Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Economic Study
2.3. Biophysical Constraints
2.4. Map Sources and Data Management
2.5. Bioenergy Potential
3. Results
3.1. Economic Threshold
3.2. Identification of Marginal Areas and Biophysical Constraints
3.3. Spatial Location
3.4. Bioenergy Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Agriculture towards 2050. How to Feed the World 2050. Available online: www.fao.org/.../wsfs/.../How_to_Feed_the_World_in_2050.pdf (accessed on 1 April 2017).
- Mantineo, M.; D’Agosta, G.M.; Copani, V.; Patane, C.; Cosentino, S.L. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res. 2009, 114, 204–213. [Google Scholar] [CrossRef]
- Sevigne, E.; Gasol, C.M.; Brun, F.; Rovira, L.; Pages, J.M.; Camps, F.; Rieradevall, J.; Gabarrell, X. Water and energy consumption of Populus spp. bioenergy systems: A case study in Southern Europe. Renew. Sustain. Energy Rev. 2011, 15, 1133–1140. [Google Scholar] [CrossRef]
- Gerwin, W.; Repmann, F.; Spyridon, G.; Despoina, V.; Gounairs, N.; Baumgarten, W.; Christiane, V.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil quality indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef]
- Dauber, J.; Miyake, S. To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc. 2016, 11, 19. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- James, L. Theory and Identification of Marginal Land and Factors Determining Land Use Change. Master’s Thesis, University of Michigan, Lansing, MI, USA, 2010. [Google Scholar]
- Ricardo, D. On the Principles of Political Economy and Taxation, 3rd ed.; J.M. Dent and Sons Ltd.: London, UK, 1817. [Google Scholar]
- Hollander, J.H. The concept of marginal rent. Q. J. Econ. 1895, 9, 175–187. [Google Scholar] [CrossRef]
- Shujiang, K.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal lands: Concept, assessment and management. J. Agric. Sci. 2013, 5, 129–139. [Google Scholar] [CrossRef]
- Schroers, J.O. Towards the Development of Marginal Land Use Depending on the Framework of Agricultural Market, Policy and Production Techniques; University of Giessen: Giessen, Germany, 2006. [Google Scholar]
- European Environmental Agency (EEA). Marginal Land Concept. Available online: http://www.eionet.europa.eu/gemet/concept/5023 (accessed on 30 April 2018).
- Peterson, G.M.; Galbraith, J.K. The concept of marginal land. J. Farm Econ. 1932, 14, 295–310. [Google Scholar] [CrossRef]
- Yakubu, A.S.; Ehlers, M.H.; Harnmeijer, J. Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices. Energies 2017, 10, 21. [Google Scholar] [CrossRef]
- Shortall, O.K. “Marginal land” for energy crops: Exploring definitions and embedded assumption. Energy Policy 2013, 62, 19–27. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its ude as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Sanchez Ortega, V.; Del Rio, A. Analysis of Farmland Abandonment and the Extent and Location of Agricultural Areas That Are Actually Abandoned or Are in Risk to be Abandoned, 1st ed.; Anguiano, E., Bamps, C., Terres, J.M., Eds.; OPOCE: Luxembourg, 2008; pp. 13–93. [Google Scholar]
- Van Eupen, M.; Elbersen, B.; Mantel, S. Marginal Land. Available online: https://iiasa-spatial.maps.arcgis.com/apps/webappviewer/index.html?id=c0105c0d94c34048a1c32fba1d65a6b1 (accessed on 9 September 2018).
- Sanchez, J.; Curt, M.D.; Fernandez, J. Approach to the potential production of giant reed in surplus saline lands of Spain. Glob. Chang. Biol. Bioenergy 2017, 9, 105–118. [Google Scholar] [CrossRef]
- Atance, I.; Orodea, L.F.; Puente, J.F.; Garcia, L.; Gonzalez, B.; Olmedilla, S. MAGRAMA (2013): Resultados Técnico-Económicos de Cultivos Herbáceos 2011, 1st ed.; Subdirección General de Análisis, Prospectiva y Coordinación, Subsecretaria; Ministerio de Agricultura, Alimentacion y Medio Ambiente: Madrid, Spain, 2013; pp. 1–36.
