Next Article in Journal
Identification and Analysis of Attributes for Industrial Food Waste Management Modelling
Next Article in Special Issue
Comparison of Health and Well-Being Aspects in Building Certification Schemes
Previous Article in Journal
Impacts of Environmental Factors on Waste, Energy, and Resource Management and Sustainable Performance
Previous Article in Special Issue
Trends, Costs, and Benefits of Green Certification of Office Buildings: A Polish Perspective
Article Menu
Issue 8 (April-2) cover image

Export Article

Open AccessArticle

Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis

School of Architecture, Planning and Preservation, University of Maryland, College Park, MD 20742, USA
Sustainability 2019, 11(8), 2444; https://doi.org/10.3390/su11082444
Received: 3 April 2019 / Revised: 19 April 2019 / Accepted: 20 April 2019 / Published: 25 April 2019
(This article belongs to the Special Issue Green Building Technologies)
  |  
PDF [2203 KB, uploaded 25 April 2019]
  |  

Abstract

A comprehensive case study on life-cycle cost analysis (LCCA) was conducted on a two- story education building with a projected 40-year lifespan in College Park, Maryland. The aim of this paper was to (1) create a life cycle assessment model, using an education building to test the model, (2) compare the life cycle cost (LCC) of different renovation scenarios, taking into account added renewable energy resources to achieve the university’s overall carbon neutrality goal, and (3) verify the robustness of the LCC model by conducting sensitivity analysis and studying the influence of different variables. Nine renovation scenarios were constructed by combining six renovation techniques and three renewable energy resources. The LCCA results were then compared to understand the cost-effective relation between implementing energy reduction techniques and renewable energy sources. The results indicated that investing in energy-efficient retrofitting techniques was more cost-effective than investments in renewable energy sources in the long term. In the optimum scenario, renovation and renewable energy, when combined, produced close to a 90% reduction in the life cycle cost compared to the baseline. The payback period for the initial investment cost, including avoided electricity costs, varies from 1.4 to 4.1 years. This suggests that the initial investment in energy-efficient renovation is the primary factor in the LCC of an existing building. View Full-Text
Keywords: nearly net-zero energy; life-cycle cost analysis; renovation; cost-effective; renovation nearly net-zero energy; life-cycle cost analysis; renovation; cost-effective; renovation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Hu, M. Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis. Sustainability 2019, 11, 2444.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top