A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint
Abstract
1. Introduction
2. Conceptual Framework, Hypotheses and Model
2.1. Background and Conceptual Analytic Framework
2.2. Fundamental Hypotheses
2.3. Augmented IPAT Model
+ α7t ln(SCALEit) * ln(TRANSit) + eit.
3. Empirical Research Results
3.1. Data Description
3.2. Empirical Research Results
4. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Terms | Abbreviation | Terms | Abbreviation | Terms | Abbreviation |
---|---|---|---|---|---|
High-speed rail | HSR | Gross domestic product | GDP | Electric multiple unit | EMU |
Transport demand management | TDM | Transport supply management | TSM | Impact, population, affluence, technology | IPAT |
Stochastic Impacts by Regression on IPAT | STIRPAT | Population | P, POP | Economy | A |
City | CITY | Transportation | TRANS | Accessibility | ACC |
Subway | SUB | Carbon emission | CARB | Population | POP |
% of economy employed in manufacturing | MAN | Build up area | AREA | The value added of the tertiary industry over the secondary industry | TS |
The employment of the tertiary industry divided by the secondary industry | TSTE | Urban internal potential | IMP | Science and technology expenditure budget | TECH |
Artificial gas | AG | Liquefied petroleum gas | LPG | Natural gas | NG |
Generalized weighted accessibility | gwt | Travel expenditure | F | Weighted time value | TV |
Working hour | WH | Average annual disposable income | WAGE | Transit oriented development | TOD |
Variables | CARB CARB/GDP CARB/POP | CARB | CARB Growth Rate | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Nat | Nat | Nat | East | Central | West | CARB | CARB/GDP | CARB/POP | ||
Transportation | ACC2 | 0.111 *** | 0.143 *** | 0.126 *** | 0.114 *** | 0.113 *** | −0.051 | 0.122 *** | 0.157 *** | 0.140 *** |
(0.004) | (0.006) | (0.005) | (0.015) | (0.009) | (0.040) | (0.041) | (0.053) | (0.047) | ||
ACC1 | 0.130 *** | 0.167 *** | 0.148*** | 0.119 *** | 0.129 *** | 0.024 | 0.030 * | 0.157 *** | 0.035* | |
(0.003) | (0.004) | (0.004) | (0.014) | (0.008) | (0.028) | (0.016) | (0.053) | (0.019) | ||
BUS | 0.241 *** | 0.310 *** | 0.275 *** | 0.127 *** | 0.300 *** | 0.675 *** | 0.024 ** | 0.031 ** | 0.027 ** | |
(0.015) | (0.020) | (0.018) | (0.026) | (0.045) | (0.157) | (0.010) | (0.013) | (0.011) | ||
ROAD | −0.078 *** | −0.100 *** | −0.088 *** | 0.238 *** | −0.089 ** | −0.212 *** | −0.003 | −0.004 | −0.004 | |
(0.015) | (0.019) | (0.017) | (0.022) | (0.043) | (0.069) | (0.010) | (0.013) | (0.012) | ||
RAIL | 0.026 ** | 0.034 ** | 0.030 ** | 0.045 * | −0.074 ** | −0.019 | 0.012 *** | 0.016 *** | 0.014 *** | |
(0.012) | (0.015) | (0.013) | (0.026) | (0.030) | (0.063) | (0.003) | (0.003) | (0.003) | ||
SUB | 0.382 *** | 0.491 *** | 0.435 *** | 0.434 *** | 0.265 *** | 0.138 *** | ||||
(0.050) | (0.065) | (0.057) | (0.024) | (0.025) | (0.132) | |||||
Interactions | ACC2 | 0.004 | 0.005 | 0.009 | 0.188 *** | −0.017 | 0.035 * | 0.100 *** | 0.129 *** | 0.115 *** |
(0.008) | (0.010) | (0.009) | (0.013) | (0.012) | (0.021) | (0.005) | (0.007) | (0.006) | ||
ACC1 | 0.008 | 0.010 | −0.056 *** | 0.190 *** | −0.024 ** | 0.024 | 0.061 *** | 0.078 *** | 0.069 *** | |
(0.008) | (0.010) | (0.019) | (0.011) | (0.012) | (0.018) | (0.004) | (0.005) | (0.004) | ||
BUS | −0.038 ** | −0.049 *** | −0.056 ** | 0.055 ** | 0.035 | −0.054 | 0.009 *** | 0.012 *** | 0.010 *** | |
(0.018) | (0.017) | (0.019) | (0.020) | (0.046) | (0.072) | (0.002) | (0.002) | (0.002) | ||
ROAD | −0.050 *** | −0.061 *** | −0.042 *** | −0.102 *** | −0.031 | 0.131 ** | −0.010 ** | −0.021 *** | −0.022 *** | |
(0.017) | (0.021) | (0.017) | (0.019) | (0.033) | (0.065) | (0.004) | (0.005) | (0.004) | ||
RAIL | 0.050 *** | 0.062 ** | 0.060 *** | 0.081 *** | −0.110 *** | −0.091 *** | 0.010 *** | 0.022 *** | 0.011 *** | |
(0.018) | (0.024) | (0.021) | (0.020) | (0.036) | (0.016) | (0.003) | (0.004) | (0.003) | ||
Adjusted R2 | 0.83 | 0.31 | 0.69 | 0.90 | 0.87 | 0.74 | 0.04 | 0.93 | 0.91 |
Variables | CARB (GDP Interaction) | CARB (Population Interaction) | CARB/GDP (GDP Interaction) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
East | Central | West | East | Central | West | East | Central | West | ||
Transportation | ACC2 | 0.097 *** | 0.115 *** | 0.046 | 0.125 *** | 0.121 *** | −0.074 | 0.124 *** | 0.155 *** | 0.059 |
(0.010) | (0.013) | (0.045) | (0.009) | (0.009) | (0.045) | (0.022) | (0.020) | (0.113) | ||
ACC1 | 0.106 *** | 0.128 *** | 0.112 *** | 0.125 *** | 0.136 *** | 0.032 | 0.137 *** | 0.176 *** | 0.144 | |
(0.009) | (0.013) | (0.045) | (0.009) | (0.008) | (0.054) | (0.023) | (0.021) | (0.122) | ||
BUS | 0.092 *** | 0.228 *** | 0.799 *** | 0.125 *** | 0.272 *** | 0.956 *** | 0.118 *** | 0.392 *** | 1.026 *** | |
(0.025) | (0.04) | (0.167) | (0.010) | (0.048) | (0.175) | (0.040) | (0.059) | (0.208) | ||