- Instituto Nacional de Estadística (INE Base). Censo Agrario. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176851&menu=resultados&secc=1254736194955&idp=1254735727106 (accessed on 29 March 2018).
- Instituto Nacional de Estadística (INE Base). Encuesta Sobre la Estructura de las Explotaciones Agrarias. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176854&menu=ultiDatos&idp=1254735727106 (accessed on 3 April 2018).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Anuario de Estadística 2016. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2016/default.aspx (accessed on 7 November 2018).
- Secretaria General de Agricultura y Alimentación. Evolución de la Superficie y Producción de Cereales en España; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2016.
- Ministerio de Agricultura, Pesca y Alimentación. Bienes y los Rendimientos Asegurables, las Condiciones Técnicas Mínimas de Cultivo, el Ámbito de Aplicación, los Periodos de Garantía, las Fechas de Suscripción y los Precios Unitarios del Seguro de Explotaciones de Cultivos Herbáceos Extensivos, Comprendido en el Trigésimo Noveno Plan de Seguros Agrarios Combinados; MAPA: Madrid, Spain, 2018; pp. 84078–84263.
- Eiriz, G.; Orodea, L.F.; García, L.; Ramírez, G.; Simarro, J.C. MAGRAMA (2017): Resultados Técnico Económicos de Cultivos Herbáceos 2016, 1st ed.; Subdirección General de Análisis, Prospectiva y Coordinación, Subsecretaria; Ministerio de Agricultura, Alimentacion y Medio Ambiente: Madrid, Spain, 2017; pp. 1–78.
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Hojas de Cálculo de Costes de Maquinaria. Available online: https://www.mapa.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-tecnologias-probadas/maquinaria-agricola/hojas-calculo-maqui.aspx (accessed on 18 October 2018).
- Lopez, L.; Betran, J.; Ramos, A.; Lopez, H.; Lopez, P.; Bermejo, J.L.; Urbano, P.; Piñeiro, J.; Castro, J.; Blazquez, R.; et al. Guía Práctica de la Fertilización Racional de los Cultivos en España. Parte II, 1st ed.; Ministerio de Medio Ambiente, Medio Rural y Marino: Madrid, Spain, 2009; pp. 1–144. [Google Scholar]
- Fombellida, A.; Garijo, J. Manual Para el Cumplimiento de la Condicionalidad. Cereales de Invierno, 1st ed.; Ministerio de Agricultura, Alimentacion y Medio Ambiente: Madrid, Spain, 2011; pp. 1–34.
- Hispagua. Soils. Available online: http://hispagua.cedex.es/en/datos/suelos (accessed on 27 September 2018).
- King, J.; Gay, A.; Sylvester-Bradley, R.; Bingham, I.; Foulkes, J.; Gregory, P.; Robinson, D. Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Ann. Bot. 2003, 91, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006; pp. 1–109. [Google Scholar]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continous cropping systems. Soil Till. Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Lynch, J.; Spink, J.; Doyle, D.; Hackett, R.; Phelan, S.; Forristal, D.; Kildea, S.; Glynn, L.; Plunkett, M.; Wall, D.; et al. The Winter Wheat Guide, 1st ed.; Agriculture and Food Authority: Carlow, Ireland, 2016; pp. 1–40.
- Arregui, L.M.; Maetzu, I.; Quemada, M. Estimación del drenaje y lavado de nitratos en un sistema de cultivo de cereal de invierno en condiciones de secano y clima Mediterráneo húmedo. In Estudios de la Zona no Saturada del Suelo, 1st ed.; Samper, F.J., Paz, A., Eds.; Dialnet: Madrid, Spain, 2005; Volume 7, pp. 137–143. [Google Scholar]
- Vitosh, H.L. Wheat Fertily and Fertilization. Wheat Facts, 1st ed.; Michigan State University: Lansing, MI, USA, 1998; pp. 1–4. [Google Scholar]
- FAO. Annex 1. Crop Salt Tolerance Data. Available online: http://www.fao.org/docrep/005/y4263e/y4263e0e.htm (accessed on 21 April 2018).
