Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Vegetation Data Analysis
2.4. Soil Properties Analyses
2.5. Floristic Analysis
3. Results
3.1. Species Composition and Diversity Indices
3.2. TWINSPAN
3.3. Canonical Correspondence Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Species | Sampling Sites (U) | LSD |
---|---|---|
01110000110000111122212222 | ||
12387389012456467501293456 | ||
11 | 11--1--------------------- | 000000 |
13 | -111---------------------- | 000000 |
30 | --1----------------------- | 000000 |
37 | 1------------------------- | 000000 |
44 | -11----------------------- | 000000 |
54 | -1------------------------ | 000000 |
100 | -1111-1------------------- | 000000 |
135 | -11-----1------------1---- | 000001 |
71 | ---1----------1------1---- | 00001 |
2 | ---------------------1---- | 000100 |
5 | ----------------11---1---- | 000100 |
15 | ------------------111----- | 000100 |
19 | ------------------1-1----- | 000100 |
21 | --------------------1----- | 000100 |
25 | ------------------1------- | 000100 |
27 | ------------------11------ | 000100 |
36 | ------------------1------- | 000100 |
59 | ----------------11111----- | 000100 |
69 | ---------------11111-1---- | 000100 |
85 | ------------------1--1---- | 000100 |
96 | --------------1--11-1----- | 000100 |
107 | ---------------1-1-11----- | 000100 |
134 | ---------------1111--1---- | 000100 |
146 | ------------------1--1---- | 000100 |
67 | --------------1--1-------- | 000101 |
121 | --------------11111--1---- | 000101 |
98 | ---------1-11-111111-1---- | 00011 |
102 | ----1-1-------1111-------- | 00011 |
50 | -111-111--11-1------------ | 001000 |
142 | --1--1---1---------------- | 001000 |
144 | 1---1-----11-1------------ | 001000 |
53 | -------111--1111111------- | 001001 |
62 | ----1111111-1111111111---- | 001001 |
88 | -----11111111111111--1---- | 001001 |
145 | -----1--1-1111-11-1--1---- | 001001 |
4 | -----1-------------------- | 001010 |
16 | ----1111111111--111------- | 001010 |
17 | -----1-------------------- | 001010 |
18 | -----11-1--1-------------- | 001010 |
29 | ----1--------------------- | 001010 |
38 | ----1111111111111--------- | 001010 |
39 | ----1--------------------- | 001010 |
51 | -----1-------------------- | 001010 |
52 | ----1-11---11------------- | 001010 |
65 | ----111111-11-1----------- | 001010 |
101 | ------1-11---------------- | 001010 |
123 | -----1111-1111---1-------- | 001010 |
124 | ------------11------------ | 001010 |
132 | ----11111111111----------- | 001010 |
12 | ----------------1--------- | 001011 |
42 | ----------------1--------- | 001011 |
7 | ----1-11---1----1--------1 | 00110 |
133 | ----11-----11-1111-------1 | 00110 |
139 | 1---111111----1------1---1 | 00110 |
45 | --------------111-----1--- | 00111 |
129 | 11--111111111111111---111- | 00111 |
28 | ------------------1--11--- | 01 |
35 | ---------------1111-1-111- | 01 |
112 | -------------------11--1-- | 01 |
140 | ----1-----------------11-- | 100 |
117 | ------------------1---11-1 | 10100 |
1 | ----------------------11-- | 10101 |
3 | -------------------------1 | 10101 |
6 | ------------------------11 | 10101 |
8 | ------------------------1- | 10101 |
10 | ----------------------11-- | 10101 |
14 | ----------------------1--- | 10101 |
20 | -------------------------1 | 10101 |
22 | ----------------------1--- | 10101 |
