Impact of Population Density on PM2.5 Concentrations: A Case Study in Shanghai, China
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypothesis
2.1. Density
2.2. Design
2.3. Diversity
2.4. Distance to Transit
2.5. Destination Accessibility
2.6. Theoretical Hypothesis
3. Methodology and Data
3.1. Research Framework
3.2. Model
3.3. Measurement of Variables and Data
4. Empirical Results and Discussions
4.1. Descriptive Analysis
4.2. Regression Results and Discussions
4.3. Regional Heterogeneity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Zhang, Z.; Jin, M.; Zou, P.; Ju, W. Pollution characteristics of PM2.5 aerosol during haze periods in Changchun, China. Aerosol Air Qual. Res. 2017, 17, 888–895. [Google Scholar] [CrossRef]
- Lang, J.; Zhang, Y.; Zhou, Y.; Cheng, S.; Chen, D.; Guo, X.; Chen, S.; Li, X.; Xing, X.; Wang, H. Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol Air Qual. Res. 2017, 17, 412–425. [Google Scholar] [CrossRef]
- Yin, Z.; Cui, K.; Chen, S.; Zhao, Y.; Chao, H.; Chang-Chien, G. Characterization of the Air Quality Index for Urumqi and Turfan cities, China. Aerosol Air Qual. Res. 2019, 19, 282–306. [Google Scholar] [CrossRef]
- Dockery, D.W. Health effects of particulate air pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, W.; Li, W.; Li, J. Effects of urban landscape pattern on PM2.5 pollution—A Beijing case study. PLoS ONE 2015, 10, e0142449. [Google Scholar] [CrossRef]
- Adar, S.D.; Sheppard, L.; Vedal, S.; Polak, J.F.; Sampson, P.D.; Roux, A.V.D.; Budoff, M.; Jacobs, D.R.; Barr, R.G.; Watson, K. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013, 10, e1001430. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and mortality in 207 US cities: Modification by temperature and city characteristics. Epidemiology 2016, 27, 221–227. [Google Scholar] [PubMed]
- Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air pollution and mortality in the Medicare population. N. Engl. J. Med. 2017, 376, 2513–2522. [Google Scholar] [CrossRef]
- Mackerron, G.; Mourato, S. Life satisfaction and air quality in London. Ecol. Econ. 2009, 68, 1441–1453. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Chen, J.; Huisingh, D. Preventing smog crises in China and globally. J. Clean. Prod. 2016, 112, 1261–1271. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Song, Y.; Zhong, S.; Zhang, Z.; Chen, Y.; Daniel, R.; Brian, M. The relationship between urban spatial structure and PM2.5: Lessons learnt from a modeling project on vehicle emissions in Charlotte, USA. City Plan. Rev. 2014, 38, 9–14. [Google Scholar]
- Choi, K.; Zhang, M. The net effects of the built environment on household vehicle emissions: A case study of Austin, TX. Transp. Res. Part D Transp. Environ. 2017, 50, 254–268. [Google Scholar] [CrossRef]
- Calthorpe, P. The Next American Metropolis: Ecology, Community, and the American Dream; Princeton Architectural Press: New York, NY, USA, 1993. [Google Scholar]
