Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Methodology
2.1. Ordered Logit Model
2.2. Multilevel Mixed-Effects Ordered Logit Model
3. Data and Influencing Factors
3.1. RP/SP Survey
3.2. Data Description
4. Empirical Study
4.1. Model Structure
4.2. Estimation Results
4.3. Mode Difference Estimation
4.4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, T.; Ceder, A.A.; Bologna, R.; Cabantous, B. Commuting by Customized Bus: A Comparative Analysis with Private Car and Conventional Public Transport in Two Cities. J. Public Transp. 2016, 19, 55–74. [Google Scholar] [CrossRef]
- Suman, H.K.; Bolia, N.B.; Tiwari, G. Analysis of the factors influencing the use of public buses in Delhi. J. Urban. Plan. Dev. 2016, 142, 04016003. [Google Scholar] [CrossRef]
- Kim, S.; Ulfarsson, G.F. Commitment to Light Rail Transit Patronage: Case Study for St. Louis MetroLink. J. Urban Plan. Dev. 2012, 138, 227–234. [Google Scholar] [CrossRef]
- Ryley, T.J.; Stanley, P.A.; Enoch, M.P.; Zanni, A.M.; Quddus, M.A. Investigating the contribution of Demand Responsive Transport to a sustainable local public transport system. Res. Transp. Econ. 2014, 48, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Ceder, A.A. Analysis of a new public-transport-service concept: Customized bus in China. Transp. Policy 2015, 39, 63–76. [Google Scholar] [CrossRef]
- Li, J.; Lv, Y.; Ma, J.; Ouyang, Q. Methodology for Extracting Potential Customized Bus Routes Based on Bus Smart Card Data. Energies 2018, 11, 2224. [Google Scholar] [CrossRef] [Green Version]
- Kirby, R.F.; Bhatt, K.U. Guidelines on the Operation of Subscription Bus. Services; UI-5021-5024; Urban Institute and Urban Mass Transportation Administration: Washington, DC, USA, 1974. [Google Scholar]
- Kirby, R.F.; Bhatt, K.U. An analysis of subscription bus experience. Traffic Q. 1975, 29, 403–425. [Google Scholar]
- McCall, C.H., Jr. Com-Bus.: A Southern California Subscription Bus. Service; DOT-TSC-UMTA-77-13; Transportation Systems Center and Urban Mass Transportation Administration: Washington, DC, USA, 1977. [Google Scholar]
- Shaheen, S.; Sperling, D.; Wagner, C. Carsharing in Europe and North American: Past, Present, and Future. Transp. Q. 1998, 52, 35–52. [Google Scholar]
- Eiro, T.; Miguel Martinez, L.; Viegas, J.M. Configuration of Innovative Minibus Service in the Lisbon, Portugal, Municipality Spatial-Temporal Assessment. Transp. Res. Rec. 2011, 2217, 127–135. [Google Scholar] [CrossRef]
- Martinez, L.M.; Viegas, J.M.; Eiro, T. Formulating a new express minibus service design problem as a clustering problem. Transp. Sci. 2015, 49, 85–98. [Google Scholar] [CrossRef]
- Chan, N.D.; Shaheen, S.A. Ridesharing in North America: Past, Present, and Future. Transp. Rev. 2012, 32, 93–112. [Google Scholar] [CrossRef]
- Földes, D.; Csiszár, C. Model of information system for combined ride-sourcing service. In Proceedings of the 2017 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–6. [Google Scholar]
- Zhan, H.L.; Dong, J.S. Qingdao launched the first customized bus in China. Transp. Bus China 2014, 9, 20–23. [Google Scholar]
- Xu, K.M.; Li, J.L.; Feng, J.; Meng, Z.Y. Discussion on subscription bus service. Urban Transp. China 2013, 11, 24–27. [Google Scholar]
- Ma, J.; Yang, Y.; Guan, W.; Wang, F.; Liu, T.; Tu, W.; Song, C. Large-Scale Demand Driven Design of a Customized Bus Network: A Methodological Framework and Beijing Case Study. J. Adv. Transp. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, J. An Optimization Method of Passenger Assignment for Customized Bus. Math. Probl. Eng. 2017, 2017, 7914753. [Google Scholar] [CrossRef]
- Tong, L.C.; Zhou, L.; Liu, J.; Zhou, X. Customized bus service design for jointly optimizing passenger-to-vehicle assignment and vehicle routing. Transp. Res. Part C Emerg. Technol. 2017, 85, 451–475. [Google Scholar] [CrossRef]
