The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Laboratory Analysis
2.4. Statistical Analyses
3. Results
3.1. Soil Physical, Chemical, and Biological Properties
3.2. Soil Microbial Properties and Enzyme Activity
4. Discussion
4.1. Soil Physical, Chemical, and Biological Properties
4.2. Soil Microbial Properties and Enzyme Activity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karaca, S.; Gülser, F.; Selçuk, R. Relationships between soil properties, topography and land use in the Van Lake Basin, Turkey. Eurasian J. Soil. Sci. 2018, 7, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.; Ouyang, Z. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. J. Environ. Sci. 2012, 24, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Lozano-García, B.; Parras-Alcantára, L. Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional Mediterranean olive grove. Land Degrad. Dev. 2014, 25, 297–304. [Google Scholar] [CrossRef]
- Krasilnikov, P.V.; García Calderón, N.E.; Sedov, S.N.; Vallejo Gómez, E.; Ramos, B.R. The relationship between pedogenic and geomorphic processes in mountainous tropical forested area in SierraMadre del Sur, Mexico. Catena 2005, 62, 14–44. [Google Scholar] [CrossRef]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Brubaker, S.C.; Jones, A.J.; Lewis, D.T.; Frank, K. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 1993, 57, 235–239. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Zhang, M.; Liu, W.; Qin, Y.; Deo, R.C.; Zhang, C. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. J. Soils Sediments 2018, 19, 1640. [Google Scholar] [CrossRef]
- Chen, L.F.; He, Z.B.; Du, J.; Yang, J.J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Fazlollahi Mohammadi, M.; Jalali, S.G.; Kooch, Y.; Said-Pullicino, D. The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand. Catena 2017, 149, 309–317. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Mulching and water diversion structures on skid trails: Response of soil physical properties six years after harvesting. Ecol. Eng. 2018, 123, 1–9. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D. Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Sci. Soc. Am. J. 2011, 75, 2314–2329. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Till. Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Etehadi Abari, M.; Majnounian, B.; Malekian, A.; Jourgholami, M. Effects of forest harvesting on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. Eur. J. For. Res. 2017, 136, 375–386. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Labelle, E.R.; Poltorak, B.J.; Jaeger, D. The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res. 2019, 49, 164–178. [Google Scholar] [CrossRef]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef]
- Ampoorter, E.; De Schrijver, A.; De Frenne, P.; Hermy, M.; Verheyen, K. Experimental assessment of ecological restoration options for compacted forest soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Poltorak, B.J.; Labelle, E.R.; Jaeger, D. Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil Till. Res. 2018, 179, 96–104. [Google Scholar] [CrossRef]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soils Sediments 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Bottinelli, N.; Capowiezc, Y.; Ranger, J. Slow recovery of earthworm populations after heavy traffic in two forest soils in northern France. Appl. Soil. Ecol. 2014, 73, 130–133. [Google Scholar] [CrossRef]
- Baldrian, P.; Stursova, M. Role of Enzymes in Maintaining Soil Health. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–73. [Google Scholar]