23 | ----------------------1--- | 10101 |
24 | -------------------------1 | 10101 |
26 | ------------------------1- | 10101 |
31 | ----------------------11-- | 10101 |
32 | ----------------------1--- | 10101 |
33 | ----------------------1--- | 10101 |
34 | -------------------------1 | 10101 |
40 | ----------------------1--- | 10101 |
41 | ----------------------11-- | 10101 |
43 | ----------------------1--- | 10101 |
46 | -------------------------1 | 10101 |
47 | ------------------------1- | 10101 |
48 | ------------------------1- | 10101 |
49 | ----------------------111- | 10101 |
56 | ----------------------1-1- | 10101 |
84 | ----------------------1111 | 10101 |
87 | -----------------------1-1 | 10101 |
90 | ------------------------11 | 10101 |
92 | ----------------------1-1- | 10101 |
114 | ----------------------1111 | 10101 |
118 | -----------------------111 | 10101 |
119 | ----------------------11-- | 10101 |
120 | ------------------------11 | 10101 |
122 | ----------------------11-- | 10101 |
131 | ----------------------11-- | 10101 |
136 | ----------------------11-- | 10101 |
137 | ----------------------1111 | 10101 |
138 | ------------------------11 | 10101 |
141 | ------------------------11 | 10101 |
86 | ---1------------------1111 | 1011 |
9 | -1-1-------------------1-- | 11 |
00000000000000000000001111 | ||
0000111111111111111111 | ||
000000000000011111 | ||
000000000011100001 | ||
0111111111 | ||
0000001111 |
Species | Sampling Sites (M) | LSD |
---|---|---|
223233333333 | ||
783901245678 | ||
4 | -------1---- | 00000 |
9 | -------1---- | 00000 |
10 | -------1---- | 00000 |
12 | -------1---- | 00000 |
24 | -------1---- | 00000 |
37 | -------1---- | 00000 |
47 | -------1---- | 00000 |
51 | -------1---- | 00000 |
52 | -------1---- | 00000 |
53 | -------1---- | 00000 |
67 | -------1---- | 00000 |
72 | -------1---- | 00000 |
73 | -------1---- | 00000 |
74 | -------1---- | 00000 |
76 | -------1---- | 00000 |
77 | -------1---- | 00000 |
106 | -1-----1---- | 00001 |
25 | ------11---- | 0001 |
90 | ------11---- | 0001 |
114 | ------11---- | 0001 |
41 | ----1111---- | 00100 |
49 | ----1111---- | 00100 |
83 | ---111-1---- | 00100 |
97 | ----1111---- | 00100 |
13 | ---1111----- | 001010 |
21 | ----1-1----- | 001010 |
28 | ---1-1------ | 001010 |
32 | ------1----- | 001010 |
54 | -----11----- | 001010 |
99 | ----111----- | 001010 |
14 | --1---1----- | 001011 |
36 | --1--------- | 001011 |
19 | -1---------- | 001100 |
27 | 1-1111-----1 | 001100 |
30 | 1111-------- | 001100 |
43 | -1---------- | 001100 |
44 | 1----------- | 001100 |
57 | 111-111----- | 001100 |
63 | -1---------- | 001100 |
66 | 11-1111----- | 001100 |
69 | 1--1-------- | 001100 |
113 | 1-11111----- | 001100 |
31 | -1-1--11---- | 001101 |
103 | -1-1--11---- | 001101 |
50 | ---1111---11 | 00111 |
112 | ----1-1----1 | 00111 |
11 | -------11--- | 01 |
45 | -1-1----1-1- | 01 |
93 | ----1-111-11 | 01 |
110 | --1----1---1 | 01 |
107 | -------1--11 | 10 |
1 | ---------1-- | 11 |
2 | --------1--- | 11 |
3 | -----------1 | 11 |
5 | --------11-- | 11 |
6 | --------1--- | 11 |
7 | -----------1 | 11 |
8 | --------1--- | 11 |
15 | ----------1- | 11 |
16 | --------1--- | 11 |
17 | ---------11- | 11 |
18 | -----------1 | 11 |
20 | --------1111 | 11 |
22 | ---------1-- | 11 |
23 | ----------1- | 11 |