- Wen, C.; Koppelman, F.S. The generalized nested logit model. Transp. Res. Part B Methodol. 2001, 35, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Ben-Akiva, M.; Bierlaire, M. Discrete choice methods and their applications to short term travel decisions. In Handbook of Transportation Science; Springer: Boston, MA, USA, 1999; pp. 5–33. [Google Scholar]
- Liya, Y.; Pengjun, Z. Travel mode choice model accounting for individual preference heterogeneity and correlation among choice alternatives. Acta Sci. Nat. Univ. Pekin. 2012, 48, 1009–1015. [Google Scholar]
- Li, S.; Zhao, P. The determinants of commuting mode choice among school children in Beijing. J. Transp. Geogr. 2015, 46, 112–121. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Liu, W.; Zhou, P. Understanding the determinants of travel mode choice of residents and its carbon mitigation potential. Energ. Policy 2018, 115, 486–493. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J. The Key Contributing Factors of Customized Shuttle Bus in Rush Hour: A Case Study in Harbin City. Procedia Eng. 2016, 137, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Nalmpantis, D.; Roukouni, A.; Genitsaris, E.; Stamelou, A.; Naniopoulos, A. Evaluation of innovative ideas for Public Transport proposed by citizens using Multi-Criteria Decision Analysis (MCDA). Eur. Transp. Res. Rev. 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Tsafarakis, S.; Gkorezis, P.; Nalmpantis, D.; Genitsaris, E.; Andronikidis, A.; Altsitsiadis, E. Investigating the preferences of individuals on public transport innovations using the Maximum Difference Scaling method. Eur. Transp. Res. Rev. 2019, 11. [Google Scholar] [CrossRef]
- Yasmin, S.; Eluru, N.; Bhat, C.R.; Tay, R. A latent segmentation based generalized ordered logit model to examine factors influencing driver injury severity. Anal. Methods Accid. Res. 2014, 1, 23–38. [Google Scholar] [CrossRef]
- Gengping, L. Highway Traffic Accident Severity Prediction Based on Ordered Logit and Multinomial Logit Model. Master’s Thesis, Chang’an University, Xi’an, China, 2018. [Google Scholar]
- Dissanayake, D.; Morikawa, T. Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: Case study in Bangkok Metropolitan Region. J. Transp. Geogr. 2010, 18, 402–410. [Google Scholar] [CrossRef]
- Majumdar, B.B.; Mitra, S. Valuing Factors Influencing Bicycle Route Choice Using a Stated-Preference Survey. J. Urban Plan. Dev. 2017, 143, 040170013. [Google Scholar] [CrossRef]
- Salon, D. Neighborhoods, cars, and commuting in New York City: A discrete choice approach. Transp. Res. Part A Policy Pract. 2009, 43, 180–196. [Google Scholar] [CrossRef] [Green Version]
Variable | Type | Value | Frequency | Percent |
---|---|---|---|---|
Gender | Female | 0 | 286 | 43.87 |
Male | 1 | 366 | 56.13 | |
Age | ≤25 | 1 | 226 | 34.66 |
26~50 | 2 | 387 | 59.36 | |
>50 | 3 | 39 | 5.98 | |
Education | High school or below | 1 | 30 | 4.60 |
College degree | 2 | 399 | 61.20 | |
Master or above | 3 | 223 | 34.20 | |
Job | Others | 0 | 238 | 36.50 |
Enterprises and institutions | 1 | 414 | 63.50 | |
Income per month (RMB) | <5000 | 1 | 65 | 9.97 |
5000~12,000 | 2 | 311 | 47.70 | |
12,001~20,000 | 3 | 245 | 37.58 | |
>20,000 | 4 | 31 | 4.75 | |
Car ownership | No car | 1 | 394 | 60.43 |
One car | 2 | 222 | 34.05 | |
Two or more cars | 3 | 36 | 5.52 | |
Station within 500m of the residence | No | 0 | 138 | 21.17 |
Yes | 1 | 514 | 78.83 | |
Familiarity with CB | Never heard | 1 | 335 | 51.38 |
Know about it | 2 | 204 | 31.29 | |
Experienced | 3 | 113 | 17.33 | |
Commute mode | Car | 1 | 113 | 17.33 |
Taxi | 2 | 77 | 11.81 | |
Bus | 3 | 187 | 28.68 | |
Rail | 4 | 121 | 18.56 | |
Bus + rail | 5 | 154 | 23.62 | |
Commute time (min) | Float | - | - | - |