- Dick, R.P.; Myrold, D.D.; Kerle, E.A. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Sci. Soc. Am. J. 1988, 52, 512–516. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Yang, Y.; Geng, Y.; Zhou, H.; Zhao, G.; Wang, L. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest. Pedobiologia 2017, 61, 51–60. [Google Scholar] [CrossRef]
- Barreiro, A.; Fontúrbel, M.T.; Lombao, A.; Martín, A.; Vega, J.A.; Fernández, C.; Carballas, T.; Díaz-Raviña, M. Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. Catena 2015, 135, 419–429. [Google Scholar] [CrossRef]
- Meyer, C.; Lüscher, P.; Schulin, R. Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks. Eur. J. For. Res. 2014, 133, 453–465. [Google Scholar] [CrossRef]
- Flores Fernández, J.L.; Hartmann, P.; Schäffer, J.; Pulhmann, H.; von Wilpert, K. Initial recovery of compacted soil—Planting and technical treatments decrease CO2 concentrations in soil and promote root growth. Ann. For. Sci. 2017, 74, 73. [Google Scholar] [CrossRef]
- Fründ, H.-C.; Averdiek, A. Soil aeration and soil water tension in skidding trails during three years after trafficking. For. Ecol. Manag. 2016, 380, 224–231. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Danielson, R.E.; Southerland, P.L. Methods of Soil Analysis. Part I. Physical and Mineralogical Methods, 2nd ed.; ASA, SSSA: Madison, WI, USA, 1986; pp. 443–460. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Part I Physical and Mineralogical Properties, 2nd ed.; Klute, A., Ed.; Agronomy Monograph; American Society of Agronomy, Inc., Soil Science Society of America: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Kooch, Y.; Zaccone, C.; Lamersdorf, N.P.; Tonon, G. Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. Eur. J. For. Res. 2014, 133, 347–354. [Google Scholar] [CrossRef]
- Kolberg, R.L.; Rouppet, B.; Westfall, D.G.; Peterson, G.A. Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystems. Soil Sci. Soc. Am. J. 1997, 61, 504–508. [Google Scholar] [CrossRef]
- Schinner, F.; Von Mersi, W. Xylanase-, CM-cellulase-and invertase activity in soil: An improved method. Soil Biol. Biochem. 1990, 22, 511–515. [Google Scholar] [CrossRef]
- Hancock, G.R.; Murphy, D.; Evans, K.G. Hillslope and catchment scale soil organic carbon concentration: An assessment of the role of geomorphology and soil erosion in an undisturbed environment. Geoderma 2010, 155, 36–45. [Google Scholar] [CrossRef]
- Moorman, T.B.; Cambardella, C.A.; James, D.E.; Karlen, D.L.; Kramer, L.A. Quantification of tillage and landscape effects on soil carbon in small Iowa watersheds. Soil Till. Res. 2004, 78, 225–236. [Google Scholar] [CrossRef]
- Goutal, N.; Renault, P.; Ranger, J. Forwarder traffic impacted over at least four years soil air composition of two forest soils in northeast France. Geoderma 2013, 193–194, 29–40. [Google Scholar] [CrossRef]
- Chen, J.S.; Chiu, C.Y. Effect of topography on the composition of soil organic substances in a perfumed sub-tropical montane forest ecosystem in Taiwan. Geoderma 2000, 96, 19–30. [Google Scholar] [CrossRef]
- Maggard, A.O.; Will, R.E.; Hennessey, T.C.; McKinley, C.R.; Cole, J.C. Tree-based mulches influence soil properties and plant growth. HortTechnology 2012, 22, 353–361. [Google Scholar]
- Liu, Y.; Zhang, J.; Yang, W.; Wu, F.; Xu, Z.; Tan, B.; Zhang, L.; He, X.; Guo, L. Canopy gaps accelerate soil organic carbon retention by soil microbial biomass in the organic horizon in a subalpine fir forest. Appl. Soil Ecol. 2018, 125, 169–176. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Rachele, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Marques, K.P.P.; Demattê, J.A.M.; Miller, B.A.; Lepsch, I.F. Geomorphometric segmentation of complex slope elements for detailed digital soil mapping in southeast Brazil. Geoderma Reg. 2018, 14, e00175. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Lee, J.; Running, S. Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecol. Res. 2006, 21, 64–74. [Google Scholar] [CrossRef]