- Ewing, R.; Pendall, R.; Chen, D. Measuring sprawl and its transportation impacts. Transp. Res. Rec. J. Transp. Res. Board 2003, 1831, 175–183. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Effects of income and urban form on urban NO2: Global evidence from satellites. Environ. Sci. Technol. 2011, 45, 4914–4919. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air quality and urban form in U.S. urban areas: Evidence from regulatory monitors. Environ. Sci. Technol 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R. Travel and the built environment: A synthesis. Transp. Res. Record 2001, 1780, 265–294. [Google Scholar] [CrossRef]
- Chatman, D. How density and mixed uses at the workplace affect personal commercial travel and commute mode choice. Transp. Res. Rec. J. Transp. Res. Board 2003, 1831, 193–201. [Google Scholar] [CrossRef]
- Zhao, P. The impact of the built environment on individual workers’ commuting behavior in Beijing. Int. J. Sustain. Transp. 2013, 7, 389–415. [Google Scholar] [CrossRef]
- Jing, M.; Zhilin, L.; Yanwei, C. Urban form and carbon rmissions from urban transport: Based on the the analysis of individual behavior. Urban Plan. Int. 2013, 2, 19–24. [Google Scholar]
- Sun, B.; He, Z.; Zhang, T.; Wang, R. Urban spatial structure and commute duration: An empirical study of China. Int. J. Sustain. Transp. 2016, 10, 638–644. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, T.; He, Z.; Wang, R. Urban spatial structure and motorization in China. J. Reg. Sci. 2017, 57, 470–486. [Google Scholar] [CrossRef]
- Gaigné, C.; Riou, S.; Thisse, J. Are compact cities environmentally friendly? J. Urban Econ. 2012, 72, 123–136. [Google Scholar] [CrossRef]
- Mccarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Calthorpe, P.G.; Fulton, W.B. The Regional City: Planning for the End of Sprawl; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Duany, A.; Plater-Zyberk, E.; Speck, J. Suburban Nation: The Rise of Sprawl and the Decline of the American Dream; North Point Press: New York, NY, USA, 2000. [Google Scholar]
- Downs, A.; Costa, F. Comment: An Ambitious Movement and its prospects for success. J. Am. Plan. Assoc. 2005, 71, 378–380. [Google Scholar]
- Starkie, E.; Yosick, B. Overcoming obstacles to smart development. Land Lines 1996, 8, 1–2. [Google Scholar]
- Zhu, D.J.; Liu, D.H. Managing urban growth: Review on the Theory of Smart Growth and its reference for city development in China. Tongji Univ. J. Soc. Sci. Sect. 2006, 17, 22–28. [Google Scholar]
- Schwanen, T.; Mokhtarian, P.L. What affects commute mode choice: Neighborhood physical structure or preferences toward neighborhoods? J. Transp. Geogr. 2005, 13, 83–99. [Google Scholar] [CrossRef]
- Brundell-Freij, K.; Ericsson, E. Influence of street characteristics, driver category and car performance on urban driving patterns. Transp. Res. Part D 2005, 10, 213–229. [Google Scholar] [CrossRef]
- Ewing, R.; Schmid, T.; Killingsworth, R.; Zlot, A.; Raudenbush, S. Relationship between Urban Sprawl and Physical Activity, Obesity, and Morbidity; Springer US: New York, NY, USA, 2008. [Google Scholar]
- Wang, L.; Zhang, N.; Liu, Z.; Sun, Y.; Ji, D.; Wang, Y. The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei region during January 2013. Adv. Meteorol. 2014, 2014, 685971. [Google Scholar] [CrossRef]
- Cervero, R. Mixed land-uses and commuting: Evidence from the American Housing Survey. Transp. Res. Part A Policy Pract. 1996, 30, 361–377. [Google Scholar] [CrossRef]
