] [CrossRef]
- Milosavljević, M.; Bursać, M.; Tričković, G. The selection of the railroad container terminal in Serbia based on multi criteria decision making methods. Decis. Mak. Appl. Manag. Eng. 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Karagülle, A.Ö. The Evaluation of Fleet Structures in Turkish Aviation Industry from Strategic Management Point of View. Procedia–Soc. Behav. Sci. 2012, 58, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Bakkehaug, R.; Eidem, E.S.; Fagerholt, K.; Hvattum, L.M. A stochastic programming formulation for strategic fleet renewal in shipping. Transp. Res. Part E Logist. Transp. Rev. 2014, 72, 60–76. [Google Scholar] [CrossRef]
- de Salvo Junior, O.; Vaz de Almeida, F.G. Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption. Appl. Energy 2019, 241, 98–112. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, H.; Srivastava, D.; Ma, X.; Dearn, K.; Cracknell, R.; Krueger-Venus, J. Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine. Appl. Energy 2017, 203, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Merkert, R.; Hensher, D.A. The impact of strategic management and fleet planning on airline efficiency–a random effects tobit model based on dea efficiency scores. Transp. Res. Part A Policy Pract. 2011, 45, 686–695. [Google Scholar] [CrossRef]
- Riechi, J.; Mácian, V.; Tormos, B.; Avila, C. Optimal fleet replacement: A case study on a Spanish urban transport fleet. J. Oper. Res. Soc. 2017, 68, 886–894. [Google Scholar] [CrossRef]
- Low Carbon Vehicle Partnership, The Low Emission Van Guide; Guide for van operators; Cenex: Leicestershire, UK, 2019; pp. 5–27.
- Keles, P.; Hartman, J.C. Case study: Bus fleet replacement. Eng. Econ. A J. Devoted to Probl. Cap. Invest. 2004, 49, 253–278. [Google Scholar] [CrossRef]
- Mijailović, R. The optimal lifetime of passenger cars based on minimization of CO2 emission. Energy 2013, 55, 869–878. [Google Scholar] [CrossRef]
- Degirmenci, K.; Breitner, M.H. Consumer purchase intentions for electric vehicles: Is green more important than price and range? Transp. Res. Part D Transp. Environ. 2017, 51, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Liimatainen, H.; Pöllänen, M. Trends of energy efficiency in Finnish road freight transport 1995–2009 and forecast to 2016. Energy Policy 2010, 38, 7676–7686. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Lecture Notes in Economics and Mathematical Systems; Springer: Heidelberg, Germany, 1981; Volume 186, pp. 128–140. ISBN 978-3-642-48318-9. [Google Scholar]
- Papathanasiou, J.; Ploskas, N. TOPSIS. In Multiple Criteria Decision Aid; Pardalos, M., Du, D.-Z., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 136, pp. 1–30. ISBN 978-3-319-91646-0. [Google Scholar]
Aspects/Criteria | Criteria Description | Criteria Parameter |
---|---|---|
CONSTRUCTION-TECHNICAL ASPECT (CT) | ||
CT1–Vehicle equipment regarding safety and technical systems | Existence of advanced onboard systems: ABA, Cruise Control with Variable Speed Limiter, Active Distance Assist Distronic, Blind Spot Assist Mirror, Rear View Camera, Stop&Start System, TSR, LGS, TPMS, HSA. | Number of safety-technical systems: CT1p |
CT2–Engine characteristics | Engine capacity | Engine capacity (cm3): CT2p |
CT3–Vehicle comfort | Existence of further devices and equipment on the vehicle: Automatic air condition, driver’s armrest, Electric windows, Rain sensors, LCD display with navigation, Bluetooth connection, Automatic transmission, Seat heating, Seat cooling, Seat massagers | Number of on-board devices/equipment: CT3p |