- Fu, B.J.; Liu, S.L.; Chen, L.D.; Lu, Y.H.; Qiu, J. Soil quality regime in relation to land cover and slope position across a highly modified slope landscape. Ecol. Res. 2004, 19, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xu, W.; Han, Y.; Wang, C.; Wan, S. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biol. Fertil. Soils 2007, 44, 259–268. [Google Scholar] [CrossRef]
- Jencso, K.J.; McGlynn, B.L.; Gooseff, M.N.; Wondzell, S.M.; Bencala, K.E. Hydrologic connectivity between landscapes and streams: Transferring reach and plot scale understanding to the catchment scale. Water Resour. Res. 2009, 45, W04428. [Google Scholar] [CrossRef]
- Frankenberger, W.T., Jr.; Johanson, J.B. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 1982, 14, 433–437. [Google Scholar] [CrossRef]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2006, 38, 1451–1461. [Google Scholar] [CrossRef]
Soil Properties | Control and Slope Positions | F Test | p Value | ||||
---|---|---|---|---|---|---|---|
UND | TS | BS | S | ||||
Physical properties | Bulk density (g cm−3) | 0.97 ± 0.07c | 1.08 ± 0.08b | 1.25 ± 0.10a | 1.29 ± 0.10a | 98.24 | <0.001 |
Total porosity (%) | 62.69 ± 2.83a | 58.46 ± 3.16b | 51.92 ± 4.04c | 50.39 ± 3.75c | 98.24 | <0.001 | |
Macroporosity (%) | 36.98 ± 3.52a | 32.74 ± 3.52b | 26.48 ± 3.23c | 21.66 ± 3.34d | 141.93 | <0.001 | |
Penetration resistance (MPa) | 0.96 ± 0.10d | 1.14 ± 0.11c | 1.47 ± 0.22b | 1.73 ± 0.20a | 152.72 | <0.001 | |
Soil moisture (%) | 42.61 ± 6.17a | 36.51 ± 6.37b | 27.93 ± 4.91c | 21.47 ± 5.30d | 95.48 | <0.001 | |
Aggregate stability (%) | 65.71 ± 6.27a | 58.12 ± 6.88b | 47.83 ± 6.39c | 39.18 ± 7.17d | 108.7 | <0.001 | |
Sand (%) | 23.49 ± 0.81d | 26.49 ± 0.73c | 28.77 ± 0.47b | 31.50 ± 1.29a | 544.62 | <0.001 | |
Silt (%) | 43.09 ± 1.14a | 40.18 ± 1.14b | 38.89 ± 1.14c | 36.11 ± 1.11d | 439.33 | <0.001 | |
Clay (%) | 33.42 ± 1.56a | 33.33 ± 1.08a | 32.34 ± 1.21a | 32.39 ± 2.18a | 9.0 | <0.001 | |
Chemical properties | pH (1:2.5 H2O) | 5.64 ± 0.56d | 6.02 ± 0.31c | 6.57 ± 0.29b | 6.98 ± 0.51a | 67.16 | <0.001 |
Electrical conductivity (EC) (ds m−1) | 0.23 ± 0.03a | 0.22 ± 0.05a | 0.23 ± 0.03a | 0.24 ± 0.03a | 1.93 | 0.13 | |
SOC (%) | 7.26 ± 1.38a | 4.01 ± 1.52b | 2.78 ± 0.73c | 1.95 ± 0.63d | 152.61 | <0.001 | |
N (%) | 0.61 ± 0.10a | 0.29 ± 0.07b | 0.18 ± 0.07c | 0.12 ± 0.05d | 311.92 | <0.001 | |
C/N ratio | 11.88 ± 0.80c | 13.5 ± 3.10b | 16.25 ± 2.64a | 17.16 ± 2.29a | 38.22 | <0.001 | |
Available P (mg kg−1) | 25.45 ± 4.42a | 21.27 ± 3.02b | 17.14 ± 2.35c | 15.39 ± 1.96c | 76.47 | <0.001 | |
Available K+ (mg kg−1) | 193.87 ± 23.77a | 179.31 ± 22.43b | 152.47 ± 19.39c | 137.08 ± 13.54d | 58.19 | <0.001 | |
Available Ca2+ (mg kg−1) | 167.24 ± 20.23a | 152.75 ± 11.97b | 129.73 ± 16.73c | 107.61 ± 11.63d | 102.02 | <0.001 | |
Available Mg2+ (mg kg−1) | 49.31 ± 5.41a | 43.17 ± 4.08b | 36.04 ± 3.8c | 31.28 ± 4.36d | 114.03 | <0.001 | |
Fulvic acid (mg/100 g) | 380.12 ± 37.89a | 310.81 ± 36.72b | 205.43 ± 47.22c | 128.37 ± 36.04d | 283.24 | <0.001 | |
Humic acid (mg/100 g) | 185.27 ± 37.48a | 151.03 ± 35.53b | 98.74 ± 32.96c | 71.29 ± 18.63d | 92.18 | <0.001 | |
Biological properties | Earthworm density (n m−2) | 2.05 ± 0.34a | 1.65 ± 0.27b | 0.75 ± 0.25c | 0.32 ± 0.13d | 337.23 | <0.001 |