- Fleming, P.; Perrier, A.; Cavazza, L.; Tombesi, L.; Feddes, R.; Doorenbos, J.; Pereira, L.S.; Monteith, J.L.; Gunston, H.; Allen, R.; et al. Evapotranspiración del cultivo. In Guías Para la Determinación de los Requerimientos de Agua de los Cultivos, 1st ed.; FAO: Rome, Italy, 1990; pp. 87–156. [Google Scholar]
- Ninyerola, M.; Pons, X.; Roure, J.M. Atlas Climático Digital de la Peninsula Ibérica. Metodología y Aplicaciones en Bioclimatologia y Geobotanica, Universidad Autonoma de Barcelona. Available online: http://www.opengis.uab.es/wms/iberia/mms/index.htm (accessed on 30 September 2018).
- Ciria, P.; Perez, P.; Maletta, E.; Carrasco, J.; Esteban, L.S. BIORAISE-CE. Available online: http://bioraise.ciemat.es/BioraiseCE (accessed on 25 October 2018).
- Villodre, J.; Castaño, S.; Sánchez, D.; Alfaro, M.; Ruiz, J.R.; Lopez, E.; Colina, A. Cartografía de Ocupación del Suelo en España. Proyecto SIOSE, 1st ed.; CNIG: Madrid, Spain, 2012; pp. 41–51. ISBN 978-84-695-6882-8. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. Decimal code for growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Fernandez, J.; Curt, M.D. State of the art of Cynara cardunculus L. as an energy crop. In Proceedings of the 14th European Biomass Conference, Paris, France, 17–21 October 2005; Sjunnesson, L., Carrasco, J.E., Helm, P., Grassi, A., Eds.; ETA-Renewable Energies & WIP-Renewable Energies: Paris, France, 2005; pp. 22–27. [Google Scholar]
- Soldatos, P. Economic aspects of bioenergy production from perennial grasses in marginal lands of South Europe. Bioenergy Res. 2015, 8, 1562–1573. [Google Scholar] [CrossRef]
- Lloveras, J.; Cabases, M.A. Costes de producción de cultivos extensivos en secano y regadío. Vida Rural 2005, 401, 38–47. [Google Scholar]
- Fernandez, J.; Hidalgo, M.; Monte, J.P.; Curt, M.D. Cynara cardunculus L. as a perennial crop for non-irrigated lands: Yields and applications. In Proceedings of the 4th International Congress on Artichoke, Valenzano, Italy, 17–21 October 2000; Bianco, V.V., Calabrese, N., Rubaztky, V., Eds.; ISHS (International Society for Horticultural Science). Acta Horticulturae 681: Valenzano, Italy; pp. 109–115. [Google Scholar] [CrossRef]
- Gominho, J.; Lourenco, A.; Palma, P.; Lourenco, M.E.; Curt, M.D.; Fernandez, J.; Pereira, H. Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Ind. Crop. Prod. 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Fernando, A.L.; Boleó, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial grass production opportunities on Marginal Mediterranean land. Bioenergy Res. 2015, 8, 1523–1537. [Google Scholar] [CrossRef]
- Monti, A.; Cosentino, S.L. Conclusive results of the European project OPTIMA: Optimization of perennial grasses for biomass production in the Mediterranean area. Bioenergy Res. 2015, 8, 1459–1460. [Google Scholar] [CrossRef]