26 | ---------1-- | 11 |
29 | ----------1- | 11 |
33 | ---------1-- | 11 |
34 | ---------1-- | 11 |
35 | -----------1 | 11 |
38 | ---------1-1 | 11 |
39 | ---------1-- | 11 |
40 | ----------1- | 11 |
42 | ----------1- | 11 |
46 | --------11-1 | 11 |
48 | ----------11 | 11 |
55 | ----------11 | 11 |
56 | -----------1 | 11 |
58 | ---------1-- | 11 |
59 | --------1--- | 11 |
60 | --------1--- | 11 |
61 | ---------1-- | 11 |
62 | --------1--- | 11 |
64 | ---------1-- | 11 |
65 | ---------1-- | 11 |
68 | ---------1-- | 11 |
70 | ----------1- | 11 |
71 | --------1--- | 11 |
75 | --------11-1 | 11 |
78 | --------1--- | 11 |
82 | --------1-11 | 11 |
85 | ----------11 | 11 |
88 | --------11-- | 11 |
89 | --------11-1 | 11 |
91 | --------1--1 | 11 |
92 | --------11-1 | 11 |
105 | --------11-1 | 11 |
109 | --------11-1 | 11 |
111 | --------1111 | 11 |
115 | --------11-1 | 11 |
000000001111 | ||
00000001 | ||
0011111 | ||
01111 |
Species | Sampling Sites (D) | LSD |
---|---|---|
4344444 | ||
0912345 | ||
1 | 1------ | 00000 |
14 | 1------ | 00000 |
25 | 1------ | 00000 |
29 | 1------ | 00000 |
40 | 1------ | 00000 |
44 | 1------ | 00000 |
54 | 1------ | 00000 |
57 | 1------ | 00000 |
60 | 1------ | 00000 |
80 | 1------ | 00000 |
2 | 11----- | 00001 |
5 | 1---1-- | 00001 |
7 | 1-1---- | 00001 |
28 | 1-111-- | 0001 |
67 | 111---- | 0001 |
75 | 1-11--- | 0001 |
84 | 11-11-- | 0001 |
32 | 11111-- | 0010 |
3 | --1---- | 0011 |
9 | ---11-- | 0011 |
10 | ----1-- | 0011 |
11 | --1---- | 0011 |
16 | --1---- | 0011 |
19 | ----1-- | 0011 |
20 | --1-1-- | 0011 |
22 | --1-1-- | 0011 |
24 | -1--1-- | 0011 |
27 | ----1-- | 0011 |
31 | ---1--- | 0011 |
33 | -1111-- | 0011 |
37 | --1---- | 0011 |
41 | --1---- | 0011 |
45 | --1---- | 0011 |
46 | ----1-- | 0011 |
47 | ---1--- | 0011 |
51 | -1--1-- | 0011 |
53 | ----1-- | 0011 |
56 | -1--1-- | 0011 |
58 | ----1-- | 0011 |
59 | -1----- | 0011 |
61 | ----1-- | 0011 |
64 | ---1--- | 0011 |
65 | --1---- | 0011 |
68 | ----1-- | 0011 |
69 | -1----- | 0011 |
70 | ----1-- | 0011 |
71 | ---1--- | 0011 |
72 | -111--- | 0011 |
73 | -1--1-- | 0011 |
74 | --1---- | 0011 |
78 | -1-11-- | 0011 |
81 | --1-1-- | 0011 |
82 | ---1--- | 0011 |
83 | --1---- | 0011 |
85 | ----1-- | 0011 |
23 | 11111-1 | 01 |
35 | 1-1111- | 01 |
38 | -111--1 | 01 |
79 | 111--1- | 01 |
4 | --11-1- | 10 |
17 | -1-1--1 | 10 |
26 | ---11-1 | 10 |
30 | -11---1 | 10 |
76 | --1-1-1 | 10 |
43 | 1-1--1- | 110 |
6 | -1---1- | 1110 |
21 | -1---1- | 1110 |
62 | ---1-1- | 1110 |
8 | ------1 | 1111 |
12 | -----1- | 1111 |
13 | ----111 | 1111 |
15 | ------1 | 1111 |
18 | -----1- | 1111 |
34 | ------1 | 1111 |
36 | -----1- | 1111 |
39 | ------1 | 1111 |
42 | -----1- | 1111 |
48 | ------1 | 1111 |
49 | ------1 | 1111 |
50 | ------1 | 1111 |
52 | -----1- | 1111 |
55 | ------1 | 1111 |
63 | -----1- | 1111 |
66 | -----11 | 1111 |
77 | ------1 | 1111 |
0000011 | ||
01111 |
References
- Revenga, C.; Brunner, J.; Henninger, N.; Kassem, K.; Payne, R. Freshwater Ecosyst; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Lambert, A. Economic Valuation of Wetlands: An Important Component of Wetland Management Strategies at the River Basin Scale. Available online: http://archive.ramsar.org/cda/en/ramsar-news-archives-2003-economic-valuation-of/main/ramsar/1-26-45-86%5E16205_4000_0__ (accessed on 9 February 2019).