- Sun, B.; Dan, B. Impact of urban built environment on residential choice of commuting mode in Shanghai. Acta Geogr. Sin. 2015, 70, 1664–1674. [Google Scholar]
- Wenjia, Z.; Yanwei, C. The influence of residential space on household shopping tour decision-making behaviors. Prog. Geogr. 2009, 28, 362–369. [Google Scholar]
- Yang, W.; Cao, X. The influence mechanism of travel-related CO2 emissions from the perspective of residential self-selection: A case study of Guangzhou. Acta Geogr. Sin. 2018, 73, 346–361. [Google Scholar]
- Brown, B.B.; Yamada, I.; Smith, K.R.; Zick, C.D.; Kowaleski-Jones, L.; Fan, J.X. Mixed land use and walkability: Variations in land use measures and relationships with BMI, overweight, and obesity. Health Place 2009, 15, 1130–1141. [Google Scholar] [CrossRef]
- Macdonald, J.M.; Stokes, R.J.; Cohen, D.A.; Kofner, A.; Ridgeway, G.K. The effect of light rail transit on body mass index and physical activity. Am. J. Prev Med. 2010, 39, 105–112. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Wang, X.; Houston, D. Can new light rail reduce personal vehicle carbon emissions? A before-after, experimental-control evaluation in los angeles. J. Reg. Sci. 2016, 57, 523–539. [Google Scholar] [CrossRef]
- Mishalani, R.G.; Goel, P.K. Impact of public transit market share and other passenger travel variables on CO2 emissions: Amassing a dataset and estimating a preliminary statistical model. J. Phys. A Math. Gen. 2011, 24, 1481–1493. [Google Scholar]
- Cervero, R.; Jin, M. Effects of built environments on vehicle miles traveled: Evidence from 370 US urbanized areas. Environ. Plan. A Econ. Space 2010, 42, 400–418. [Google Scholar] [CrossRef]
- Chatman, D.G. Does TOD need the T? On the importance of factors other than rail access. J. Am. Plan. Assoc. 2013, 79, 17–31. [Google Scholar] [CrossRef]
- Lo, A.Y. Small is green? Urban form and sustainable consumption in selected OECD metropolitan areas. Land Use Policy 2016, 54, 212–220. [Google Scholar] [CrossRef]
- Van Wee, B.; Janse, P.; Van Den Brink, R. Comparing energy use and environmental performance of land transport modes. Transp. Rev. 2005, 25, 3–24. [Google Scholar]
- Cullinane, S. The relationship between car ownership and public transport provision: A case study of Hong Kong. Transp. Policy 2002, 9, 29–39. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, E. Effects of public transit on automobile ownership and use in households of the USA. Rev. Urban Reg. Dev. Stud. 2004, 16, 245–262. [Google Scholar] [CrossRef]
- Cao, J.; Cao, X. The impacts of LRT, neighbourhood characteristics, and self-selection on auto ownership: Evidence from Minneapolis-St. Paul. Urban Stud. 2014, 51, 2068–2087. [Google Scholar] [CrossRef]
- Kitamura, R. A causal analysis of car ownership and transit use. Transportation 1989, 16, 155–173. [Google Scholar] [CrossRef]
- Kahn, M.E. The environmental impact of suburbanization. J. Policy Anal. Manag. 2000, 19, 569–586. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef]
- Zhang, M. The role of land use in travel mode choice: Evidence from Boston and Hong Kong. J. Am. Plan. Assoc. 2004, 70, 344–360. [Google Scholar] [CrossRef]