- Sanz, M.; Mosquera, F.; Sanchez, G.; Barreiro, M.; Aguado, P.L.; Sanchez, J.; Curt, M.D.; Fernandez, J. Biomass potential of triticale and rye in two different phenological stages and energy characterization. In Proceedings of the 19th European Biomass Conference, Berlin, Germany, 6–11 July 2011; Faulstich, M., Ossenbrink, H., Dallemand, J.F., Baxter, D., Grassi, A., Helm, P., Eds.; ETA Renewable Energies: Berlin, Germany, 2011; pp. 591–595. [Google Scholar]
- Ciria, P.; Maletta, E.; Del Val, M.A.; Pérez, J.; Pérez, P.; Carrasco, J. Cultivos Herbáceos Anuales para Producción de Biomasa en España en el Marco del Proyecto Singular Estratégico On- Cultivos, 1st ed.; Ciemat: Madrid, Spain, 2015; pp. 1–116. ISBN 978-84-7834-732-2. [Google Scholar]
- Sastre, C.M.; Maletta, E.; Gonzalez-Arechavala, Y.; Ciria, P.; Santos, A.M.; Del Val, A.; Perez, P.; Carrasco, J. Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments. Appl. Energy 2014, 114, 737–748. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 18. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef] [PubMed]
- INE. España en Cifras 2017 (INE Base). 2017. Available online: https://www.ine.es/prodyser/espa_cifras/2017/index.html#38 (accessed on 7 November 2018).
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Mattioli, A.; Boscaro, D.; Dalla Venezia, F.; Santacroce, F.C.; Pezzuolo, A.; Sartori, L. Biogas from residual grass: A territorial approach fos sustainable bioenergy production. Waste Biomass Valor. 2017, 8, 2747–2756. [Google Scholar] [CrossRef]
- Nizami, A.S.; Orozco, A.; Groom, E.; Dieterich, B.; Murphy, J.D. How much gas can we get from grass? Appl. Energy 2012, 92, 783–790. [Google Scholar] [CrossRef]
- Chiumenti, A.; Boscaro, D.; da Borso, F.; Sartori, L.; Pezzuolo, A. Biogas from fresh spring and summer grass: Effect of the harvesting period. Energies 2018, 11, 1466. [Google Scholar] [CrossRef]
- Ciria, C.S.; Carrasco, J.; Perez, J.; Barro, R.; Ciria, P. Pure and mixed perennial biomass crops for a constraint marginal land in north-central Spain (a 6-year study). In Proceedings of the 25th European Biomass Conference & Exhibition, Stockholm, Sweden, 12–15 June 2016; pp. 120–124. [Google Scholar] [CrossRef]
- Glover, J.D.; Culman, S.W.; DuPont, S.T.; Broussard, W.; Young, L.; Mangan, M.E.; Mai, J.G.; Crews, T.E.; DeHaan, L.R.; Buckley, D.H.; Ferris, H.; et al. Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric. Ecosyst. Environ. 2010, 137, 3–12. [Google Scholar] [CrossRef]
- Ciria, P.; Ciria, C.S.; Maletta, E.; Perez, J.; Barro, R.; Carrasco, J.E. Varietal response of Elytrigia elongata under semiarid conditions in Spain: Establishment. In Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1–4 June 2015; Baxter, D., Grassi, A., Helm, P., Eds.; ETA-Florence: Vienna, Austria, 2015; pp. 139–146. [Google Scholar] [CrossRef]
Labor | Fuel (l ha−1) | Hourly Rate per Labor (h ha−1) | Tractor + Implement Costs (€ ha−1) | Labor Costs (€ ha−1) | Total (€ ha−1) |
---|---|---|---|---|---|
