Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services
Abstract
:1. Introduction
2. Research Methodology
2.1. Theoretical Hypothesis
2.2. Model Specification
3. Data and Statistical Description
3.1. Data and Samples
3.2. Statistical Description
4. Results
4.1. Endogenous Problem Test
4.2. Threshold Effect Test
4.3. Threshold Regression Results
5. Discussion
5.1. The Moderate Operation Scale for China’s Grain Production
5.2. Further Discussion Regarding Parcel Level
5.3. Robustness Checks
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mehta, C.R.; Chandel, N.S.; Senthilkumar, T. Status, Challenges and Strategies for Farm Mechanization in India. Ama-Agric. Mech. Asia Africa Latin Am. 2014, 45, 43–50. [Google Scholar]
- Khan, A.A.; Siddique, G.; Rafiq-ur-Rehman, M.; Ahmed, S.I. Farm Mechanization: Historical Developments, Present Status and Future Trends in Pakistan. Ama-Agric. Mech. Asia Africa Latin Am. 2016, 47, 44–50. [Google Scholar]
- Soni, P. Agricultural Mechanization in Thailand: Current Status and Future Outlook. Ama-Agric.Mech. Asia Afr. Lat. Am. 2016, 47, 58–66. [Google Scholar]
- Yamauchi, F. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy 2016, 58, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Diao, X.S.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy 2014, 48, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Wang, M.Y. A counterfactual analysis on unlimited surplus labor in rural China. China World Econ. 2008, 16, 51–65. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, J.; Wang, S.L. China has reached the Lewis turning point. China Econ. Rev. 2011, 22, 542–554. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.B.; Tian, Y.J.; Tan, M.H. Structural change of agricultural land use intensity and its regional disparity in China. J.Geogr. Sci. 2009, 19, 545–556. [Google Scholar] [CrossRef]
- Wang, X.B.; Yamauchi, F.; Huang, J.K. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Qiao, F.B. Increasing wage, mechanization, and agriculture production in China. China Econ. Rev. 2017, 46, 249–260. [Google Scholar] [CrossRef]
- China Statistical Yearbook. 2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm (accessed on 29 December 2018). (In Chinese)
- Huang, Z.H.; Guan, L.J.; Jin, S.S. Scale farming operations in China. Int. Food Agribus. Manag. Rev. 2017, 20, 191–200. [Google Scholar] [CrossRef]
- Wang, X.B.; Yamauchi, F.; Otsuka, K.; Huang, J. Wage Growth, Landholding, and Mechanization in Chinese Agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, Z.H.; Zhang, X.B.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). The 13th Five-Year Plan for Agricultural Mechanization Development of China. Available online: http://www.amic.agri.gov.cn/nxtwebfreamwork/detail.jsp?articleId=ff8080815943160b01596c33b8b90be1 (accessed on 29 December 2016).
- Tan, S.H.; Heerink, N.; Qu, F.T. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Chen, X.W. Review of China’s agricultural and rural development: Policy changes and current issues. China Agric. Econ. Rev. 2009, 1, 121–135. [Google Scholar] [CrossRef]
- Tan, M.H.; Robinson, G.M.; Li, X.B.; Xin, L.J. Spatial and temporal variability of farm size in China in context of rapid urbanization. Chin.Geogr. Sci. 2013, 23, 607–619. [Google Scholar] [CrossRef]
- Otsuka, K. Food insecurity, income inequality, and the changing comparative advantage in world agriculture. Agric. Econ. 2013, 44, 7–18. [Google Scholar] [CrossRef]
- Huang, J.K.; Ding, J.P. Institutional innovation and policy support to facilitate small-scale farming transformation in China. Agric. Econ. 2016, 47, 227–237. [Google Scholar] [CrossRef]
- Brown, W.J.; Schoney, R.A. Calculating least-cost machinery size for grain farms using electronic spreadsheets and microcomputers. Can. J. Agric. Econ.-Rev. Can. D Econ. Rural. 1985, 33, 47–65. [Google Scholar] [CrossRef]
- Walford, N. The future size of farms—modeling the effect of change in labor and machinery. J. Agric. Econ. 1983, 34, 407–416. [Google Scholar] [CrossRef]
- Chen, Y.F.; Sun, W.L.; Xue, G.X. Literature comment and theoretical study on the optimum management scale of farmland. China Land Sci. 2015, 29, 8–15. (In Chinese) [Google Scholar] [CrossRef]
- Latruffe, L.; Piet, L. Does land fragmentation affect farm performance? A case study from Brittany, France. Agric. Syst. 2014, 129, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xie, H.L.; He, Y.F.; Wu, Z.L.; Zhang, X.M. Assessing the impacts of land fragmentation and plot size on yields and costs: A translog production model and cost function approach. Agric. Syst. 2018, 161, 81–88. [Google Scholar] [CrossRef]
- Gu, T.Z.; Ji, Y.Q.; Zhong, F.N. The sources of economies of scale in China’s agricultural production. Chin. Rural. Econ. 2017, 2, 30–43. (In Chinese) [Google Scholar]
- Chen, X.W. The Reform on Hukou sYstem Will Be Launched by the State Council Soon. Available online: http://finance.sina.com.cn/china/20140614/215819414248.shtml (accessed on 16 June 2014). (In Chinese).