Commute cost (RMB) | Float | - | - | - |
Transfer number | 0 | 0 | 290 | 44.48 |
1 | 1 | 173 | 26.53 | |
2 | 2 | 127 | 19.48 | |
3 | 3 | 44 | 6.75 | |
4 or more | 4 | 18 | 2.76 |
Choices | No Seat | One Seat | ||
---|---|---|---|---|
Frequency | Percent | Frequency | Percent | |
Do not transfer to CB | 483 | 54.82 | 107 | 12.15 |
Remain undecided | 185 | 21.00 | 363 | 41.20 |
Transfer to CB | 213 | 24.18 | 411 | 46.65 |
Variables | OL Model | MEOL Model | ||
---|---|---|---|---|
Coef. | Z-stat. | Coef. | Z-stat. | |
Gender | 0.686 *** | 5.83 | 0.696 *** | 5.86 |
Age | 0.254 ** | 2.00 | 0.263 ** | 2.03 |
Education | −0.017 | −0.16 | 0.029 | 0.27 |
Job | 0.019 | 0.12 | 0.012 | 0.08 |
Income | −0.420 *** | −4.69 | -0.419 *** | -4.61 |
Time | 0.351 *** | 5.69 | 0.347 *** | 5.44 |
Cost | 0.203 *** | 4.95 | 0.220 *** | 4.54 |
Transfer number | 0.189 *** | 2.65 | 0.335 *** | 3.84 |
Familiarity to CB | 0.479 *** | 5.33 | 0.525 *** | 5.73 |
Seat | 1.905 *** | 15.88 | 1.932 *** | 15.96 |
/cut1 | 2.480 | − | 2.800 | - |
/cut2 | 4.007 | − | 4.354 | - |
Mode | ||||
Var(_cons) | − | − | 0.130 | - |
Goodness of fit | ||||
Number of observations | 1304 | 1304 | ||
Log-likelihood | −1168.8468 | −1161.2334 | ||
Chi2 | 495.30 | 378.19 | ||
Prob > Chi2 | 0.00 | 0.00 | ||
Pseudo R2 | 0.175 | - | ||
Likelihood-ratio test | ||||
LR chi2(1) | 15.23 | |||
Prob > Chi2 | 0.00 |
Variables | Coefficients | Z-Statistics |
---|---|---|
Car | ||
Gender | 0.792 *** | 2.73 |
Age | 0.426 | 1.08 |
Education | −0.394 | −1.52 |
Job | 0.007 | 0.02 |
Income | −0.497 ** | −2.20 |
Time | 0.447 ** | 2.29 |
Cost | 0.183 * | 1.86 |
Familiarity to CB | 0.702 *** | 2.72 |
Seat | 2.013 *** | 6.89 |
Car ownership | −0.834 ** | −2.22 |
Taxi | ||
Gender | 0.736 ** | 2.08 |
Age | 0.593 | 1.42 |
Education | 0.486 | 1.34 |
Job | −0.681 | −1.38 |
Income | −0.617 ** | −2.29 |
Time | 0.658 *** | 3.04 |
Cost | 0.218 * | 1.76 |
Transfer number | −0.194 | −0.41 |
Familiarity to CB | 0.953 *** | 2.83 |
Seat | 1.767 *** | 5.06 |
Bus | ||
Gender | 0.492 ** | 2.30 |
Age | −0.042 | −0.20 |
Education | 0.133 | 0.63 |
Job | 0.263 | 0.95 |
Income | −0.300 | −1.46 |
Time | 0.207 ** | 2.06 |
Cost | 0.368 *** | 2.63 |
Transfer number | 0.311 ** | 2.23 |
Familiarity to CB | 0.400 ** | 2.11 |
Seat | 1.359 *** | 6.42 |
Station within 500 m of the residence | −0.470* | −1.71 |
Rail | ||
Gender | 1.000 *** | 2.97 |
Age | 0.582 | 1.36 |
Education | −0.145 | −0.48 |
Job | 0.080 | 0.17 |
Income | −0.523 ** | −2.13 |
Time | 0.478 ** | 2.19 |
Cost | 0.394 ** | 2.12 |
Transfer number | 0.435 ** | 2.02 |
Familiarity to CB | 0.505 ** | 2.25 |
Seat | 3.097 *** | 8.57 |
Station within 500 m of the residence | −0.446 | −1.12 |
Bus + rail | ||
Gender | 0.532 * | 1.95 |
Age | 0.535 * | 1.74 |
Education | 0.259 | 1.08 |
Job | −0.255 | −0.68 |
Income | −0.319 | −1.57 |
Time | 0.290 ** | 2.06 |
Cost | 0.281 ** | 2.10 |
Transfer number | 0.388 ** | 2.02 |
Familiarity to CB | 0.433 ** | 2.32 |
Seat | 2.218 *** | 8.44 |
Station within 500 m of the residence | −0.638 * | −1.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lv, Y.; Ma, J.; Ren, Y. Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes. Sustainability 2019, 11, 7065. https://doi.org/10.3390/su11247065
Li J, Lv Y, Ma J, Ren Y. Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes. Sustainability. 2019; 11(24):7065. https://doi.org/10.3390/su11247065
Chicago/Turabian StyleLi, Jing, Yongbo Lv, Jihui Ma, and Yuan Ren. 2019. "Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes" Sustainability 11, no. 24: 7065. https://doi.org/10.3390/su11247065
APA StyleLi, J., Lv, Y., Ma, J., & Ren, Y. (2019). Factor Analysis of Customized Bus Attraction to Commuters with Different Travel Modes. Sustainability, 11(24), 7065. https://doi.org/10.3390/su11247065