- Yin, C.; Sun, B. Disentangling the effects of the built environment on car ownership: A multi-level analysis of Chinese cities. Cities 2018, 74, 188–195. [Google Scholar] [CrossRef]
- Brezzi, M.; Sanchez-Serra, D. Breathing the same air? Measuring air pollution in cities and regions. OECD Reg. Dev. 2014. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2016, 53, 2607–2623. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J.; Yang, L. China’s economic policy choices for governing smog pollution based on spatial spillover effects. Econ. Res. J. 2016, 51, 73–88. [Google Scholar]
- Frost, M.; Linneker, B.; Spence, N. Excess or wasteful commuting in a selection of British cities. Transp. Res. Part A Policy Pract. 1998, 32, 529–538. [Google Scholar] [CrossRef]
- Horner, M.W. Extensions to the concept of excess commuting. Environ. Plan. A Econ. Space 2002, 34, 543–566. [Google Scholar] [CrossRef]
- Sun, B.; Ermagun, A.; Dan, B. Built environmental impacts on commuting mode choice and distance: Evidence from Shanghai. Transp. Res. Part D Transp. Environ. 2017, 52, 441–453. [Google Scholar] [CrossRef]
- Golob, T.F. Structural equation modeling for travel behavior research. Transp. Res. Part B Methodol. 2003, 37, 1–25. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. Int. J. Environ. Res. Public Health 2014, 11, 173–186. [Google Scholar] [CrossRef]
- Kashem, S.B.; Irawan, A.; Wilson, B. Evaluating the dynamic impacts of urban form on transportation and environmental outcomes in US cities. Int. J. Environ. Sci. Technol. 2014, 11, 2233–2244. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Liu, C.; Shen, Q. An empirical analysis of the influence of urban form on household travel and energy consumption. Comput. Environ. Urban Syst. 2011, 35, 347–357. [Google Scholar] [CrossRef]
- Yan, H.; Sun, B. The impact of polycentric urban spatial structure on energy consumption: Empirical study on the prefecture-level and above cities in China. Urban Dev. Stud. 2015, 22, 13–19. [Google Scholar]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a Combined Geophysical-Statistical Method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Kostyniuk, L.; Shen, Q.; Bao, S. The influence of street environments on fuel efficiency: Insights from naturalistic driving. Int. J. Environ. Sci. Technol. 2014, 11, 2291–2306. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Qiyan, W.; Gonghao, C. The differential characteristics of residential space in Nanjing and its mechanism. City Plan. Rev. 1999, 23, 23–35. [Google Scholar]
- Li, Z.; Wu, F. Sociospatial differentiation in transitional Shanghai. Acta Geogr. Sin. 2006, 61, 199–211. [Google Scholar]
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ. Sci. Technol. 2014, 48, 13834–13843. [Google Scholar] [CrossRef] [PubMed]
- Shanghai Urban and Rural Construction and Transportation Development Research Institute. The Fifth Comprehensive Traffic Survey. Traffic Transp. 2015, 31, 15–18. [Google Scholar]
- Li, S.; Zhao, P. Exploring car ownership and car use in neighborhoods near metro stations in Beijing: Does the neighborhood built environment matter? Transp. Res. Part D Transp. Environ. 2017, 56, 1–17. [Google Scholar] [CrossRef]