ROAD | 0.243 * | −0.034 | −0.193 *** | 0.229 *** | −0.105 *** | −0.169 ** | 0.312 *** | −0.144 ** | −0.248 | |
(0.020) | (0.043) | (0.033) | (0.023) | (0.037) | (0.060) | (0.040) | (0.068) | (0.162) | ||
RAIL | 0.040 | −0.033 ** | −0.080 | 0.047 * | −0.019 | −0.110 ** | 0.051 *** | −0.119 *** | −0.102 | |
(0.032) | (0.015) | (0.062) | (0.028) | (0.020) | (0.049) | (0.020) | (0.042) | (0.104) | ||
SUB | 0.529 *** | 0.220 *** | 0.153 | 0.448 *** | 0.186 *** | −0.085 | 0.680 *** | 0.294 *** | 0.196 | |
(0.028) | (0.054) | (0.137) | (0.036) | (0.043) | (0.154) | (0.096) | (0.094) | (0.527) | ||
Interactions | ACC2 | 0.220 *** | −0.012 | −0.016 | 0.152 *** | −0.041 *** | 0.150 *** | 0.283 *** | −0.009 | −0.020 |
(0.019) | (0.011) | (0.035) | (0.005) | (0.005) | (0.027) | (0.021) | (0.019) | (0.104) | ||
ACC1 | 0.222 *** | −0.021 | −0.030 | 0.152 *** | −0.037 *** | 0.153 *** | 0.286 *** | −0.028 * | −0.039 | |
(0.016) | (0.01) | (0.047) | (0.006) | (0.004) | (0.039) | (0.021) | (0.020) | (0.112) | ||
BUS | 0.025 | −0.075 | 0.097 | 0.000 | −0.102 | −0.045 | 0.056 | 0.110 * | −0.315 * | |
(0.019) | (0.022) | (0.040) | (0.022) | (0.026) | (0.058) | (0.035) | (0.066) | (0.211) | ||
ROAD | −0.090 *** | 0.040 | 0.070 * | −0.090 *** | 0.021 | 0.101 * | −0.130 *** | −0.032 *** | 0.341 * | |
(0.016) | (0.039) | (0.036) | (0.015) | (0.015) | (0.063) | (0.033) | (0.049) | (0.158) | ||
RAIL | 0.100 *** | −0.070 *** | −0.161 *** | 0.142 *** | 0.019 | −0.070 *** | 0.111 *** | −0.142 *** | −0.009 | |
(0.037) | (0.019) | (0.030) | (0.019) | (0.023) | (0.016) | (0.029) | (0.050) | (0.103) | ||
Adjusted R2 | 0.90 | 0.87 | 0.70 | 0.91 | 0.89 | 0.82 | 0.53 | 0.31 | 0.25 |
References
- Liu, L.; Wang, K.; Wang, S.; Zhang, R.; Tang, X. Assessing energy consumption, CO2 and pollutant emissions and health benefits from China’s transport sector through 2050. Energy Policy 2018, 116, 382–396. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the urban carbon footprint: An overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Shunping, J.; Baohua, M.; Shuang, L.; Qipeng, S. Calculation and analysis of transportation energy consumption level in China. J. Transp. Syst. Eng. Inf. Technol. 2010, 10, 22–27. [Google Scholar]
- Notice of Coping with Climate Change Plan (2014–2020). Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201411/t20141104_642612.html (accessed on 11 December 2018).
- Lin, W.; Chen, B.; Xie, L.; Pan, H. Estimating Energy Consumption of Transport Modes in China Using DEA. Sustainability 2015, 7, 4225–4239. [Google Scholar] [CrossRef]
- Addanki, S.C.; Venkataraman, H. Greening the economy: A review of urban sustainability measures for developing new cities. Sustain. Cities Soc. 2017, 32, 1–8. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef]
- Ma, M.; Shen, L.; Ren, H.; Cai, W.; Ma, Z. How to measure carbon emission reduction in China’s public building sector: Retrospective decomposition analysis based on STIRPAT model in 2000–2015. Sustainability 2017, 9, 1744. [Google Scholar] [CrossRef]
- Acquaye, A.; Feng, K.; Oppon, E.; Salhi, S.; Ibn-Mohammed, T.; Genovese, A.; Hubacek, K. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J. Environ. Manag. 2017, 187, 571–585. [Google Scholar] [CrossRef]
- Southworth, F.; Sonnenberg, A. Set of comparable carbon footprints for highway travel in metropolitan America. J. Transp. Eng. 2011, 137, 426–435. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.; Doelman, J.C.; Van den Berg, M.; Harmsen, M.; Girod, B. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 2017, 42, 237–250. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, J.; Sun, Z.; Yang, W. Spatial pattern of carbon sequestration and urban sustainability: Analysis of land-use and carbon emission in Guang’an, China. Sustainability 2017, 9, 1951. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Moemen, M.A.E.; Islam, T. Dynamic linkages between tourism transportation expenditures, carbon dioxide emission, energy consumption and growth factors: Evidence from the transition economies. Curr. Issues Tour. 2017, 20, 1720–1735. [Google Scholar] [CrossRef]
- Marquez, L.O.; Smith, N.C. A framework for linking urban form and air quality. Environ. Model. Softw. 1999, 14, 541–548. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef]
- VandeWeghe, J.R.; Kennedy, C. A spatial analysis of residential greenhouse gas emissions in the Toronto census metropolitan area. J. Ind. Ecol. 2007, 11, 133–144. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.X.; Zhu, J.; Darko, A.; Gou, Z.H. Promoting and implementing urban sustainability in China: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, J.; Rose, A.Z.; Haynes, K.E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transp. Res. Part A Policy Pract. 2016, 92, 232–245. [Google Scholar] [CrossRef]
