“Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison
Abstract
:1. Introduction
1.1. Goals of Sustainability Assessments
- Substantive: Describing “the achievement of the intended purposes of the SA”;
- Normative: Focusing on “the achievement of normative goals—i.e., can stakeholders learn, improve their knowledge and change their views”;
- Procedural: “[C]onsideration of SA process aspects and the establishment of SA, procedures and policy”;
- Transactive: “[T]he achievement of intended purposes with minimal resources and time or in other words efficiency” [11].
1.2. Precise Subject of Sustainability Assessments
2. Materials and Methods
Most Different Case Study Approach
3. Results
3.1. Overview
3.1.1. Research Context of the Analyzed Projects
3.1.2. Subjects and Objectives of the Sas in the Three Projects under Study
3.2. NAHGAST: Characteristics of SA
3.2.1. External (Context) Features—Goals and Subjects
- The NAHGAST-tool should ideally result in a significant sales increase in sustainable meals
- The tool aims at supporting to compare and contrast the impact of the used ingredients of a single meal on sustainability dimensions in the wider life-cycle context between different meals.
- The objectives a company has and uses the tool for are not predetermined by the tool and manifold ways of making use of the results are possible and suggested.
3.2.2. Internal (Design) Features—Methods and Steps
3.3. BiNKA: Characteristics of SA
3.3.1. External (Context) Features—Goals and Subjects
3.3.2. Internal (Design) Features—Methods and Steps
3.4. REFOWAS: Characteristics of SA
3.4.1. External (Context) Features—Goals and Subjects
3.4.2. Internal (Design) Features—Methods and Steps
- Meat and meat products;
- Eggs and egg products;
- Milk and milk products;
- Grain and grain products;
- Potatoes and potatoe products;
- Other foods (e.g., spices, sauces);
- Oils and fat;
- Sugar and sweets;
- Vegetables and vegetable products;
- Fruits and fruit products;
- Fish and fish products;
- Beverages (tap water, lemonade, coffee, tea, alcoholic beverages, etc.).
- Agricultural impacts: Schmidt and Osterburg (2010) [69];
- Background and prechain processes: Ecoinvent 3.3 (www.ecoinvent.org) (Wernet et al. 2016) [74];
3.5. Key Lessons
3.5.1. Key Lessons Learnt NAHGAST
3.5.2. Key Lessons Learnt BiNKA
3.5.3. Key Lessons Learnt REFOWAS
3.6. Analyses
- (a)
- External/context-related challenges
- Differentiation between deliberation and assessment: First of all, SA actors should be aware whether the primary purpose of SA is a more discursive (maybe political) process, e.g., with the goal of organizational learning, or more analytical in the sense of a scientific assessment. The assessment of sustainability and the deliberation about sustainability as a criterion of assessment follow different purposes. However, both belong to a sustainability assessment.
- Feasibility: After the purpose of an SA has been clarified, and the values made transparent, actors have to deal with implementation-related challenges. SA must be practical in different areas and on various levels, in particular, with regard to data quality, data availability and data reliability, and to the tensions between feasibility and rigor.
- (b)
- Assessment-internal challenges
- 3.
- Normative basis for assessment: Becoming aware that norms and values affect how a SA is being performed and interpreted is important. In both—deliberative and analytical—cases, the standard of evaluation used to define development as sustainable development is not purely scientific, but rather contextual and transdisciplinary. Here, transparency is important, in order to make the normative foundations of the evaluation traceable and assessable.
3.6.1. External/Context Related Challenges
Deliberation and Assessment
3.6.2. Assessment-Internal Challenges
Normative Assessment Principles
4. Discussion
4.1. External/ Context Related Challenges
4.2. Assessment-Internal Challenges
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thies, C.; Kieckhäfer, K.; Spengler, T.S.; Sodhi, M.S. Operations research for sustainability assessment of products: A review. Eur. J. Oper. Res. 2019, 274, 1–21. [Google Scholar] [CrossRef]
- Kühnen, M.; Silva, S.; Beckmann, J.; Eberle, U.; Hahn, R.; Hermann, C.; Schaltegger, S.; Schmid, M. Contributions to the sustainable development goals in life cycle sustainability assessment: Insights from the Handprint research project. Nachhalt. Manag. Forum 2019, 27, 65–82. [Google Scholar] [CrossRef]
- Guinée, J. Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges? In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer Open: Cham, Switzerland, 2016; pp. 45–68. ISBN 978-3-319-20570-0. [Google Scholar]
- Radej, B. Synthesis in policy impact assessment. Evaluation 2011, 17, 133–150. [Google Scholar] [CrossRef]
- Pintér, L.; Hardi, P.; Martinuzzi, A.; Hall, J. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 2012, 17, 20–28. [Google Scholar] [CrossRef]
- OECD. The Istanbul Declaration; OECD: Paris, France, 2007. [Google Scholar]