CT4–Vehicle’s compatibility with the existing vehicle fleet | Number of the observed vehicle model in the existing vehicle fleet | Percentage of the observed vehicle model (%): CT4p |
CT5–Vehicle’s technical condition | Vehicle mileage coefficient: CT5p | |
FINANCIAL ASPECT (F) | ||
F1–Vehicle price | The price of the observed vehicle model on the market | Vehicle price (£): F1p |
F2–Financing options when buying a vehicle | Existence of further options: Leasing, government subsidies, discounts on the vehicle price | Number of options: F2p |
F3–Vehicle selling price | The residual value of the observed vehicle model on the market with the certain number of years and miles traveled | Vehicle selling price (£): F3p |
OPERATIONAL ASPECT (O) | ||
O1–Fuel/energy costs | Specific fuel (energy) consumption multiplied by fuel/energy price | Fuel (energy) costs (£/100 km): O1p |
O2–Vehicle maintenance | Price of preventive maintenance multiplied by the number of obligatory annual preventive maintenance services (vehicle manufacturer requirements during warranty period) | Preventive maintenance costs (£/year): O2p |
ASPECT OF THE ENVIRONMENT (E) | ||
E1–Environmental protection requirements | Amount of CO2 emission from the observed vehicle model | CO2 emission (g/km): E1p |
E2–Vehicle’s compliance with the road-traffic infrastructure requirements on the transport network | Compliance of vehicle turning diameter with the characteristics of the road infrastructure on the transport network (road curve diameter, curves frequency, traffic lane width, etc.) | Vehicle turning diameter “curb to curb” (m): E2p |
E3–Vehicle’s compliance with customers’ transport requirements | Compliance of the vehicle’s payload capacity with the cargo amount that should be carried | Utilization of vehicle’s payload capacity (%): E3p |
Demographic Information | Frequency | Percentage | |
---|---|---|---|
Age | 25–34 | 10 | 20% |
35–44 | 26 | 52% | |
45–54 | 12 | 24% | |
55–65 | 2 | 4% | |
Education level | High school | 1 | 2% |
College | 5 | 10% | |
Bachelor of Science | 7 | 14% | |
Master of Science | 16 | 32% | |
Doctor of Science | 21 | 42% |
Criteria. | CT1 | CT2 | CT3 | CT4 | CT5 | F1 | F2 | F3 | O1 | O2 | E1 | E2 | E3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CT1 | 0.0477 | 0.0850 | 0.0699 | 0.0874 | 0.1196 | 0.2012 | 0.0712 | 0.1582 | 0.1463 | 0.1732 | 0.0591 | 0.0784 | 0.0876 |
CT2 | 0.0790 | 0.0724 | 0.0773 | 0.1055 | 0.1165 | 0.2133 | 0.0865 | 0.1603 | 0.1800 | 0.1709 | 0.0978 | 0.1184 | 0.1486 |
CT3 | 0.0614 | 0.0673 | 0.0301 | 0.0639 | 0.0621 | 0.1554 | 0.0575 | 0.1175 | 0.1140 | 0.1130 | 0.0525 | 0.0675 | 0.0745 |
CT4 | 0.0800 | 0.1090 | 0.0600 | 0.0456 | 0.0800 | 0.1345 | 0.0641 | 0.0888 | 0.1077 | 0.1539 | 0.0514 | 0.0920 | 0.1038 |
CT5 | 0.0987 | 0.1078 | 0.0955 | 0.0773 | 0.0644 | 0.2096 | 0.0829 | 0.1548 | 0.1599 | 0.1737 | 0.0888 | 0.0747 | 0.0880 |
F1 | 0.0959 | 0.0969 | 0.0812 | 0.0745 | 0.0981 | 0.0928 | 0.0949 | 0.1293 | 0.1050 | 0.1222 | 0.0621 | 0.0697 | 0.0869 |
F2 | 0.0757 | 0.0757 | 0.0587 | 0.0690 | 0.0648 | 0.1596 | 0.0315 | 0.0877 | 0.0629 | 0.0985 | 0.0436 | 0.0438 | 0.0592 |
F3 | 0.0552 | 0.0782 | 0.0526 | 0.0586 | 0.0857 | 0.1450 | 0.0733 | 0.0566 | 0.0955 | 0.1078 | 0.0540 | 0.0420 | 0.0714 |
O1 | 0.0483 | 0.0812 | 0.0339 | 0.0492 | 0.0693 | 0.1204 | 0.0555 | 0.1169 | 0.0548 | 0.0903 | 0.0771 | 0.0618 | 0.0851 |
O2 | 0.0764 | 0.0927 | 0.0565 | 0.0910 | 0.1133 | 0.1585 | 0.0695 | 0.1427 | 0.1325 | 0.0741 | 0.0788 | 0.0510 | 0.0759 |