- Qian, K.M.; Peng, T.J. Economic analysis of the moderate scale farmers in food production. Issues Agric. Econ. 2014, 3, 4–7. (In Chinese) [Google Scholar] [CrossRef]
- Rada, N.; Wang, C.G.; Qin, L.J. Subsidy or market reform? Rethinking China’s farm consolidation strategy. Food Policy 2015, 57, 93–103. [Google Scholar] [CrossRef]
- Yang, G.Q.; Hu, L.; Wang, W.X. Moderate scale of farmers’ cultivated land management and its performance: An empirical analysis based on questionnaire survey of rural households in 6 counties in Hubei Province. Resour. Sci. 2015, 33, 505–512. (In Chinese) [Google Scholar]
- Zhang, Q.; Sun, Z.X.; Huang, W. Does land perform well for corn planting? An empirical study on land use efficiency in China. Land Use Policy 2018, 74, 273–280. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Zhu, F.W.; Chen, F.; Yu, M.; Zhang, S.L.; Yang, Y.J. Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef]
- Mankiw, N.G. Principles of Economics; Liang, X.M., Ed.; Peking University Press: Beijing, China, 1998. [Google Scholar]
- Mosheim, R.; Lovell, C.A.K. Scale Economies and Inefficiency of US Dairy Farms. Am. J. Agric. Econ. 2009, 91, 777–794. [Google Scholar] [CrossRef]
- He, P.F.; Li, J.; Wang, X. Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands. Comput. Electron. Agric. 2018, 145, 226–234. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
- Hansen, B.E. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 1996, 64, 413–430. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xi, X.C.; Tang, X.; Luo, D.M.; Gu, B.J.; Lam, S.K.; Vitousek, P.M.; Chen, D.L. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Watcharaanantapong, P.; Roberts, R.K.; Lambert, D.M.; Larson, J.A.; Velandia, M.; English, B.C.; Rejesus, R.M.; Wang, C.G. Timing of precision agriculture technology adoption in US cotton production. Precis. Agric. 2014, 15, 427–446. [Google Scholar] [CrossRef]
- Ashoori, D.; Allahyari, M.S.; Damalas, C.A. Adoption of conservation farming practices for sustainable rice production among small-scale paddy farmers in northern Iran. Paddy Water Environ. 2017, 15, 237–248. [Google Scholar] [CrossRef]
- Lin, J.Y. Education and innovation adoption in agriculture - evidence from hybrid rice in China. Am. J. Agric. Econ. 1991, 73, 713–721. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.K.; Luo, R.F.; Liu, C.F. China’s labor transition and the future of China’s rural wages and employment. China World Econ. 2013, 21, 4–24. [Google Scholar] [CrossRef]
- Turvey, C.G.; Kong, R. Business and financial risks of small farm households in China. China Agric. Econ. Rev. 2009, 1, 155–172. [Google Scholar] [CrossRef]
- Huang, J.K.; Wang, Y.J.; Wang, J.X. Farmers’ adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China. Am. J. Agric. Econ. 2015, 97, 602–617. [Google Scholar] [CrossRef]
- Yang, Z.H.; Mugera, A.W.; Zhang, F. Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China. Sustainability 2016, 8, 787. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.Q. The potential of land rental markets in the process of economic development: Evidence from China. J. Dev. Econ. 2005, 78, 241–270. [Google Scholar] [CrossRef]
