A Probabilistic Multi-Objective Model for Phasor Measurement Units Placement in the Presence of Line Outage
Abstract
:1. Introduction
2. Basic PMU Placement Model
2.1. Optimal PMU Placement Model in Normal Condition
2.2. Optimal PMU Placement Model Considering Line Outage
3. Multi-Objective Model for OPP Problem
3.1. Optimal Placement of PMU under Possibility
3.1.1. Possibility of Observability without Line Outage
3.1.2. Possibility of Observability with Line Outage
3.2. Proposed Multi-Objective Model
4. ε-Constraint Method and Fuzzy Satisfying Approach
5. Numerical Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohammadi, F. Stability Analysis of Electric Power System. In Proceedings of the 4th National Conference on Technology in Electrical and Computer Engineering, Tehran, Iran, 27 December 2018. [Google Scholar]
- Mohammadi, F.; Nazri, G.; Saif, M. A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles. Sustainability 2019, 11, 4317. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Shen, J.; Hua, Q.; Lee, K.Y. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Appl. Energy 2018, 231, 866–875. [Google Scholar] [CrossRef]
- Rakpenthai, C.; Premrudeepreechacharn, S.; Uatrongjit, S.; Watson, N.R. An Optimal PMU Placement Method Against Measurement Loss and Branch Outage. IEEE Trans. Power Deliv. 2007, 22, 101–107. [Google Scholar] [CrossRef]
- Khajeh, K.G.; Bashar, E.; Rad, A.M.; Gharehpetian, G.B. Integrated Model Considering Effects of Zero Injection Buses and Conventional Measurements on Optimal PMU Placement. IEEE Trans. Smart Grid 2017, 8, 1006–1013. [Google Scholar]
- Yang, Q.; Jiang, L.; Hao, W.; Zhou, B.; Yang, P.; Lv, Z. PMU Placement in Electric Transmission Networks for Reliable State Estimation Against False Data Injection Attacks. IEEE Internet Things J. 2017, 4, 1978–1986. [Google Scholar] [CrossRef] [Green Version]
- Manousakis, N.M.; Korres, G.N. Optimal PMU Placement for Numerical Observability Considering Fixed Channel Capacity—A Semidefinite Programming Approach. IEEE Trans. Power Syst. 2016, 31, 3328–3329. [Google Scholar] [CrossRef]
- Almunif, A.; Fan, L. Optimal PMU placement for modeling power grid observability with mathematical programming methods. Int. Trans. Electr. Energy Syst. 2019, e12182. [Google Scholar] [CrossRef]
- Theodorakatos, N.P. Optimal Phasor Measurement Unit Placement for Numerical Observability Using Branch-and-Bound and a Binary-Coded Genetic Algorithm. Electr. Power Compon. Syst. 2019, 47, 357–371. [Google Scholar] [CrossRef]
- Su, H.; Wang, C.; Li, P.; Liu, Z.; Yu, L.; Wu, J. Optimal placement of phasor measurement unit in distribution networks considering the changes in topology. Appl. Energy 2019, 250, 313–322. [Google Scholar] [CrossRef]
- Mazhari, S.M.; Monsef, H.; Lesani, H.; Fereidunian, A. A Multi-Objective PMU Placement Method Considering Measurement Redundancy and Observability Value Under Contingencies. IEEE Trans. Power Syst. 2013, 28, 2136–2146. [Google Scholar] [CrossRef]
- Kulanthaisamy, A.; Vairamani, R.; Karunamurthi, N.K.; Koodalsamy, C. A multi-objective PMU placement method considering observability and measurement redundancy using ABC algorithm. Adv. Electr. Comput. Eng. 2014, 14, 117–129. [Google Scholar] [CrossRef]
- Dalali, M.; Karegar, H.K. Optimal PMU placement for full observability of the power network with maximum redundancy using modified binary cuckoo optimisation algorithm. IET Gener. Transm. Distrib. 2016, 10, 2817–2824. [Google Scholar] [CrossRef]