- Wang, K.; Xia, W.; Zhang, A. Should China further expand its high-speed rail network? Consider the low-cost carrier factor. Transp. Res. Part A Policy Pract. 2017, 100, 105–120. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, A. Air and high-speed rail transport integration on profits and welfare: Effects of air-rail connecting time. J. Air Transp. Manag. 2017, 65, 181–190. [Google Scholar] [CrossRef]
- Westin, J.; Kågeson, P. Can high speed rail offset its embedded emissions? Transp. Res. D Transp. Environ. 2012, 17, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Loo, B.P. Railway development and air patronage in China, 1993–2012: Implications for low-carbon transport. J. Reg. Sci. 2017, 57, 507–522. [Google Scholar] [CrossRef]
- Wee, B.V.; Janse, P.; Brink, R.V.D. Comparing energy use and environmental performance of land transport modes. Transp. Rev. 2005, 25, 3–24. [Google Scholar] [CrossRef]
- Janic, M. Assessing some social and environmental effects of transforming an airport into a real multimodal transport node. Transp. Res. D Transp. Environ. 2011, 16, 137–149. [Google Scholar] [CrossRef]
- Givoni, M. Environmental benefits from mode substitution: Comparison of the environmental impact from aircraft and high-speed train operations. Int. J. Sustain. Transp. 2007, 1, 209–230. [Google Scholar] [CrossRef]
- Åkerman, J. The role of high-speed rail in mitigating climate Change—The Swedish case Europabanan from a life cycle perspective. Transp. Res. D Transp. Environ. 2011, 16, 208–217. [Google Scholar] [CrossRef]
- Lin, H.; Zeng, S.; Ge, S.; Chen, Y. Can the bullet train speed up climate change mitigation in China? Front. Eng. 2017, 4, 104–105. [Google Scholar] [CrossRef]
- Wu, J.; Nash, C.; Wang, D. Is high speed rail an appropriate solution to China’s rail capacity problems? J. Transp. Geogr. 2014, 40, 100–111. [Google Scholar] [CrossRef]
- Chang, B.; Kendall, A. Life cycle greenhouse gas assessment of infrastructure construction for California’s high-speed rail system. Transp. Res. D Transp. Environ. 2011, 16, 429–434. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, H.; Zhang, S. Calculation method for carbon dioxide emission in the life cycle of high-speed railway. China Railw. Sci. 2013, 34, 140–144. [Google Scholar]
- Givoni, M. Development and impact of the modern high-speed train: A review. Transp. Rev. 2006, 26, 593–611. [Google Scholar] [CrossRef]
- Albalate, D.; Bel, G. High-speed rail: Lessons for policy makers from experiences abroad. Public Admin. Rev. 2012, 72, 336–349. [Google Scholar] [CrossRef]
- Hall, P.; Banister, D. The second railway age. Built Environ. 1993, 19, 157–162. [Google Scholar]
- Railway Development Bulletin of 2017. Available online: http://www.nra.gov.cn/xwzx/zlzx/hytj/201804/t20180412_55248.shtml (accessed on 12 April 2018).
- Statistics Information of China Railway Corporation. Available online: http://www.china-railway.com.cn/cpyfw/tjxx/ (accessed on 21 December 2018).
- Medium and Long-Term Railway Network Plan. Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201607/t20160720_811696.html (accessed on 13 July 2016).
- High-Speed Rail Network to Cover 80% of Major Cities in China by 2020. Available online: https://gbtimes.com/high-speed-rail-network-to-cover-80-of-major-cities-in-china-by-2020 (accessed on 2 January 2018).
- Railway Statistics Bulletin (2008–2016). Available online: http://www.china-railway.com.cn/ (accessed on 10 January 2018).
- National Statistics Bureau. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 16 March 2018).
- Annual Audit Report of China Railway Corporation (2008–2016). Available online: https://www.chinabond.com.cn/ (accessed on 18 March 2018).
- Dong, D.; Duan, H.; Mao, R.; Song, Q.; Zuo, J.; Zhu, J.; Liu, G. Towards a low carbon transition of urban public transport in megacities: A case study of Shenzhen, China. Resour. Conserv. Recycl. 2018, 134, 149–155. [Google Scholar] [CrossRef]
- Li, P.; Zhao, P.; Brand, C. Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach. Appl. Energ. 2018, 211, 820–842. [Google Scholar] [CrossRef]
- Loo, B.P.; Li, L. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport. Energy Policy 2012, 50, 464–476. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors affecting carbon dioxide (CO2) emissions in China’s transport sector: A dynamic nonparametric additive regression model. J. Clean. Prod. 2015, 101, 311–322. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energ. 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Ma, J.; Chai, Y.; Liu, Z. The Mechanism of CO2 emissions from urban transport based on individuals’ travel behavior in Beijing. Acta Geogr. Sin. 2011, 66, 1023–1032. [Google Scholar]
- Urban Public Transport. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 21 December 2018).
- Yearly Statistical Report 2017 of China Association of Metros. Available online: http://www.camet.org.cn (accessed on 21 December 2018).