- Momblanch, A.; Connor, J.D.; Crossman, N.D.; Paredes-Arquiola, J.; Andreu, J. Using ecosystem services to represent the environment in hydro-economic models. J. Hydrol. 2016, 538, 293–303. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53. [Google Scholar] [CrossRef] [PubMed]
- Boldt-Burisch, K.; Naeth, M.A.; Schneider, B.U.; Hüttl, R.F. Linkage between root systems of three pioneer plant species and soil nitrogen during early reclamation of a mine site in Lusatia, Germany. Restor. Ecol. 2015, 23, 357–365. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Ram, L.C.; Masto, R.E. Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: A sustainable ecological approach. Ecol. Eng. 2014, 71, 479–489. [Google Scholar] [CrossRef]
- Welch, B.A.; Davis, C.B.; Gates, R.J. Dominant environmental factors in wetland plant communities invaded by Phragmites australis in East Harbor, Ohio, USA. Wetl. Ecol. Manag. 2006, 14, 511–525. [Google Scholar] [CrossRef]
- Isacch, J.P.; Costa, C.S.B.; Rodríguez-Gallego, L.; Conde, D.; Escapa, M.; Gagliardini, D.A.; Iribarne, O.O. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J. Biogeogr. 2006, 3, 888–900. [Google Scholar] [CrossRef]
- Gaudet, C.L.; Keddy, P.A. Competitive performance and species distribution in shortline plant communities: A comparative approach. Ecology 1995, 76, 280–291. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Bahrami, B.; Ghorbani, A.; Jafari, M.; Rezanezhad, F.; Esmali, A. Investigation of Relation Vegetation and Some Soil Physico-Chemical Characteristics in Three Rangeland Habitats. Open J. Ecol 2017, 7, 336. [Google Scholar] [CrossRef]
- Green, E.K.; Galatowitsch, S.M. Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. J. Appl. Ecol. 2002, 39, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Jiang, M.; Tian, W.; Zhang, J.; Zhu, W. Effects of wetland vegetation on soil microbial composition: A case study in Tumen River Basin, Northeast China. Chin. Geogr. Sci 2017, 27, 239–247. [Google Scholar] [CrossRef]
- Zhou, D.; Luan, Z.; Guo, X.; Lou, Y. Spatial distribution patterns of wetland plants in relation to environmental gradient in the Honghe National Nature Reserve, Northeast China. J. Geogr. Sci. 2012, 22, 57–70. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Q.; Li, M.; Li, Y.; Xu, X.; Jiang, J. A study of the relationship between wetland vegetation communities and water regimes using a combined remote sensing and hydraulic modeling approach. Hydrol. Res. 2016, 47, 278–292. [Google Scholar] [Green Version]
- Timoney, K. Factors influencing wetland plant communities during a flood-drawdown cycle in the Peace-Athabasca Delta, northern Alberta, Canada. Wetlands 2008, 28, 450–463. [Google Scholar] [CrossRef]
- Legendre, P.; Mi, X.; Ren, H.; Ma, K.; Yu, M.; Sun, I.; He, F. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 2009, 90, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Weiher, E.; Keddy, P.A. The assembly of experimental wetland plant communities. Oikos 1995, 73, 323–335. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Zhou, M.; Ai, D.; Wang, G.; Wang, Y.; Chu, C.; Lundholm, J.T. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 2015, 5, 15723. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Niu, Z.; Cheng, X.; Zhao, K.; Zhou, D.; Guo, J.; Liang, L.; Wang, X.; Li, D.; Huang, H. China’s wetland change (1990–2000) determined by remote sensing. Sci. Chin. Earth Sci. 2010, 53, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.J.; Sun, P.; Zhu, W.H.; Xu, Z.; Fu, J.; Man, W.D.; Li, H.L.; Zhang, J.; Qin, L. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landsc. Ecol. Eng. 2017, 13, 237–250. [Google Scholar] [CrossRef]