- Razavi, S.E.; Falaghi, H.; Singh, C.; Aghaei, J.; Nezhad, A.E. A novel linear framework for Phasor Measurement Unit placement considering the effect of adjacent zero-injection buses. Measurement 2019, 133, 532–540. [Google Scholar] [CrossRef]
- Vigliassi, M.P.; Massignan, J.A.D.; Delbem, A.C.B.; London, J.B.A. Multi-objective evolutionary algorithm in tables for placement of SCADA and PMU considering the concept of Pareto Frontier. Int. J. Electr. Power Energy Syst. 2019, 106, 373–382. [Google Scholar] [CrossRef]
- Tavoosi, J.; Mohammadi, F. A New Type-II Fuzzy System for Flexible-Joint Robot Arm Control. In Proceedings of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran, 30–31 October 2019. [Google Scholar]
- Tavoosi, J.; Mohammadi, F. Design a New Intelligent Control for a Class of Nonlinear Systems. In Proceedings of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran, 30–31 October 2019. [Google Scholar]
- Sun, L.; Hua, Q.; Shen, J.; Xue, Y.; Li, D.; Lee, K.Y. Multi-objective optimization for advanced superheater steam temperature control in a 300MW power plant. Appl. Energy 2017, 208, 592–606. [Google Scholar] [CrossRef]
- Kong, X.; Wang, Y.; Yuan, X.; Yu, L. Multi Objective for PMU Placement in Compressed Distribution Network Considering Cost and Accuracy of State Estimation. Appl. Sci. 2019, 9, 1515. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Ogawa, S.; Chiang, H.D. Stochastic optimal allocation of PMUs for improving the accuracy of state estimation. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–6. [Google Scholar]
- Wang, Y.; Wang, C.; Li, W.; Li, J.; Lin, F. Reliability-Based Incremental PMU Placement. IEEE Trans. Power Syst. 2014, 29, 2744–2752. [Google Scholar] [CrossRef]
- Aghaei, J.; Baharvandi, A.; Rabiee, A.; Akbari, M. Probabilistic PMU Placement in Electric Power Networks: An MILP-Based Multiobjective Model. IEEE Trans. Ind. Inform. 2015, 11, 332–341. [Google Scholar] [CrossRef]
- Aminifar, F.; Fotuhi-Firuzabad, M.; Shahidehpour, M.; Khodaei, A. Observability enhancement by optimal PMU placement considering random power system outages. Energy Syst. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Aminifar, F.; Fotuhi-Firuzabad, M.; Shahidehpour, M.; Khodaei, A. Probabilistic Multistage PMU Placement in Electric Power Systems. IEEE Trans. Power Deliv. 2011, 26, 841–849. [Google Scholar] [CrossRef]
- Aminifar, F.; Khodaei, A.; Fotuhi-Firuzabad, M.; Shahidehpour, M. Contingency-Constrained PMU Placement in Power Networks. IEEE Trans. Power Syst. 2010, 25, 516–523. [Google Scholar] [CrossRef]
- Dua, D.; Dambhare, S.; Gajbhiye, R.K.; Soman, S.A. Optimal Multistage Scheduling of PMU Placement: An ILP Approach. IEEE Trans. Power Deliv. 2008, 23, 1812–1820. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.; Ma, M.; Shen, R.; Yu, Y. An Optimal PMU Placement with Reliable Zero Injection Observation. IEEE Access 2018, 6, 54417–54426. [Google Scholar] [CrossRef]
- Mavrotas, G. Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Appl. Math. Comput. 2009, 213, 455–465. [Google Scholar] [CrossRef]
- Majidi, M.; Nojavan, S.; Nourani, N.; Najafi-ghalelou, A.; Zare, K. A multi-objective model for optimal operation of a battery/PV/fuel cell/grid hybrid energy system using weighted sum technique and fuzzy satisfying approach considering responsible load management. Sol. Energy 2017, 144, 79–89. [Google Scholar] [CrossRef]