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R.; Chen, H.; Yang, T. Analysis of an optimal public transport structure under a carbon emission constraint: A case study in Shanghai, China. Environ. Sci. Pollut. R. 2018, 25, 3348–3359. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, H.; Ou, X. Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050. Sustainability 2014, 6, 4877–4899. [Google Scholar] [CrossRef]
- Zahabi, S.A.H.; Miranda-Moreno, L.; Patterson, Z.; Barla, P.; Harding, C. Transportation greenhouse gas emissions and its relationship with urban form, transit accessibility and emerging green technologies: A Montreal case study. Procedia Soc. Behav. Sci. 2012, 54, 966–978. [Google Scholar] [CrossRef]
- Focas, C. Travel behaviour and CO2 emissions in urban and exurban London and New York. Transp. Policy 2016, 46, 82–91. [Google Scholar] [CrossRef]
- He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Wang, Q. Energy use of, and CO2 emissions from China’s urban passenger transportation sector–carbon mitigation scenarios upon the transportation mode choices. Transp. Res. Part A Policy Pract. 2013, 53, 53–67. [Google Scholar] [CrossRef]
- Andong, R.F.; Sajor, E. Urban sprawl, public transport, and increasing CO2 emissions: The case of Metro Manila, Philippines. Environ. Dev. Sustain. 2017, 19, 99–123. [Google Scholar] [CrossRef]
- Chapman, L. Transport and climate change: A review. J. Transp. Geogr. 2007, 15, 354–367. [Google Scholar] [CrossRef]
- Brännlund, R.; Ghalwash, T.; Nordström, J. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 2007, 29, 1–17. [Google Scholar] [CrossRef]
- Darido, G.; Torres-Montoya, M.; Mehndiratta, S. Urban transport and CO2 emissions: Some evidence from Chinese cities. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 122–155. [Google Scholar] [CrossRef]
- Hongchang, L.; Strauss, J.; Shunxiang, H.; Lihong, L. Do high-speed railways lead to urban economic growth in China? A panel data study of China’s cities. Q. Rev. Econ. Finance 2018, 69, 70–89. [Google Scholar]
- Jiao, J.; Wang, J.; Jin, F.; Dunford, M. Impacts on accessibility of China’s present and future HSR network. J. Transp. Geogr. 2014, 40, 123–132. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Ishii, S.; Tabushi, S.; Aramaki, T.; Hanaki, K. Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan. Energy Policy 2010, 38, 4888–4896. [Google Scholar] [CrossRef]
- Nakamura, H. The economic evaluation of transport infrastructure: Needs for international comparisons. Transp. Policy 2000, 7, 3–6. [Google Scholar] [CrossRef]
- Ramaswami, A.; Jiang, D.; Tong, K.; Zhao, J. Impact of the economic structure of cities on urban scaling factors: Implications for urban material and energy flows in China. J. Ind. Ecol. 2018, 22, 392–405. [Google Scholar] [CrossRef]
- Ji, X.; Chen, B. Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J. Clean Prod. 2017, 163, 306–314. [Google Scholar] [CrossRef]
- Vickerman, R. Can high-speed rail have a transformative effect on the economy? Trans. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Pojani, D.; Stead, D. The Urban Transport Crisis in Emerging Economies; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- McLeod, S.; Scheurer, J.; Curtis, C. Urban public transport: Planning principles and emerging practice. J. Plan. Lit. 2017, 32, 223–239. [Google Scholar] [CrossRef]
- Black, J. Urban Transport Planning: Theory and Practice; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar]
- Williams, K. Spatial Planning, Urban Form and Sustainable Transport. In Spatial Planning, Urban Form and Sustainable Transport: An Introduction; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Pan, H. Urban spatial structure towards low carbon: New urban transport and land use model. Urban Stud. 2010, 17, 40–45. [Google Scholar]
- Zeng, C.; Yang, L.; Dong, J. Management of urban land expansion in China through intensity assessment: A big data perspective. J. Clean Prod. 2017, 153, 637–647. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, J. The impact of urban scale and spatial structure on carbon emissions. Urban Stud. 2012, 3, 89–95. [Google Scholar]
- Du, Q.; Xu, Y.; Wu, M.; Sun, Q.; Bai, L.; Yu, M. A network analysis of indirect carbon emission flows among different industries in China. Environ. Sci. Pollut. R. 2018, 25, 1–19. [Google Scholar] [CrossRef]
- Zhao, R.; Chuai, X.; Huang, X.; Lai, L.; Peng, J. Carbon emission and carbon footprint of different industrial spaces in different regions of China. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer: Singapore, 2014; Volume 1, pp. 191–220. [Google Scholar]
- Lan, J.; Fu, W.; Yuan, B. Analysis of carbon emission and carbon footprint of different land use in Chongqing. J. Soil Water Conserv. 2012, 26, 146–150. [Google Scholar]
- Harris, C.D. The market as a factor in the localization of industry in the United States. Ann. Assoc. Am. Geogr. 1954, 44, 315–348. [Google Scholar]
- Head, K.; Mayer, T. Non-Europe: The magnitude and causes of market fragmentation in the EU. Rev. World Econ. 2000, 136, 284–314. [Google Scholar] [CrossRef]
- Hongchang, L.; Tjia, L.; Shunxiang, H. The impact of China’s high-speed railway on economic agglomeration and equalization of cities along the routes. J. Quant. Tech. Econ. 2016, 11, 127–143. [Google Scholar]
- Shi, J.; Zhou, N. How cities influenced by high speed rail development: A case study in China. J. Transp. Technol. 2013, 3, 7–16. [Google Scholar] [CrossRef]
- Li, J. Survey and analysis on passenger travel characteristics and distribution features of Wuhan-Guangzhou high speed railway. Railw. Stand. Des. 2011, 11, 1–4. [Google Scholar]
- Tao, Y. Research on economic impacts of HSR. Rail. Transp. Econ. 2007, 29, 4–6. [Google Scholar]
- The China City Statistics Yearbook (2008–2014). Available online: http://data.cnki.net/ (accessed on 20 March 2018).
- National Railway Passenger Time Schedule (2007–2013). Available online: https://www.wandoujia.com/mip/apps/za.co.nasdev.gt.ui/history (accessed on 20 March 2018).