E1 | 0.1010 | 0.1469 | 0.0901 | 0.1033 | 0.1513 | 0.2068 | 0.0927 | 0.1605 | 0.1557 | 0.1775 | 0.0510 | 0.1004 | 0.1152 |
E2 | 0.0922 | 0.1222 | 0.0740 | 0.1200 | 0.0977 | 0.1881 | 0.0675 | 0.1351 | 0.1682 | 0.1494 | 0.0717 | 0.0492 | 0.1314 |
E3 | 0.0522 | 0.1088 | 0.0591 | 0.1134 | 0.0966 | 0.1704 | 0.0591 | 0.1202 | 0.1586 | 0.1418 | 0.0575 | 0.0878 | 0.0548 |
(r + s) | 2.3484 | 2.8704 | 1.8756 | 2.2296 | 2.6957 | 3.3649 | 1.8370 | 2.6045 | 2.5846 | 2.9593 | 2.4977 | 2.4035 | 2.4628 |
(r − s) | 0.4211 | 0.3824 | 0.1979 | 0.1120 | 0.2567 | −0.9462 | 0.0246 | −0.6528 | −0.6973 | −0.5334 | 0.8070 | 0.5299 | 0.0981 |
Aspects | Construction-Technical CT | Financial F | Operational O | Environment E |
---|---|---|---|---|
Construction technical-CT | 1.9634 | 1.9558 | 1.4926 | 1.2831 |
Financial-F | 1.1208 | 0.8707 | 0.5918 | 0.5327 |
Operational-O | 0.7118 | 0.6635 | 0.3516 | 0.4297 |
Environment-E | 1.5288 | 1.2004 | 0.9513 | 0.7189 |
(r + s) | 12.020 | 7.8064 | 5.5439 | 7.3639 |
(r − s) | 1.3701 | −1.5744 | −1.2307 | 1.4350 |
Criteria | CT1 | CT2 | CT3 | CT4 | CT5 | F1 | F2 | F3 | O1 | O2 | E1 | E2 | E3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative weights-Wj | 0.0603 | 0.0773 | 0.0516 | 0.0643 | 0.0762 | 0.1291 | 0.0588 | 0.1002 | 0.0963 | 0.1039 | 0.0544 | 0.0562 | 0.0715 |
Rank | 9 | 5 | 13 | 8 | 6 | 1 | 10 | 3 | 4 | 2 | 12 | 11 | 7 |
Aspects | Construction technical CT | Financial F | Operational O | Environment E | |||||||||
Local weights | 0.3296 | 0.2881 | 0.2002 | 0.1821 | |||||||||
Rank | 1 | 2 | 3 | 4 |
Criteria | CT1 | CT2 | CT3 | CT4 | CT5 | F1 | F2 | F3 | O1 | O2 | E1 | E2 | E3 | Ci | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 diesel | 6 | 2179 | 5 | 10.61 | 1 | 38801 | 1 | 7600 | 10.42 | 495 | 159 | 12.6 | 84 | 0.485 | 4 |
A2 diesel | 2 | 2300 | 4 | 24.24 | 1 | 36693 | 1 | 8000 | 8.21 | 243 | 186 | 12.8 | 84 | 0.570 | 1 |
A3 diesel | 1 | 2298 | 4 | 12.12 | 1 | 38331 | 1 | 7500 | 7.45 | 248 | 182 | 13.6 | 89 | 0.489 | 3 |
A4 diesel | 3 | 2143 | 1 | 3.03 | 1 | 39852 | 1 | 11500 | 8.75 | 288 | 213 | 13.6 | 100 | 0.459 | 5 |
A5 diesel | 2 | 4580 | 1 | 0 | 1 | 59605 | 1 | 21150 | 15.34 | 471 | 375 | 13.2 | 33 | 0.315 | 8 |
A6 electric | 1 | 0 | 4 | 0 | 1 | 66373 | 1 | 11445 | 3.63 | 174 | 55 | 13.6 | 94 | 0.522 | 2 |
A7 CNG | 2 | 3000 | 4 | 0 | 1 | 43901 | 1 | 5832 | 5.18 | 270 | 177 | 12.8 | 84 | 0.413 | 7 |
A8 B30 | 2 | 2300 | 4 | 0 | 1 | 36693 | 1 | 8000 | 8.40 | 269 | 134 | 12.8 | 84 | 0.432 | 6 |
max/min | max | min | max | max | min | min | max | max | min | min | min | min | max | ||
Crit. Wj | 0.0603 | 0.0773 | 0.0516 | 0.0643 | 0.0762 | 0.1291 | 0.0588 | 0.1002 | 0.0963 | 0.1039 | 0.0544 | 0.0562 | 0.0715 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stokic, M.; Vujanovic, D.; Sekulic, D. A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method. Sustainability 2020, 12, 4044. https://doi.org/10.3390/su12104044
Stokic M, Vujanovic D, Sekulic D. A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method. Sustainability. 2020; 12(10):4044. https://doi.org/10.3390/su12104044
Chicago/Turabian StyleStokic, Marko, Davor Vujanovic, and Dragan Sekulic. 2020. "A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method" Sustainability 12, no. 10: 4044. https://doi.org/10.3390/su12104044
APA StyleStokic, M., Vujanovic, D., & Sekulic, D. (2020). A New Comprehensive Approach for Efficient Road Vehicle Procurement Using Hybrid DANP-TOPSIS Method. Sustainability, 12(10), 4044. https://doi.org/10.3390/su12104044