- Nojavan, S.; Majidi, M.; Najafi-Ghalelou, A.; Ghahramani, M.; Zare, K. A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach. Energy Convers. Manag. 2017, 138, 383–392. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0.99549768 | A12,16 | 0.9956 | A41,42 | 0.9968 | |
0.99854238 | A12,17 | 0.9929 | A41,43 | 0.9939 | |
0.99958447 | A14,15 | 0.9935 | A38,44 | 0.9927 | |
0.9990 | A18,19 | 0.9919 | A15,45 | 0.9960 | |
A1,2 | 0.9960 | A19,20 | 0.9948 | A14,46 | 0.9931 |
A2,3 | 0.9944 | A21,20 | 0.9962 | A46,47 | 0.9938 |
A3,4 | 0.9976 | A21,22 | 0.9974 | A47,48 | 0.9983 |
A4,5 | 0.9923 | A22,23 | 0.9943 | A48,49 | 0.9943 |
A4,6 | 0.9925 | A23,24 | 0.9931 | A49,50 | 0.9958 |
A6,7 | 0.9929 | A24,25 | 0.9955 | A50,51 | 0.9922 |
A6,8 | 0.9966 | A24,26 | 0.9966 | A10,51 | 0.9983 |
A8,9 | 0.9944 | A26,27 | 0.9974 | A13,49 | 0.9953 |
A9,10 | 0.9982 | A27,28 | 0.9965 | A29,52 | 0.9955 |
A9,11 | 0.9955 | A28,29 | 0.9954 | A52,53 | 0.9953 |
A9,12 | 0.9962 | A7,29 | 0.9948 | A53,54 | 0.9932 |
A9,13 | 0.9973 | A25,30 | 0.9953 | A54,55 | 0.9962 |
A13,14 | 0.9971 | A30,31 | 0.9925 | A11,43 | 0.9931 |
A13,15 | 0.9955 | A31,32 | 0.9949 | A44,45 | 0.9952 |
A1,15 | 0.9977 | A32,33 | 0.9920 | A40,56 | 0.9981 |
A1,16 | 0.9943 | A34,32 | 0.9941 | A56,41 | 0.9972 |
A1,17 | 0.9952 | A34,35 | 0.9919 | A56,42 | 0.9935 |
A3,15 | 0.9937 | A35,36 | 0.9967 | A39,57 | 0.9952 |
A4,18 | 0.9937 | A36,37 | 0.9938 | A57,56 | 0.9973 |
A5,6 | 0.9981 | A37,38 | 0.9964 | A38,49 | 0.9961 |
A7,8 | 0.9979 | A37,39 | 0.9939 | A38,48 | 0.9943 |
A10,12 | 0.9962 | A36,40 | 0.9937 | A9,55 | 0.9971 |
A11,13 | 0.9948 | A22,38 | 0.9979 | ||
A12,13 | 0.9940 | A11,41 | 0.9966 |
Case | NPMU | APUO | Membership Function | Location of PMUs |
---|---|---|---|---|
Case 1 | 27 | 0.00181 | 0.750 | 1,4,6,9,12,15,19,20,22,24,26,28,29,30, 32,35,36,38,39,41,44,46,47,50,53,54,56 |
Case 2 | 33 | 0.00025 | 0.857 | 1,3,4,6,9,11,12,15,19,20,22,24,26,28,29,30,31, 32,33,35,36,37,38,41,45,46,47,50,51,53,54,56,57 |
Case | Model | NPMU | APUO | Location of PMUs |
---|---|---|---|---|
Case 1 | Multi-objective | 17 | 0.00793 | 1,4,6,9,15,20,24,25,28, 32,36,38,41,46,50,53,57 |
Single-objective | 17 | 0.00906 | 1,6,9,15,19,22,25,27,28, 32,36,41,45,47,50,53,57 | |
Case 2 | Multi-objective | 29 | 0.00180 | 1,3,4,6,9,11,12,15,19,20,22,24,27,29,30, 32,33,35,36,39,41,44,46,47,49,51,53,55,57 |
Single-objective | 29 | 0.00298 | 1,3,5,7,9,12,14,18,20,22,24,27,29,30,32, 33,35,38,39,40,42,43,45,47,50,51,53,55,57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, S.; Liu, X.; Zhang, Y.; Sun, L.; Yang, K. A Probabilistic Multi-Objective Model for Phasor Measurement Units Placement in the Presence of Line Outage. Sustainability 2019, 11, 7097. https://doi.org/10.3390/su11247097
Huang Y, Li S, Liu X, Zhang Y, Sun L, Yang K. A Probabilistic Multi-Objective Model for Phasor Measurement Units Placement in the Presence of Line Outage. Sustainability. 2019; 11(24):7097. https://doi.org/10.3390/su11247097
Chicago/Turabian StyleHuang, Yu, Shuqin Li, Xinyue Liu, Yan Zhang, Li Sun, and Kai Yang. 2019. "A Probabilistic Multi-Objective Model for Phasor Measurement Units Placement in the Presence of Line Outage" Sustainability 11, no. 24: 7097. https://doi.org/10.3390/su11247097
APA StyleHuang, Y., Li, S., Liu, X., Zhang, Y., Sun, L., & Yang, K. (2019). A Probabilistic Multi-Objective Model for Phasor Measurement Units Placement in the Presence of Line Outage. Sustainability, 11(24), 7097. https://doi.org/10.3390/su11247097