Earthworm dry mass (mg m−2) | 27.08 ± 6.72a | 22.46 ± 5.44b | 11.04 ± 3.91c | 4.17 ± 2.80d | 161.44 | <0.001 | |
Fine root biomass (g m−2) | 86.13 ± 15.64a | 78.67 ± 14.7a | 62.34 ± 12.59b | 47.09 ± 7.44c | 64.79 | <0.001 |
Soil Properties | Control and Slope Positions | F Test | p Value | ||||
---|---|---|---|---|---|---|---|
UND | TS | BS | S | ||||
C and N Microbial properties | SMR | 0.51 ± 0.13a | 0.45 ± 0.09b | 0.33 ± 0.07c | 0.23 ± 0.07d | 65.53 | <0.001 |
MBC | 572.03 ± 105.03a | 485.81 ± 52.13b | 241.76 ± 55.72c | 134.28 ± 53.73d | 305.68 | <0.001 | |
NH4+ | 22.14 ± 5.27a | 19.32 ± 6.65a | 11.81 ± 4.72b | 7.05 ± 3.02c | 66.39 | <0.001 | |
NO3− | 21.84 ± 6.19a | 19.32 ± 4.91a | 10.06 ± 4.42b | 6.11 ± 2.49c | 90.97 | <0.001 | |
N Min | 34.61 ± 8.67a | 29.04 ± 8.40b | 19.48 ± 5.99c | 12.43 ± 4.28d | 70.17 | <0.001 | |
MBN | 38.15 ± 7.68a | 33.61 ± 7.53b | 18.93 ± 6.28c | 13.27 ± 4.27d | 115.63 | <0.001 | |
Enzyme activity | Urease | 22.89 ± 3.76a | 19.51 ± 3.84b | 11.41 ± 3.39c | 6.59 ± 2.39d | 172.94 | <0.001 |
APH | 327.08 ± 45.68a | 294.55 ± 46.98b | 194.85 ± 37.30c | 132.61 ± 26.51d | 181.09 | <0.001 | |
Arylsulfatase | 186.04 ± 32.99a | 153.35 ± 33.43b | 92.28 ± 25.06c | 65.47 ± 20.77d | 134.41 | <0.001 | |
Invertase | 237.41 ± 36.52a | 204.38 ± 34.49b | 123.64 ± 32.17c | 84.03 ± 25.26d | 171.95 | <0.001 | |
NAG | 176.05 ± 23.8a | 153.76 ± 19.57b | 98.41 ± 18.24c | 69.27 ± 12.98d | 239.73 | <0.001 |
Soil Properties | Bulk Density | Soil Moisture | pH | SOC | N | C/N Ratio | Available P | Available K | Fulvic Acid |
Urease | −0.68 ** | 0.62 * | −0.53 * | 0.64 * | 0.70 ** | −0.55 ** | 0.70 ** | 0.73 ** | 0.77 ** |
Acid phosphatase | −0.93 ** | 0.88 ** | −0.73 ** | 0.86 ** | 0.84 ** | −0.51 * | 0.92 ** | 0.60 * | 0.94 ** |
Arylsulfatase | −0.68 ** | 0.60 * | −0.51 * | 0.64 ** | 0.71 ** | −0.54 ** | 0.70 ** | 0.70 ** | 0.74 ** |
Invertase | −0.59 * | 0.72 ** | −0.73 ** | 0.71 ** | 0.71 ** | −0.49 * | 0.56 * | 0.72 ** | 0.78 ** |
NAG | −0.73 ** | 0.67 ** | −0.57 ** | 0.68 ** | 0.74 ** | −0.57 ** | 0.75 ** | 0.72 ** | 0.80 ** |
Soil Properties | Humic Acid | Earthworm Density | Soil Microbial Respiration | Fine Root Biomass | Microbial Biomass Carbon | NH4+ | NO3− | Nitrogen Mineralization | Microbial Biomass Nitrogen |
Urease | 0.68 ** | 0.98 ** | 0.74 ** | 0.64 ** | 0.86 ** | 0.74 ** | 0.63 ** | 0.61 * | 0.83 ** |
Acid phosphatase | 0.96 ** | 0.82 ** | 0.48 * | 0.95 ** | 0.88 ** | 0.84 ** | 0.68 ** | 0.89 ** | 0.87 ** |
Arylsulfatase | 0.67 ** | 0.97 ** | 0.71 ** | 0.62 * | 0.84 ** | 0.73 ** | 0.58 ** | 0.59 * | 0.81 ** |
Invertase | 0.62 * | 0.75 * | 0.73 ** | 0.56 * | 0.84 ** | 0.72 ** | 0.92 ** | 0.65 ** | 0.76 ** |
NAG | 0.73 ** | 0.99 ** | 0.73 ** | 0.68 ** | 0.89 ** | 0.77 ** | 0.66 ** | 0.66 ** | 0.85 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jourgholami, M.; Ramineh, A.; Zahedi Amiri, G.; Labelle, E.R. The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran. Sustainability 2019, 11, 1940. https://doi.org/10.3390/su11071940
Jourgholami M, Ramineh A, Zahedi Amiri G, Labelle ER. The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran. Sustainability. 2019; 11(7):1940. https://doi.org/10.3390/su11071940
Chicago/Turabian StyleJourgholami, Meghdad, Alireza Ramineh, Ghavamodin Zahedi Amiri, and Eric R. Labelle. 2019. "The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran" Sustainability 11, no. 7: 1940. https://doi.org/10.3390/su11071940
APA StyleJourgholami, M., Ramineh, A., Zahedi Amiri, G., & Labelle, E. R. (2019). The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran. Sustainability, 11(7), 1940. https://doi.org/10.3390/su11071940