- Li, W.; Dan, B.; Sun, B.; Zhu, P. The influence of rail transit accessibility on the shift of travel modal choice: Empirical analysis based on the micro survey of the 1980s generation in Shanghai. Acta Geogr. Sin. 2017, 36, 945–956. [Google Scholar]
Test | Statistic | p-Value | |
---|---|---|---|
Moran’s I | 0.853 | 0.006 | |
Spatial error | LM | 4.704 | 0.030 |
Robust LM | 4.277 | 0.139 | |
Spatial lag | LM | 8.584 | 0.003 |
Robust LM | 8.156 | 0.004 |
Variable | Description | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
PM2.5 (ln) | PM2.5 concentrations (μg/m³) | 4.011 | 0.052 | 3.789 | 4.129 |
POPDEN (ln) | Number of persons per area in jiedao (103 person/km2) | 1.803 | 1.677 | −4.716 | 4.152 |
PROCROSS (ln) | Proportion of jiedao road intersections in total in Shanghai (%) | −5.838 | 0.961 | −9.913 | −3.792 |
MIXLAND | Degree of mix of 15 land-use types | 0.704 | 0.113 | 0.038 | 0.883 |
BUSDEN | Number of bus stops per area in jiedao (number/km2) | 26.839 | 26.406 | 0.253 | 106.678 |
DISTOWN (ln) | Distance to the nearest primary or sub-center of city (km) | −2.882 | 4.117 | −32.172 | −0.555 |
ECONDEN (ln) | Number of firms per area in jiedao (number/km2) | 3.722 | 2.242 | −2.007 | 7.292 |
PROGEND | Proportion of number of males on females in jiedao (%) | 0.992 | 0.068 | 0.651 | 1.169 |
INFADJA (ln) | Distance to the southeast point (121.96°E, 30.79°N): a proxy variable of influence of adjacent regions’ PM2.5 (km) | 4.226 | 0.294 | 2.968 | 4.877 |
POLLDEN | Density of pollution intensive firms in jiedao (number/km2) | 0.336 | 0.446 | 0.000 | 3.241 |
SUBDEN | Density of subway stations (number/km2) | 0.249 | 0.385 | 0 | 1.845 |
SUBWAY | 1: If the jiedao owns subway station /0: Otherwise | 0.514 | 0.501 | 0 | 1 |
OLS | SLM | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
POPDEN (ln) | 0.007 *** | 0.005 *** | 0.026 *** | 0.024 *** | 0.008 ** | 0.448 *** | 0.005 ** | 0.005 *** |
(0.001) | (0.001) | (0.007) | (0.006) | (0.003) | (0.123) | (0.002) | (0.001) | |
PROCROSS (ln) | 0.007 *** | 0.007 *** | 0.009 | 0.008 | 0.004 | 0.229 | 0.007 *** | 0.007 *** |
(0.002) | (0.002) | (0.007) | (0.012) | (0.036) | (0.151) | (0.002) | (0.002) | |
MIXLAND | 0.002 | 0.001 | 0.059 | 0.124 * | 0.282 ** | 0.226 | 0.0001 | 0.009 |
(0.002) | (0.011) | (0.039) | (0.071) | (0.136) | (0.554) | (0.011) | (0.019) | |
BUSDEN | 0.0002 *** | 0.0002 *** | 0.0003 ** | 0.0007 *** | 0.006 | 0.007 * | 0.0001 *** | 0.0002 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.005) | (0.004) | (0.000) | (0.000) | |
DISTOWN (ln) | 0.0001 | 0.0001 | −0.0006 | −0.0001 | 0.028 *** | 0.001 | 0.0001 | −0.003 |
(0.0001) | (0.0001) | (0.000) | (0.001) | (0.004) | (0.003) | (0.000) | (0.003) | |
ECONDEN (ln) | 0.001 ** | 0.001 ** | −0.000 | 0.0003 | 0.021 | −0.003 | 0.001 ** | 0.001 *** |
(0.0005) | (0.000) | (0.001) | (0.000) | (0.022) | (0.015) | (0.000) | (0.000) | |
PROGEND | 0.088 * | 0.073 * | −0.038 | 0.517 ** | 0.517 ** | −0.538 | 0.073 ** | 0.072 * |
(0.05) | (0.043) | (0.121) | (0.042) | (0.042) | (2.478) | (0.040) | (0.042) | |
INFADJA (ln) | 0.146 *** | 0.119 *** | 0.425 *** | 0.510 *** | 0.455 *** | −0.011 | 0.119 *** | 0.119 *** |