- Li, F.; Gao, H.; Zhu, L.; Xie, Y.; Yang, G.; Hu, C.; Chen, X.; Deng, Z. Foliar nitrogen and phosphorus stoichiometry of three wetland plants distributed along an elevation gradient in Dongting Lake, China. Sci. Rep. 2017, 7, 2820. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Z.; Nan, Y.; Li, S.; Yang, Y. Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability 2018, 10, 2637. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Z.; Liu, D.; Song, K.; Li, L.; Jia, M.; Ding, Z. Mapping wetland areas using Landsat-derived NDVI and LSWI: A case study of West Songnen Plain, Northeast China. J. Indian Soc. Remote Sens. 2014, 42, 569–576. [Google Scholar] [CrossRef]
- Li, W.; Ouyang, Z.; Meng, X.; Wang, X. Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol. Res. 2006, 21, 221–237. [Google Scholar] [CrossRef]
- Jafari, M.; Chahouki, M.Z.; Tavili, A.; Azarnivand, H.; Amiri, G.Z. Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). J. Arid Environ. 2004, 56, 627–641. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Cao, Y.; Bai, Z.; Qin, Q. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Sci. Rep. 2016, 6, 22058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakata, Y.; Craig, T.P.; Itami, J.K.; Yamasaki, M.; Ohgushi, T. Parallel environmental factors drive variation in insect density and plant resistance in the native and invaded ranges. Ecology 2017, 98, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
- Zemunik, G.; Turner, B.L.; Lambers, H.; Laliberté, E. Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. J. Ecol. 2016, 104, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Zarin, D.J.; Guo, H.; Enu-Kwesi, L. Methods for the assessment of plant species diversity in complex agricultural landscapes: Guidelines for data collection and analysis from the PLEC Biodiversity Advisory Group (PLEC-BAG). PLEC News Views 1999, 13, 3–16. [Google Scholar]
- Hsieh, T.; Ma, K.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- García, R.R.; Miñarro, M. Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agric. Ecosyst. Environ. 2014, 183, 118–126. [Google Scholar] [CrossRef]
- Liu, G.S.; Jiang, N.H.; Zhang, L.D. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles; China Standard Press: Beijing, China, 1996; p. 85. (In Chinese) [Google Scholar]
- Feng, R.Z.; Long, R.J.; Shang, Z.H.; Ma, Y.S.; Dong, S.K.; Wang, Y.L. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant Soil 2010, 327, 403–411. [Google Scholar] [CrossRef]
- Murillo-Pacheco, J.I.; Rös, M.; Escobar, F.; Castro-Lima, F.; Verdú, J.R.; López-Iborra, G.M. Effect of wetland management: Are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia? PeerJ 2016, 4, e2267. [Google Scholar] [CrossRef]
- Ter Braak, C.J.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca: Microcomputer Power. 2002. Available online: www.canoco.com (accessed on 18 June 2011).