- Ito, J.; Bao, Z.S.; Ni, J. Land rental development via institutional innovation in rural Jiangsu, China. Food Policy 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
Group Range (mua) | Sample Size | Cumulative Percentage (%) | Average Group Size (mu) | The PAMSE (Yuanb/mu) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | ||||
(0,1) | 99 | 4.64 | 0.88 | 370.30 | 280.41 | 20.00 | 1000.00 |
(1,2) | 192 | 13.64 | 1.79 | 272.61 | 182.17 | 20.00 | 750.00 |
(2,3) | 232 | 24.52 | 2.86 | 204.70 | 149.19 | 19.05 | 666.67 |
(3,4) | 184 | 33.15 | 3.86 | 170.42 | 119.16 | 20.00 | 500.00 |
(4,5) | 169 | 41.07 | 4.87 | 162.98 | 106.92 | 20.00 | 460.00 |
(5,6) | 179 | 49.46 | 5.91 | 139.30 | 93.63 | 25.00 | 416.67 |
(6,7) | 100 | 54.15 | 6.89 | 148.43 | 91.06 | 21.43 | 414.29 |
(7,8) | 144 | 60.90 | 7.89 | 152.07 | 111.93 | 20.00 | 500.00 |
(8,9) | 60 | 63.71 | 8.90 | 114.79 | 77.85 | 22.22 | 333.33 |
(9,10) | 179 | 72.11 | 9.95 | 133.19 | 90.55 | 20.00 | 400.00 |
(10,11) | 36 | 73.79 | 10.95 | 117.61 | 68.69 | 18.18 | 272.73 |
(11,12) | 69 | 77.03 | 11.96 | 110.73 | 69.32 | 20.00 | 291.67 |
(12,13) | 34 | 78.62 | 12.92 | 148.61 | 74.11 | 43.75 | 307.69 |
(13,14) | 40 | 80.50 | 13.93 | 103.41 | 55.92 | 25.00 | 229.01 |
(14,15) | 42 | 82.47 | 14.94 | 104.95 | 61.13 | 20.00 | 281.69 |
(15,16) | 42 | 84.44 | 15.97 | 92.53 | 69.65 | 18.75 | 290.32 |
(16,17) | 15 | 85.14 | 16.95 | 103.00 | 55.21 | 29.41 | 181.82 |
(17,18) | 26 | 86.36 | 17.94 | 130.64 | 82.26 | 27.78 | 333.33 |
(18,19) | 7 | 86.69 | 18.87 | 105.20 | 46.83 | 43.96 | 157.89 |
(19,20) | 67 | 89.83 | 20.00 | 101.28 | 66.89 | 20.00 | 300.00 |
(20,25) | 45 | 91.94 | 23.14 | 85.23 | 46.99 | 20.83 | 222.22 |
(25,30) | 55 | 94.51 | 28.91 | 91.51 | 60.42 | 20.00 | 266.67 |
(30,40) | 35 | 96.16 | 37.10 | 87.10 | 38.89 | 25.00 | 175.00 |
(40,50) | 22 | 97.19 | 47.68 | 62.46 | 31.94 | 20.00 | 130.00 |
(50,60) | 20 | 98.12 | 58.40 | 64.27 | 37.37 | 18.87 | 150.00 |
(60,100) | 28 | 99.44 | 79.87 | 72.51 | 40.10 | 26.67 | 200.00 |
(100,400) | 12 | 100.00 | 192.33 | 37.45 | 10.76 | 18.75 | 55.05 |
Total | 2133 | 100.00 | 11.36 | 162.53 | 140.23 | 18.18 | 1000.00 |
Variables | Definition and Measure | Mean | SD |
---|---|---|---|
Farm characteristics | |||
Farm size | Measured by household’s sowing area (mu) | 11.36 | 19.80 |
Land parcels | Household has more than one parcel of arable land (yes = 1; otherwise = 0) | 0.77 | 0.42 |
Suitability for machinery | The largest parcel supported large scale mechanical operation (yes = 1; otherwise = 0) | 0.76 | 0.43 |
Accessibility to tractor road | The largest parcel adjacent to tractor road (yes = 1; otherwise = 0) | 0.71 | 0.45 |
Land quality | Subjective valuation on the fertility of the household’s largest parcel (very good = 1; good = 2; fair = 3; poor = 4; very poor = 5) | 2.58 | 0.97 |
Plant type_1 | Household grows rice = 1; otherwise = 0 | 0.17 | 0.38 |
Plant type_2 | Household grows wheat = 1; otherwise = 0 | 0.05 | 0.21 |
Plant type_3 | Household grows Maize = 1; otherwise = 0 | 0.28 | 0.45 |
Plant type_4 | Household grows rice & wheat = 1; otherwise = 0 | 0.03 | 0.17 |
Plant type_5 | Household grows rice & maize = 1; otherwise = 0 | 0.09 | 0.29 |
Plant type_6 | Household grows wheat & maize = 1; otherwise = 0 (base group) | 0.36 | 0.48 |