- China Transportation Statistics Yearbook (2008–2014). Available online: http://www.chinayearbook.com/yearbook/ (accessed on 20 March 2018).
- Robertson, S. The potential mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel from a life cycle perspective—An Australian case study. Transp. Res. D Transp. Environ. 2016, 46, 365–380. [Google Scholar] [CrossRef]
- Yu, N.; de Roo, G.; De Jong, M.; Storm, S. Does the expansion of a motorway network lead to economic agglomeration? Evidence from China. Transp. Policy 2016, 45, 218–227. [Google Scholar] [CrossRef]
- Liu, W.; Qin, B. Low-carbon city initiatives in China: A review from the policy paradigm perspective. Cities 2016, 51, 131–138. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Silva, E.A. Land use—Transport interaction modeling: A review of the literature and future research directions. J. Transp. Land Use 2015, 8, 11–38. [Google Scholar] [CrossRef]
- Baron, T.; Martinetti, G.; Pépion, D. Carbon Footprint of High Speed Rail; UIC: Paris, France, 2011; pp. 23–25. [Google Scholar]
- Ribalaygua, C.; Perez-Del-Caño, S. Assessing spatial planning strategy in high-speed rail station areas in Spain (1992–2018): Towards a sustainable model. Eur. Plan. Stud. 2019, 1–23. [Google Scholar] [CrossRef]
- Cao, X.J.; Pan, Q. Rapid transit and land development in a diverse world. Transp. Policy 2016, 51, 1–3. [Google Scholar] [CrossRef]
- Lin, X.; Yang, J.; MacLachlan, I. High-speed rail as a solution to metropolitan passenger mobility: The case of Shenzhen-Dongguan-Huizhou metropolitan area. J. Transp. Land Use 2018, 11, 1257–1270. [Google Scholar] [CrossRef]
No. | Key Conclusions | References |
---|---|---|
1 | Emission reductions through substitution of other transportation modes by HSR is small, offset by output growth, and induces demand increases. | [20] |
2 | The aggregate effect of HSR on carbon emissions depends on the comparative magnitudes of the substitution and consumption promotion effect. | [23,24] |
3 | HSR can have significant CO2 emission reduction effects, with less than 1/3 of that of highways, and the reduction effect can be greater if HSR replaces short-haul civil aviation passenger demand. | [25,26,27] |
4 | The contribution of HSR to greenhouse gas emissions should consider both passenger and freight markets and be based on life-cycle evaluations. | [28,29,30,31] |
5 | HSR maybe more energy efficient than conventional railways, let alone civil aviation or highways due to economies of scale. | [32] |
6 | Most studies focus on HSR carbon emission measurement or case studies, while research on HSR’s carbon emissions in cities is limited. | [33,34] |
Year | New Added HSR Lines | Total Length (10,000 km) | Prefectural Cities Covered | Passenger Volume Sent by HSR (100 million) | % of HSR Passenger Volume to Total Railway Passengers | Key Accounting Performance Indices | ||
---|---|---|---|---|---|---|---|---|
Profit after Tax (100 million Yuan) | Debt (trillion Yuan) | Debt to Asset Ratio | ||||||
2008 | 3 | 404 | 13 | 1.28 | 8.76% | |||
2009 | 4 | 1052 | 34 | 1.72 | 11.28% | |||
2010 | 6 | 4243 | 57 | 2.85 | 17.00% | |||
2011 | 3 | 5855 | 69 | 4.07 | 21.86% | |||
2012 | 6 | 7275 | 94 | 5.01 | 26.47% | |||
2013 | 11 | 10,164 | 116 | 6.57 | 31.20% | 2.57 | 3.23 | 64% |
2014 | 9 | 13,626 | 138 | 8.76 | 37.17% | 6.36 | 3.68 | 66% |
2015 | 13 | 19,195 | 151 | 11.39 | 44.93% | 6.81 | 4.10 | 66% |
2016 | 8 | 23,602 | 166 | 14.46 | 51.39% | 10.76 | 4.72 | 65% |
Variables | Index | Unit | ||
---|---|---|---|---|
Type | Description | Name | Abbreviation | |
Environment | Carbon footprint | Carbon emission | CARB | Ten thousand tons |
Population (P) | Urban population | Municipal district population | POP | Ten thousand persons |
Economy (A) | Urban economic scale | GDP of all prefectural cities | GDP | Ten thousand Yuan |
Industrial structure | % of economy employed in manufacturing | MAN | % | |
City (CITY) | Urban land scale | Built up area | AREA | Square kilometer |
Transportation (TRANS) | External transportation | Accessibility | ACC1 ACC2 | Dimensionless |
Conventional rail passenger volume | Rail | Ten thousand persons | ||
Internal transportation | Road area | ROAD | Ten thousand square meters | |