- Hill, M.; Šmilauer, P. TWINSPAN for Windows Version 2.3; Centre for Ecology and Hydrology & University of South Bohemia: Huntingdon and Ceske Budejovice, Czech Repubic, 2005. [Google Scholar]
- Ren, L.; He, L.; Lu, H.; Chen, Y. Monte Carlo-based interval transformation analysis for multi-criteria decision analysis of groundwater management strategies under uncertain naphthalene concentrations and health risks. J. Hydrol. 2016, 539, 468–477. [Google Scholar] [CrossRef]
- Li, X.G.; Li, F.M.; Zed, R.; Zhan, Z.Y. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 2007, 139, 98–105. [Google Scholar] [CrossRef]
- Callaway, R.M.; Walker, L.R. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 1997, 78, 1958–1965. [Google Scholar] [CrossRef]
- Hejda, M.; Hanzelka, J.; Kadlec, T.; Štrobl, M.; Pyšek, P.; Reif, J. Impacts of an invasive tree across trophic levels: Species richness, community composition and resident species’ traits. Divers. Distrib. 2017, 23, 997–1007. [Google Scholar] [CrossRef]
- Valladares, F.; Bastias, C.C.; Godoy, O.; Granda, E.; Escudero, A. Species coexistence in a changing world. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Gundale, M.J.; Jäderlund, A.; Nilsson, M.-C. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology 2013, 94, 904–919. [Google Scholar] [CrossRef]
- Cavagnaro, T.R. Soil moisture legacy effects: Impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biol. Biochem. 2016, 95, 173–179. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring citrus soil moisture and nutrients using an iot based system. Sensors 2017, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Walker, K.J.; Preston, C.D.; Boon, C.R. Fifty years of change in an area of intensive agriculture: Plant trait responses to habitat modification and conservation, Bedfordshire, England. Biodivers. Conserv. 2009, 18, 3597. [Google Scholar] [CrossRef]
Index | Formula | Note |
---|---|---|
Patrich | S: the number of species recorded in the sample. | |
Shannon-Wiener | Pi: the proportional abundance of the i-th species in N individuals of S species in total, i.e. Pi = Ni/N. | |
Simpson | N: the number of individuals recorded in the sample. | |
Pielou |
SSi | Upstream and Midstream | Midstream and Downstream | Upstream and Downstream |
---|---|---|---|
Family | 0.3934 | 0.5614 | 0.2942 |
Genera | 0.3784 | 0.5271 | 0.2454 |
Group | Plant Species Types | Sites |
---|---|---|
Upstream 1 | Gr.Ass. Carex loliacea - Carex heterolepis | U1, U12, U13, U18 |
Upstream 2 | Gr.Ass.Carex heterolepis - Rhododendron lapponicum - Vaccinium uliginosum | U7 |
Upstream 3 | Gr.Ass. Rhododendron lapponicum - Vaccinium uliginosum | U3, U8, U 9, U10, U11 |
Upstream 4 | Gr.Ass. Rhododendron lapponicum - Carex loliacea | U2, U4, U5, U6 |
Upstream 5 | Gr.Ass. Deyeuxia angustifolia - Maianthemum bifolium - Melampyrum roseum Maxim | U14, U16, U17 |
Upstream 6 | Gr.Ass. Carex subpediformis - Convallaria majalis | U15, U20, U21, U22 |
Upstream 7 | Gr.Ass. Carex subpediformis - Maianthemum bifolium | U19 |
Upstream 8 | Gr.Ass.Equisetum arvense - Carex heterolepis - Carex pilosa - Deyeuxia angustifolia | U23, U24, U25, U26 |
Midstream 1 | Gr.Ass. Carex pseudo-curaica - Lemna minor | M27, M28 |
Midstream 2 | Gr.Ass. Carex arnellii - Scirpus orientalis | M33 |
Midstream 3 | Gr.Ass. Carex pseudo-curaica - Carex arnellii | M29, M30, M31, M32 |
Midstream 4 | Gr.Ass. Deyeuxia angustifolia - Carex flacca | M34 |
Midstream 5 | Gr.Ass. Equisetum arvense - Polygonum hydropiper - Scirpus orientalis - Cyperus nipponicus - Cyperus fuscus | M35, M36, M37, M38 |