Plant type_7 | Household grows rice & wheat & Maize = 1; otherwise = 0 | 0.02 | 0.14 |
Household head characteristics | |||
Age of head | Age of household head (years) | 53.39 | 10.86 |
Education of head | Education level of head (1 = Illiterate; 2 = Primary education; 3 = Secondary education; 4 = High school education; 5 = Undergraduate education and above) | 2.69 | 0.91 |
Health status of head | Self-valuation on body health (healthy = 1; otherwise = 0) | 0.79 | 0.41 |
Family characteristics | |||
Agricultural labor force | Agricultural labor force in household (person) | 1.96 | 0.81 |
Agricultural assets | Total value of agricultural machinery (Yuan) | 2711.86 | 12560.78 |
Region characteristics | |||
Terrain | Located in plain county (yes = 1; otherwise = 0) | 0.52 | 0.5 |
Region_1 | Located in east China (yes = 1; otherwise = 0) (base group) | 0.29 | 0.45 |
Region_2 | Located in central China (yes = 1; otherwise = 0) | 0.35 | 0.48 |
Region_3 | Located in west China (yes = 1; otherwise = 0) | 0.23 | 0.42 |
Region_4 | Located in northeast China (yes = 1; otherwise = 0) | 0.13 | 0.34 |
Variable | Log(Per Area Machinery Services Expenditures) | |
---|---|---|
OLS | IV | |
Farm size | −0.009 ***(−5.16) | −0.007 ***(−4.11) |
Land parcels | −0.008 (−0.20) | −0.011 (−0.29) |
Suitability for machinery | −0.004 (−0.09) | −0.008 (−0.19) |
Accessibility to tractor road | 0.042 (1.06) | 0.043 (1.08) |
Land quality | −0.018 (−1.04) | −0.016 (−0.94) |
Age of head | −0.001 (−0.51) | −0.001 (−0.47) |
Education of head | 0.072 ***(4.07) | 0.070 ***(3.93) |
Health status of head | −0.041 (−1.00) | −0.044 (−1.06) |
Agricultural labor force | −0.004 (−0.19) | −0.006 (−0.25) |
Agricultural assets | −0.011 **(−2.31) | −0.014 *** (−2.79) |
Terrain | −0.016 (−0.44) | −0.019 (−0.54) |
Region | YES | YES |
Constant | 4.612 ***(29.54) | 4.609 *** (29.45) |
Adjusted R2 | 0.152 | 0.150 |
F | 16.684 | 16.400 |
Observations | 2133 | 2133 |
Summary statistics of the first-stage | ||
Contracted land area | 0.783 ***(4.68) | |
Robust F | 21.943 | |
Partial R2 | 0.272 |
LM-Test | Chow-Test | |||
---|---|---|---|---|
Threshold Estimate | LM-Test | Bootstrap p-Value | F | Prob> F |
3.10 | 45.77 *** | 0.00 | 5.92 ** | 0.02 |
6.00 | 78.76 *** | 0.00 | 28.80 *** | 0.00 |
16.00 | 148.97 *** | 0.00 | 113.24 *** | 0.00 |
24.00 | 38.74 *** | 0.02 | 1.37 | 0.24 |
50.00 | 32.74 *** | 0.04 | 3.31 * | 0.07 |
Variable | Dependent Variable: Log (Per Area Machinery Services Expenditures) | ||||
---|---|---|---|---|---|
FS ≦ 3.1 | 3.1 < FS ≦ 6 | 6 < FS ≦ 16 | 16 < FS ≦ 50 | FS > 50 | |
Farm size | −0.201 *** | −0.062 * | −0.039 *** | −0.015 *** | −0.003 *** |
(−4.60) | (−1.74) | (−4.17) | (−3.77) | (−3.46) | |
Land parcels | 0.064 | 0.104 | −0.013 | −0.107 | 0.558 ** |
(0.80) | (1.43) | (−0.21) | (−1.03) | (2.55) | |
Suitability for machinery | 0.080 | 0.037 | 0.130 * | −0.222 *** | 0.004 |
(1.06) | (0.46) | (1.76) | (−1.97) | (−0.01) | |
Accessibility to tractor road | −0.053 | 0.177 ** | 0.106 | −0.064 | −0.037 |
(−0.71) | (2.14) | (1.57) | (−0.71) | (−0.23) | |
Land quality | 0.018 | −0.042 | −0.006 | −0.027 | −0.064 |
(0.52) | (−1.35) | (−0.21) | (−0.66) | (−0.66) | |
Age of head | 0.002 | −0.004 | 0.001 | −0.011 *** | −0.001 |