Number of public buses | BUS | Number | ||
Presence of subway | SUB | Dummy variable |
Fossil Fuel Type | ki (i = 1, 2, 3) (kg Equivalent Standard coal/m3) | mj (j = 1, 2, 3) (kg CO2/m3) |
---|---|---|
Natural gas (NG) | k1 = 1.330 | m1 = 1.879 |
Artificial gas (AG) | k2 = 0.5816 | m2 = 0.3548 |
Liquefied petroleum gas (LPG) | k3 = 1.7143 | k3 = 0.5042 |
Variables | CARB | ACC2 | ACC1 | BUS | ROAD | RAIL | SUB | GDP | POP | MAN | AREA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CARB | 1.00 | |||||||||||
ACC2 | 0.06 | 1.00 | ||||||||||
ACC1 | 0.06 | 0.99 | 1.00 | |||||||||
BUS | 0.62 | −0.03 | −0.03 | 1.00 | ||||||||
ROAD | 0.56 | 0.10 | 0.08 | 0.85 | 1.00 | |||||||
RAIL | 0.40 | −0.02 | −0.02 | 0.65 | 0.55 | 1.00 | ||||||
SUB | 0.38 | −0.08 | −0.09 | 0.50 | 0.47 | 0.38 | 1.00 | |||||
GDP | 0.63 | −0.04 | −0.06 | 0.86 | 0.86 | 0.54 | 0.51 | 1.00 | ||||
POP | 0.48 | 0.05 | 0.04 | 0.78 | 0.80 | 0.55 | 0.48 | 0.76 | 1.00 | |||
MAN | 0.13 | −0.01 | 0.00 | 0.15 | 0.11 | 0.05 | 0.08 | 0.14 | 0.10 | 1.00 | ||
AREA | 0.60 | −0.08 | −0.09 | 0.90 | 0.89 | 0.63 | 0.51 | 0.88 | 0.81 | 0.14 | 1.00 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NAT | Big | Small | NAT | Big | Small | NAT | Big | Small | ||
Transportation | ACC2 | 0.111 *** | 0.048 ** | 0.170 *** | 0.144 *** | 0.061 *** | 0.218 *** | 0.144 *** | 0.075 *** | 0.193 *** |
(0.010) | (0.022) | (0.022) | (0.007) | (0.017) | (0.016) | (0.007) | (0.016) | (0.015) | ||
ACC1 | 0.130 *** | 0.061 *** | 0.189 *** | 0.168 *** | 0.085 *** | 0.243 *** | 0.168 *** | 0.075 *** | 0.215 *** | |
(0.010) | (0.017) | (0.013) | (0.006) | (0.018) | (0.015) | (0.006) | (0.016) | (0.013) | ||
BUS | 0.232 *** | 0.181 *** | 0.253 *** | 0.299 *** | 0.233 *** | 0.325 *** | 0.299 *** | 0.211 *** | 0.288 *** | |
(0.024) | (0.037) | (0.036) | (0.013) | (0.018) | (0.036) | (0.013) | (0.016) | (0.032) | ||
ROAD | −0.066 *** | 0.029 | −0.129 *** | −0.106 *** | 0.037 ** | −0.166 *** | −0.106 *** | 0.018 | −0.147 *** | |
(0.024) | (0.036) | (0.036) | (0.014) | (0.017) | (0.025) | (0.014) | (0.016) | (0.023) | ||
RAIL | 0.011 | 0.087 *** | −0.084 *** | 0.000 | 0.111 *** | −0.108 *** | 0.000 | 0.095 *** | −0.095 *** | |
(0.013) | (0.024) | (0.014) | (0.011) | (0.018) | (0.016) | (0.011) | (0.017) | (0.014) | ||
SUB | 0.363 *** | 0.230 *** | 0.410 *** | 0.323 *** | 0.295 *** | 0.527 *** | 0.323 *** | 0.248 *** | 0.466 *** | |
(0.023) | (0.063) | (0.142) | (0.026) | (0.044) | (0.040) | (0.026) | (0.035) | (0.035) | ||
City Controls | GDP | 0.256 *** | 0.158 *** | 0.439 *** | −0.294 *** | −0.589 *** | −0.229 *** | −0.294 *** | 0.185 *** | 0.499 *** |
(0.037) | (0.04) | (0.027) | (0.022) | (0.063) | (0.03) | (0.022) | (0.059) | (0.027) | ||
POP | −0.081 *** | −0.191 *** | −0.080 *** | −0.122 *** | −0.246 *** | −0.103 *** | −0.122 *** | −0.705 *** | −0.575 *** | |
(0.015) | (0.033) | (0.028) | (0.017) | (0.046) | (0.037) | (0.017) | (0.04) | (0.033) | ||
MAN | −0.032 *** | −0.009 | 0.009 | 0.001 | −0.012 | 0.011 | 0.001 | −0.010 | 0.010* | |
(0.011) | (0.017) | (0.011) | (0.005) | (0.01) | (0.007) | (0.005) | (0.009) | (0.006) | ||
AREA | 0.155 *** | 0.323 *** | 0.045 | 0.210 *** | 0.420 *** | 0.060 *** | 0.210 *** | 0.392 *** | 0.050 | |
(0.027) | (0.057) | (0.037) | (0.020) | (0.061) | (0.032) | (0.021) | (0.050) | (0.031) | ||
Adjusted R2 | 0.87 | 0.86 | 0.84 | 0.29 | 0.29 | 0.24 | 0.69 | 0.66 | 0.62 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EAST | CEN | WEST | EAST | CEN | WEST | EAST | CEN | WEST | ||
Transportation | ACC2 | 0.125 *** | 0.133 *** | 0.027 | 0.182 *** | 0.171 *** | 0.034 | 0.161 *** | 0.151 *** | 0.030 |
(0.011) | (0.013) | (0.075) | (0.029) | (0.016) | (0.067) | (0.026) | (0.014) | (0.059) | ||
ACC1 | 0.143 *** | 0.142 *** | 0.041 | 0.194 *** | 0.195 *** | 0.013 | 0.172 *** | 0.173 *** | 0.020 | |
(0.012) | (0.016) | (0.076) | (0.030) | (0.015) | (0.062) | (0.026) | (0.013) | (0.110) | ||
BUS | 0.279 *** | 0.236 *** | 0.626 *** | 0.151 *** | 0.340 *** | 0.821 *** | 0.134 *** | 0.319 *** | 0.728 *** | |
(0.035) | (0.035) | (0.118) | (0.043) | (0.069) | (0.186) | (0.038) | (0.033) | (0.165) | ||
ROAD | −0.108 *** | −0.104 ** | −0.317 *** | 0.257 *** | −0.134 *** | −0.380 *** | 0.228 *** | −0.046 *** | −0.336 *** | |