Downstream 1 | Gr.Ass. Aeginetia indica - Phalaris arundinacea. - Salvinia natans | D40 |
Downstream 2 | Gr.Ass. Acorus calamus - Panicum bisulcatum - Myriophyllum spicatum - Salvinia natans | D39, D41, D42, D43 |
Downstream 3 | Gr.Ass. Carex vesicaria - Aeginetia indica - Acorus calamus - Carex pseudo-curaica | D44, D45 |
Axes | CCA 1 | CCA 2 | CCA 3 | CCA 4 |
---|---|---|---|---|
Eigenvalue | 0.897 | 0.807 | 0.690 | 0.672 |
Species-environment correlations | 0.993 | 0.992 | 0.976 | 0.969 |
Cumulative percentage variance of species data | 8.0 | 15.0 | 20.9 | 26.2 |
Cumulative percentage variance of species-environment relation | 21.1 | 35.9 | 49.8 | 61.9 |
SP1 | SP2 | |
---|---|---|
ELV | −0.9335 *** | 0.1713 |
TN | −0.0702 | −0.1063 |
TP | 0.3491 * | 0.0314 |
TK | −0.5940 *** | 0.1555 |
pH | 0.6461 *** | 0.3877 * |
SOM | −0.1946 | −0.0883 |
AN | −0.2344 | −0.1165 |
AP | 0.5410 *** | −0.2414 |
AK | 0.2279 | −0.0929 |
SWC | −0.2239 | −0.1190 |
ST | 0.9432 *** | 0.0410 |
PRE | −0.9251 *** | 0.1141 |
AT | 0.8753 *** | −0.1071 |
SH | −0.7676 *** | 0.2781 |
RH | −0.7875 *** | 0.2735 |
ELV | TN | TP | TK | pH | SOM | AN | AP | AK | SWC | ST | PRE | AT | SH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TN | 0.1709 | 1 | ||||||||||||
TP | −0.2115 | 0.2689 | 1 | |||||||||||
TK | 0.5500 *** | −0.4369 ** | −0.7509 *** | 1 | ||||||||||
pH | −0.5736 *** | −0.2975 | 0.2364 | −0.2437 | 1 | |||||||||
SOM | 0.2544 | 0.9701 *** | 0.1234 | −0.3322 * | −0.3987 ** | 1 | ||||||||
AN | 0.3380 * | 0.8590 *** | 0.3282 | −0.2975 | −0.4814 ** | 0.8521 *** | 1 | |||||||
AP | −0.4101 ** | −0.0389 | 0.5571 *** | −0.4538 ** | 0.1118 | −0.1890 | 0.0486 | 1 | ||||||
AK | −0.0623 | 0.2023 | 0.1894 | −0.1358 | 0.0187 | 0.1330 | 0.2385 | 0.3639 * | 1 | |||||
SWC | 0.2918 | 0.9634 *** | 0.1273 | −0.3158 * | −0.4199 ** | 0.9731 *** | 0.8547 *** | −0.1787 | 0.1046 | 1 | ||||
ST | −0.8460 *** | −0.0939 | 0.4150 ** | −0.5627 *** | 0.5503 *** | −0.2065 | −0.1557 | 0.6380 *** | 0.329 * | −0.2597 | 1 | |||
PRE | 0.9000 *** | 0.1489 | −0.3703 * | 0.5403 *** | −0.5905 *** | 0.2630 | 0.2395 | −0.5422 *** | −0.3091 * | 0.3137 * | −0.9220 *** | 1 | ||
AT | −0.9563 *** | −0.2646 | 0.1067 | −0.4684 ** | 0.6204 *** | −0.3296 * | −0.4287 ** | 0.2793 | 0.0130 | −0.3671 | 0.7901 *** | −0.8722 *** | 1 | |
SH | 0.8191 *** | 0.2118 | −0.1898 | 0.4154 ** | −0.4908 *** | 0.2958 | 0.2956 | −0.3520 * | −0.2691 | 0.3310 | −0.7416 *** | 0.9227 *** | −0.8671 *** | 1 |
RH | 0.8160 *** | 0.2022 | −0.1535 | 0.4277 ** | −0.4207 ** | 0.2760 | 0.2602 | −0.4072 ** | −0.2872 | 0.3078 | −0.8118 *** | 0.8883 *** | −0.8736 *** | 0.9443 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Fu, J.; Ramamonjisoa, N.; Zhu, W.; He, C.; Lu, C. Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China. Sustainability 2019, 11, 1559. https://doi.org/10.3390/su11061559
Zheng X, Fu J, Ramamonjisoa N, Zhu W, He C, Lu C. Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China. Sustainability. 2019; 11(6):1559. https://doi.org/10.3390/su11061559
Chicago/Turabian StyleZheng, Xiaojun, Jing Fu, Noelikanto Ramamonjisoa, Weihong Zhu, Chunguang He, and Chunyan Lu. 2019. "Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China" Sustainability 11, no. 6: 1559. https://doi.org/10.3390/su11061559
APA StyleZheng, X., Fu, J., Ramamonjisoa, N., Zhu, W., He, C., & Lu, C. (2019). Relationship between Wetland Plant Communities and Environmental Factors in the Tumen River Basin in Northeast China. Sustainability, 11(6), 1559. https://doi.org/10.3390/su11061559