Tillage | 13.9 | 0.98 | 33.59 | 9.80 | 43.39 |
Base Fertilization | 1.0 | 0.09 | 6.24 | 0.87 | 7.11 |
Cultivate | 6.1 | 0.56 | 12.62 | 5.55 | 18.17 |
Seeding | 4.3 | 0.39 | 15.48 | 3.92 | 19.40 |
Top dressing | 0.7 | 0.07 | 5.24 | 0.87 | 6.11 |
Rolling | 2.7 | 0.21 | 3.61 | 2.10 | 5.71 |
Herbicide treatment | 0.7 | 0.07 | 4.60 | 0.65 | 5.25 |
Harvest | 17.1 | 0.44 | 39.60 | 4.40 | 44.00 |
Units | Wheat | Barley | |
---|---|---|---|
Machinery costs + labor | € ha−1 | 149 | 149 |
Base fertilizers for grain yield: | € ha−1 | ||
1.0 Mg ha−1 | 50 | 40 | |
1.5 Mg ha−1 | 63 | 48 | |
2.0 Mg ha−1 | 84 | 60 | |
2.5 Mg ha−1 | 100 | 80 | |
3.0 Mg ha−1 | 125 | 80 | |
Seeds | € ha−1 | 39 | 33 |
Herbicides | € ha−1 | 23 | 22 |
Top dressing for grain yield: | € ha−1 | ||
1.0 Mg ha−1 | 20 | 20 | |
1.5 Mg ha−1 | 25 | 25 | |
2.0 Mg ha−1 | 30 | 30 | |
2.5 Mg ha−1 | 41 | 41 | |
3.0 Mg ha−1 | 50 | 50 | |
Output | € Mg−1 | 190 | 161 |
Grain Yield (Mg ha−1) | Input (€ ha−1) | Output (€ ha−1) | Gross Margin (€ ha−1) | |||
---|---|---|---|---|---|---|
Wheat | Barley | Wheat | Barley | Wheat | Barley | |
1.0 | 280 | 263 | 190 | 161 | −90 | −102 |
1.5 | 298 | 276 | 285 | 241 | −13 | −35 |
2.0 | 324 | 293 | 380 | 322 | 56 | 29 |
2.5 | 351 | 324 | 475 | 403 | 124 | 79 |
3.0 | 385 | 333 | 570 | 483 | 185 | 150 |
Biophysical Constraints | Surface Affected (ha) |
---|---|
Stoniness | 1,383,612 |
Organic matter (OM) | 1,171,564 |
Soil depth | 505,866 |
Soil type | 449,346 |
Annual rainfall | 435,093 |
Salinity | 281,879 |
pH | 162,261 |
Biophysical Constraints | Surface Affected (ha) |
---|---|
Stoniness | 3,183,996 |
Organic matter (OM) | 6,011,766 |
Soil depth | 894,298 |
Soil type | 1,797,789 |
Annual rainfall | 673,591 |
Salinity | 1,419,527 |
pH | 624,906 |
Biophysical Constraints | Stoniness (%) | OM (%) | Soil Depth (%) | Soil Type (%) | A. Rainfall (%) | Salinity (%) | pH (%) |
---|---|---|---|---|---|---|---|
Stoniness | - | 58 | 24 | 17 | 6 | 10 | 4 |
OM | 37 | - | 16 | 18 | 14 | 18 | 4 |
Soil depth | 78 | 82 | - | 2 | 2 | 5 | 0 |
Soil type | 35 | 57 | 1 | - | 29 | 26 | 30 |
A. rainfall | 24 | 89 | 3 | 58 | - | 40 | 21 |
Salinity | 27 | 78 | 4 | 34 | 26 | - | 8 |
pH | 26 | 36 | 1 | 84 | 29 | 16 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciria, C.S.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. Sustainability 2019, 11, 1833. https://doi.org/10.3390/su11071833
Ciria CS, Sanz M, Carrasco J, Ciria P. Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. Sustainability. 2019; 11(7):1833. https://doi.org/10.3390/su11071833
Chicago/Turabian StyleCiria, Carlos S., Marina Sanz, Juan Carrasco, and Pilar Ciria. 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain" Sustainability 11, no. 7: 1833. https://doi.org/10.3390/su11071833
APA StyleCiria, C. S., Sanz, M., Carrasco, J., & Ciria, P. (2019). Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. Sustainability, 11(7), 1833. https://doi.org/10.3390/su11071833