(0.60) | (−1.44) | (0.35) | (−2.79) | (−0.15) | |
Education of head | 0.070 ** | 0.090 *** | 0.046 * | 0.020 | 0.089 * |
(1.98) | (2.74) | (1.67) | (0.42) | (1.85) | |
Health status of head | −0.108 | 0.046 | 0.016 | −0.115 | 0.271 |
(−1.32) | (0.65) | (0.24) | (−1.13) | (0.85) | |
Agricultural labor force | 0.137 *** | 0.023 | −0.022 | −0.056 | −0.211 *** |
(3.39) | (0.55) | (−0.64) | (−1.27) | (−2.76) | |
Agricultural assets | 0.027 ** | 0.007 | −0.005 | −0.002 | 0.012 |
(1.98) | (0.77) | (−0.75) | (−0.26) | (0.60) | |
Terrain | 0.041 | 0.101 | 0.022 | 0.129 | −0.033 |
(0.56) | (1.52) | (0.36) | (1.39) | (−0.21) | |
Plant type | YES | YES | YES | YES | YES |
Region | YES | YES | YES | YES | YES |
Constant | 4.783 *** | 4.714 *** | 4.592 *** | 5.713 *** | 4.192 *** |
(14.12) | (14.53) | (16.93) | (13.43) | (6.33) | |
Adjusted R2 | 0.120 | 0.064 | 0.042 | 0.101 | 0.278 |
F | 4.933 | 2.938 | 2.762 | 2.627 | 6.375 |
Observations | 525 | 530 | 746 | 272 | 60 |
Group Range (mua) | Sample Size | Cumulative Percentage (%) | Average Group Size (mu) | The PAMSE (Yuanb/mu) |
---|---|---|---|---|
(0,1) | 425 | 19.92 | 0.83 | 238.66 |
(1,2) | 580 | 47.12 | 1.72 | 162.77 |
(2,3) | 382 | 65.03 | 2.83 | 151.08 |
(3,4) | 218 | 75.25 | 3.84 | 139.35 |
(4,5) | 178 | 83.59 | 4.89 | 122.88 |
(5,6) | 96 | 88.09 | 5.9 | 135.88 |
(6,7) | 55 | 90.67 | 6.92 | 132.93 |
(7,8) | 43 | 92.69 | 7.92 | 121.76 |
(8,9) | 17 | 93.48 | 8.95 | 96.16 |
(9,10) | 49 | 95.78 | 9.97 | 101.62 |
(10,15) | 48 | 98.03 | 12.9 | 112.53 |
(15,20) | 23 | 99.11 | 18.53 | 75.23 |
(20,25) | 8 | 99.48 | 23.99 | 85.24 |
(25,30) | 4 | 99.67 | 29 | 89.58 |
(30,360) | 7 | 100 | 107.14 | 70.53 |
Total | 2133 | 100 | 3.83 | 162.53 |
Farm Size | |||||
---|---|---|---|---|---|
Group range | (0,3.1] | (3.1,6] | (6,16] | (16,50] | (50,400] |
Area of the largest parcel | 0.5134 *** | 0.2843 *** | 0.2623 *** | 0.2551 *** | 0.5837 *** |
Variable | Dependent Variable: Log (Per Area Machinery Services Expenditures) | |||||
---|---|---|---|---|---|---|
Maize | Wheat & Maize in North China Plain | |||||
FS ≦ 16 | FS > 16 | Full Sample | FS ≦ 16 | FS > 16 | Full Sample | |
Farm size | −0.074 *** | −0.004 *** | −0.007 *** | −0.053 *** | −0.006 *** | −0.012 *** |
(−6.87) | (−3.03) | (−3.27) | (−5.92) | (−2.29) | (−3.93) | |
R2_adj | 0.098 | 0.152 | 0.122 | 0.075 | 0.035 | 0.063 |
F | 4.557 | 28.83 | 5.158 | 4.67 | 2.092 | 3.391 |
Observations | 474 | 120 | 594 | 477 | 80 | 557 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Xin, L.; Li, X.; Tan, M.; Wang, Y. Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services. Sustainability 2019, 11, 2213. https://doi.org/10.3390/su11082213
Xu Y, Xin L, Li X, Tan M, Wang Y. Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services. Sustainability. 2019; 11(8):2213. https://doi.org/10.3390/su11082213
Chicago/Turabian StyleXu, Yu, Liangjie Xin, Xiubin Li, Minghong Tan, and Yahui Wang. 2019. "Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services" Sustainability 11, no. 8: 2213. https://doi.org/10.3390/su11082213
APA StyleXu, Y., Xin, L., Li, X., Tan, M., & Wang, Y. (2019). Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services. Sustainability, 11(8), 2213. https://doi.org/10.3390/su11082213