(0.006) | (0.006) | (0.048) | (0.061) | (0.001) | (0.215) | (0.006) | (0.006) | |
POLLDEN | 0.007 ** | 0.006 ** | 0.027 *** | −0.002 | 0.120 * | 0.304 ** | 0.005 ** | 0.006 ** |
(0.003) | (0.003) | (0.009) | (0.016) | (0.071) | (0.151) | (0.002) | (0.003) | |
CONSTANT | 3.319 *** | −0.396 ** | −0.988 *** | −1.809 ** | −3.827 *** | 3.177 | −0.393 *** | −0.405 ** |
(0.063) | (0.168) | (0.000) | (0.900) | (0.478) | (5.244) | (0.168) | (0.169) | |
POPDEN (ln)2 | 0.0004 | |||||||
(0.0005) | ||||||||
MIXLAND × DISTOWN (ln) | 0.004 ** | |||||||
(0.002) | ||||||||
ρ | 0.958 *** | 0.134 *** | 0.009 *** | 1.467 *** | 0.803 *** | 0.958 *** | 0.958 *** | |
(0.041) | (0.006) | (0.000) | (0.353) | (0.214) | (0.041) | (0.041) | ||
σ | 0.021 *** | 0.041 *** | 0.085 *** | 0.065 *** | 1.008 *** | 0.021 *** | 0.021 *** | |
(0.001) | (0.003) | (0.006) | (0.008) | (0.202) | (0.001) | (0.002) | ||
Sample size | 214 | 214 | 214 | 214 | 214 | 214 | 214 | 214 |
Adjusted R2 | 0.784 | 0.688 | 0.769 | 0.996 | 0.986 | 0.222 | 0.686 | 0.687 |
Central City | Suburb | |||
---|---|---|---|---|
(9) | (10) | (11) | (12) | |
POPDEN (ln) | 0.008 *** | 0.009 *** | 0.009 * | 0.013 * |
(0.001) | (0.001) | (0.005) | (0.007) | |
POPDEN (ln)2 | −0.0005 | 0.001 | ||
(0.0005) | (0.001) | |||
PROCROSS (ln) | 0.003 *** | 0.003 *** | 0.003 * | 0.004 |
(0.001) | (0.001) | (0.002) | (0.004) | |
MIXLAND | 0.003 * | 0.002 | −0.041 | −0.037 |
(0.002) | (0.006) | (0.077) | (0.076) | |
BUSDEN | 0.0001 ** | 0.0000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | |
DISTOWN (ln) | −0.001 ** | −0.001 ** | 0.012 | 0.014 |
(0.000) | (0.000) | (0.043) | (0.043) | |
ECONDEN (ln) | 0.000 | −0.000 | 0.002 | 0.002 |
(0.000) | (0.000) | (0.005) | (0.005) | |
PROGEND | 0.078 *** | 0.089 *** | 0.199 *** | 0.193 *** |
(0.020) | (0.022) | (0.070) | (0.068) | |
INFADJA (ln) | 0.112 *** | 0.110 *** | 0.098 *** | 0.098 *** |
(0.013) | (0.013) | (0.008) | (0.008) | |
POLLDEN | 0.008 *** | 0.008 *** | 0.000 | 0.000 |
(0.002) | (0.001) | (0.008) | (0.008) | |
CONSTANT | 0.058 | 0.049 | −0.345 ** | −0.322 ** |
(0.454) | (0.431) | (0.125) | (0.232) | |
MIXLAND × DISTOWN (ln) | 0.002 ** | 0.002 ** | −0.014 | −0.010 |
(0.001) | (0.001) | (0.054) | (0.054) | |
SUBDEN | 0.002 | 0.001 | ||
(0.001) | (0.001) | |||
Owns a subway station (dummy) | −0.004 ** | −0.004 ** | ||
(0.003) | (0.003) | |||
ρ | 0.882 *** | 0.890 *** | 0.940 *** | 0.938 *** |
(0.005) | (0.110) | (0.059) | (0.060) | |
σ | 0.007 *** | 0.007 *** | 0.023 *** | 0.023 *** |
(0.000) | (0.000) | (0.001) | (0.001) | |
Sample size | 116 | 116 | 98 | 98 |
adjusted R2 | 0.652 | 0.890 | 0.745 | 0.736 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Sun, B. Impact of Population Density on PM2.5 Concentrations: A Case Study in Shanghai, China. Sustainability 2019, 11, 1968. https://doi.org/10.3390/su11071968
Han S, Sun B. Impact of Population Density on PM2.5 Concentrations: A Case Study in Shanghai, China. Sustainability. 2019; 11(7):1968. https://doi.org/10.3390/su11071968
Chicago/Turabian StyleHan, Shuaishuai, and Bindong Sun. 2019. "Impact of Population Density on PM2.5 Concentrations: A Case Study in Shanghai, China" Sustainability 11, no. 7: 1968. https://doi.org/10.3390/su11071968