(0.045) | (0.044) | (0.134) | (0.03) | (0.038) | (0.043) | (0.026) | (0.012) | (0.038) | ||
RAIL | −0.070 | −0.040 * | 0.056 | 0.070 *** | −0.052 *** | −0.032 | 0.062 *** | 0.236 *** | −0.028 | |
(0.045) | (0.022) | (0.063) | (0.024) | (0.013) | (0.079) | (0.021) | (0.075) | (0.070) | ||
SUB | 0.211 *** | 0.207 *** | 0.053 | 0.633 *** | 0.266 *** | 0.531 *** | 0.560 *** | 0.575 *** | 0.470 *** | |
(0.060) | (0.062) | (0.146) | (0.028) | (0.085) | (0.118) | (0.025) | (0.032) | (0.105) | ||
City Controls | GDP | 0.532 *** | 0.507 *** | 0.197 | −0.457 *** | −0.144 *** | −0.545 *** | 0.298 *** | −0.660 *** | 0.219 *** |
(0.032) | (0.032) | (0.142) | (0.036) | (0.036) | (0.146) | (0.032) | (0.029) | (0.13) | ||
POP | −0.176 *** | −0.015 | −0.225 *** | −0.075 *** | −0.199 *** | −0.289 *** | −0.550 *** | 0.007 | −0.739 *** | |
(0.026) | (0.026) | (0.082) | (0.028) | (0.033) | (0.046) | (0.024) | (0.005) | (0.041) | ||
MAN | 0.065 *** | 0.007 | −0.091 *** | −0.022 | 0.008 | 0.116 ** | −0.020 ** | 0.177 *** | 0.103 *** | |
(0.016) | (0.029) | (0.039) | (0.011) | (0.006) | (0.055) | (0.010) | (0.059) | (0.049) | ||
AREA | 0.027 | 0.155 | 0.345 *** | 0.022 | 0.202 *** | 0.451 *** | 0.012 | 0.012 | 0.402 *** | |
(0.060) | (0.049) | (0.144) | 0.031) | (0.072) | (0.141) | (0.030) | (0.031) | (0.121) | ||
Adjusted R2 | 0.84 | 0.85 | 0.84 | 0.44 | 0.31 | 0.30 | 0.68 | 0.72 | 0.44 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Square | GDP | POP | Square | GDP | POP | Square | GDP | POP | ||
Transportation | ACC2 | 0.209 *** | 0.111 *** | 0.110 *** | 0.269 *** | 0.142 *** | 0.141 *** | 0.238 *** | 0.126 *** | 0.125 *** |
(0.012) | (0.004) | (0.006) | (0.011) | (0.006) | (0.008) | (0.01) | (0.005) | (0.007) | ||
ACC1 | 0.178 *** | 0.131 *** | 0.100 *** | 0.228 *** | 0.168 *** | 0.166 *** | 0.202 *** | 0.149 *** | 0.147 *** | |
(0.012) | (0.003) | (0.006) | (0.014) | (0.004) | (0.005) | (0.013) | (0.004) | (0.005) | ||
BUS | 0.232 *** | 0.218 *** | 0.238 *** | 0.298 *** | 0.281 *** | 0.306 *** | 0.264 *** | 0.249 *** | 0.271 *** | |
(0.024) | (0.013) | (0.012) | (0.012) | (0.017) | (0.015) | (0.011) | (0.015) | (0.013) | ||
ROAD | −0.059 *** | −0.064 *** | −0.077 *** | −0.076 *** | −0.082 *** | −0.098 *** | −0.068 *** | −0.072 *** | −0.087 *** | |
(0.024) | (0.014) | (0.013) | (0.027) | (0.013) | (0.016) | (0.024) | (0.011) | (0.014) | ||
RAIL | 0.010 | 0.018 | 0.012 | 0.012 | 0.023 | 0.015 | 0.011 | 0.020 * | 0.013 | |
(0.015) | (0.011) | (0.01) | (0.018) | (0.014) | (0.012) | (0.016) | (0.012) | (0.011) | ||
SUB | 0.349 *** | 0.293 *** | 0.294 *** | 0.449 *** | 0.377 *** | 0.378 *** | 0.398 *** | 0.334 *** | 0.335 *** | |
(0.041) | (0.028) | (0.05) | (0.047) | (0.036) | (0.064) | (0.042) | (0.032) | (0.057) | ||
Interactions | ACC2 | 0.057 *** | −0.002 | 0.018 *** | 0.074 *** | −0.002 | 0.024 *** | 0.065 *** | −0.002 | 0.021 *** |
(0.008) | (0.007) | (0.006) | (0.006) | (0.009) | (0.008) | (0.005) | (0.008) | (0.007) | ||
ACC1 | 0.046 *** | −0.078 *** | −0.014 | 0.059 *** | −0.002 * | 0.021 *** | −0.060 *** | −0.089 *** | −0.016 | |
(0.008) | (0.023) | (0.014) | (0.009) | (0.011) | (0.008) | (0.011) | (0.026) | (0.015) | ||
BUS | −0.053 *** | −0.001 | 0.021 *** | −0.068 *** | −0.101 *** | −0.018 | 0.039 *** | 0.041 *** | −0.043 *** | |
(0.012) | (0.008) | (0.008) | (0.013) | (0.029) | (0.017) | (0.006) | (0.013) | (0.015) | ||
ROAD | 0.034 *** | 0.040 *** | −0.041 *** | 0.042 *** | 0.051 *** | −0.049 *** | 0.010 | 0.051 ** | 0.060 *** | |
(0.011) | (0.011) | (0.013) | (0.007) | (0.015) | (0.017) | (0.009) | (0.021) | (0.006) | ||
RAIL | 0.004 | 0.050 *** | 0.049 *** | 0.012 | 0.060 *** | 0.069 *** | 0.050 *** | 0.001 | 0.020 *** | |
(0.009) | (0.018) | (0.005) | (0.01) | (0.023) | (0.007) | (0.008) | (0.009) | (0.007) | ||
Adjusted R2 | 0.84 | 0.86 | 0.85 | 0.40 | 0.24 | 0.23 | 0.67 | 0.69 | 0.66 |
Variables | Growth Rates | Growth Rate & Quadratic Interaction | Growth Rate & GDP Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CARB | CARB/GDP | CARB/POP | CARB | CARB/GDP | CARB/POP | CARB | CARB/GDP | CARB/POP | ||
Transportation | ACC2 | 0.123 *** | 0.158 *** | 0.140 *** | 0.075 | 0.096 | 0.085 | 0.113 *** | 0.146 *** | 0.129 *** |
(0.036) | (0.047) | (0.052) | (0.068) | (0.088) | (0.078) | (0.039) | (0.05) | (0.044) | ||
ACC1 | 0.024 *** | 0.031 *** | 0.028 *** | 0.034 | 0.055 | 0.049 | 0.023 | 0.030 | 0.026 | |
(0.009) | (0.012) | (0.011) | (0.036) | (0.045) | (0.040) | (0.016) | (0.021) | (0.018) | ||
BUS | −0.009 | −0.011 | −0.010 | 0.029 *** | 0.038 *** | 0.034 *** | 0.024 ** | 0.031 ** | 0.027 ** | |
(0.010) | (0.013) | (0.008) | (0.010) | (0.013) | (0.012) | (0.010) | (0.013) | (0.012) | ||
ROAD | 0.015 ** | 0.019 ** | 0.017 *** | −0.017 ** | −0.022 ** | −0.020 ** | −0.003 | −0.004 | −0.004 | |
(0.007) | (0.008) | (0.003) | (0.009) | (0.011) | (0.010) | (0.011) | (0.014) | (0.013) | ||
RAIL | 0.008 | 0.012 | 0.009 | 0.016 *** | 0.021 *** | 0.018 *** | 0.012 *** | 0.015 *** | 0.014 *** | |
(0.010) | (0.013) | (0.007) | (0.002) | (0.002) | (0.002) | (0.003) | (0.003) | (0.003) | ||
Control Variables & Interactions | ACC2 | 0.016 * | 0.021 * | −0.466 *** | 0.544 *** | 0.700 *** | 0.621 *** | 0.099 *** | 0.127 *** | 0.113 *** |
(0.009) | (0.011) | (0.007) | (0.094) | (0.121) | (0.108) | (0.026) | (0.034) | (0.03) | ||
ACC1 | −0.044 *** | −0.056 *** | −0.050 *** | 0.191 ** | 0.245 *** | 0.218 *** | 0.064 *** | 0.083 *** | 0.074 *** | |
(0.011) | (0.014) | (0.018) | (0.090) | (0.038) | (0.034) | (0.018) | (0.023) | (0.021) | ||
BUS | −0.008 ** | −0.011 | −0.010 *** | −0.001 | −0.001 | −0.001 | 0.011 | 0.014 *** | 0.012 | |
(0.003) | (0.004) | (0.002) | (0.002) | (0.003) | (0.002) | (0.003) | (0.004) | (0.003) | ||
ROAD | 0.013 ** | 0.017 ** | 0.015 ** | −0.002 * | −0.003 *** | −0.003 *** | −0.016 *** | −0.021 *** | −0.019 *** | |
(0.006) | (0.008) | (0.006) | (0.001) | (0.001) | (0.001) | (0.003) | (0.004) | (0.004) | ||
RAIL | 0.012 *** | 0.010 *** | 0.010 *** | 0.010 *** | 0.022 *** | 0.013 *** | ||||
(0.001) | (0.001) | (0.001) | (0.003) | (0.004) | (0.003) | |||||
Adjusted R2 | 0.04 | 0.91 | 0.89 | 0.04 | 0.93 | 0.88 | 0.05 | 0.90 | 0.91 |
Hypotheses | Empirical Results | Note | |
---|---|---|---|
General Conclusions | Sign of Coefficient | ||
H1: HSR has a significant influence on urban carbon emission | √ | + | |
H2a: HSR leads to overall carbon emission growth for all cities | Generally proved | + | HSR leads to higher carbon emissions for smaller cities |
H2b: HSR has greater impacts on big cities’ emissions than small- and medium-sized ones | X | + | |
H2c: HSR has greater impacts on cities located in eastern China than other regions | √ | + | |
H3a: HSR interacts with the urban population and increases urban carbon emissions | √ | + | |
H3b: HSR interacts with urban GDP and increases urban carbon emissions | √ | + | |
H3c: HSR interacts with land usage area and boosts carbon emissions | Generally proved | + | |
H4: Public transport has a significant influence on urban carbon emissions | √ | - | Roads can help reduce carbon emissions |
H5: Public transport tends to decrease carbon emissions | Partially proved | - | |
H6a: Bus transit system decreases urban carbon emissions | X | + | |
H6b: Subways decrease urban carbon emissions | X | + | |
H6c: Urban road expansion lowers urban carbon emissions | √ | - | |
H7: Land usage area expansion increases urban carbon emissions | √ | + | |
H8a: Urban public transport interacts with population and boosts carbon emissions | Partially proved | - | Bus and road interact with urban land usage and decrease carbon emissions |
H8b: Urban public transport interacts with urban GDP and boosts carbon emissions | Generally proved | + | |
H8c: Urban public transport interacts with land usage area and boosts carbon emissions | X | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Strauss, J.; Liu, L. A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability 2019, 11, 2011. https://doi.org/10.3390/su11072011
Li H, Strauss J, Liu L. A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability. 2019; 11(7):2011. https://doi.org/10.3390/su11072011
Chicago/Turabian StyleLi, Hongchang, Jack Strauss, and Lihong Liu. 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint" Sustainability 11, no. 7: 2011. https://doi.org/10.3390/su11072011
APA StyleLi, H., Strauss, J., & Liu, L. (2019). A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability, 11(7), 2011. https://doi.org/10.3390/su11072011