- Meier, T. Umweltschutz mit Messer und Gabel. Der ökologische Rucksack der Ernährung in Deutschland. Teilw. zugl.: Halle, Univ., Diss., 2013 u.d.T.: Meier, Toni: Umweltwirkungen der Ernährung auf Basis nationaler Ernährungserhebungen und ausgewählter Umweltindikatoren; Oekom Verl.: München, Germany, 2014; ISBN 9783865814623. [Google Scholar]
- Pope, J.; Bond, A.; Hugé, J.; Morrison-Saunders, A. Reconceptualising sustainability assessment. Environ. Impact Assess. Rev. 2017, 62, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef]
- Verheem, R. Recommendations for Sustainability Assessment in the Netherlands. In Commission for EIA. Environmental Impact Assessment in the Netherlands. Views from the Commission for EIA in 2002; EIA: Dutch, The Netherlands, 2002. [Google Scholar]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- Streimikiene, D.; Girdzijauskas, S.; Stoškus, L. Sustainability Assessment Methods and Their Application to Harmonization of Policies and Sustainability Monitoring. Eng. Manag. 2009, 48, 51–62. [Google Scholar] [CrossRef]
- Ness, B.; Urbel-Piirsalu, E.; Anderberg, S.; Olsson, L. Categorising tools for sustainability assessment. Ecol. Econ. 2007, 60, 498–508. [Google Scholar] [CrossRef]
- Manstein, C.; Rohn, H.; Strigl, A.; Brenzel, S.; Schmid, B.; Scharf, M.; Palla, A. FABRIKregio; Bundesministerium für Verkehr, Innovation und Technologie: Vienna, Austria, 2006. [Google Scholar]
- Bartlett, L.; Vavrus, F. Comparative Case Studies: An Innovative Approach. Nord. J. Comp. Int. Educ. 2017, 1. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research. In Design and Methods, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2003; ISBN 076192552X. [Google Scholar]
- Knight, C.G. Human–Environment Interactions: Case Studies. Available online: https://www.sciencedirect.com/science/article/pii/B9780080970868910067 (accessed on 29 August 2019).
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M.; Jaeger, C.C.; Lowe, I.; McCarthy, J.J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Environment and development. Sustainability science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Wiek, A.; Farioli, F.; Fukushi, K.; Yarime, M. Sustainability science: Bridging the gap between science and society. Sustain. Sci. 2012, 7, 1–4. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards Life Cycle Sustainability Assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, T.; Speck, M.; Rohn, H.; Bienge, K.; Langen, N.; Howell, E.; Göbel, C.; Friedrich, S.; Teitscheid, P.; Liedtke, C. Sustainability assessment of out of-of-home meals: Poten-tials and obstacles applying indicator sets NAHGAST Meal-Basis and NAHGAST Meal-Pro. Proc. Syst. Dyn. Innov. Food Netw. 2017, 1, 329–338. [Google Scholar] [CrossRef]
- Speck, M.; Rohn, H.; Engelmann, T.; Schweißinger, J.; Neundorf, D.; Teitscheid, P.; Langen, N.; Bienge, K. Entwicklung von integrierten Methoden zur Messund und Bewertung von Speiseangeboten in den Dimensionen Ökologie, Soziales und Gesundheit; Working Paper 2 of the NAHGAST Project; Wuppertal Institute: Wuppertal, Germany, 2017. [Google Scholar]
- Lukas, M.; Rohn, H.; Lettenmeier, M.; Liedtke, C.; Wiesen, K. The nutritional footprint—Integrated methodology using environmental and health indicators to indicate potential for absolute reduction of natural resource use in the field of food and nutrition. J. Clean. Prod. 2016, 132, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Hauner, H.; Bechthold, A.; Boeing, H.; Brönstrup, A.; Buyken, A.; Leschik-Bonnet, E.; Linseisen, J.; Schulze, M.; Strohm, D.; Wolfram, G. Evidence-based guideline of the German Nutrition Society: Carbohydrate intake and prevention of nutrition-related diseases. Ann. Nutr. Metab. 2012, 60 (Suppl. 1), 1–58. [Google Scholar] [CrossRef] [PubMed]
- Deutsche Gesellschaft für Ernährung e. V. DGE-Qualitätsstandard für die Betriebsverpflegung; DGE: Bonn, Germany, 2014. [Google Scholar]
- Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st Century Economist; Chelsea Green Publishing: White River Junction, Vermont, 2017. [Google Scholar]
- Geiger, S.M.; Fischer, D.; Schrader, U. Measuring What Matters in Sustainable Consumption: An Integrative Framework for the Selection of Relevant Behaviors. Sust. Dev. 2018, 26, 18–33. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.; Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint. In Reducing Human Impact on the Earth; New Society Publication: Gabriola Island, BC, Canada, 1996; ISBN 1550922505. [Google Scholar]
- West, S.E.; Owen, A.; Axelsson, K.; West, C.D. Evaluating the Use of a Carbon Footprint Calculator: Communicating Impacts of Consumption at Household Level and Exploring Mitigation Options. J. Ind. Ecol. 2015, 20, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Murphy, K. The social pillar of sustainable development: A literature review and framework for policy analysis. Sustain. Sci. Pract. Policy 2012, 8, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Comim, F.; Tsutsumi, R.; Varea, A. Choosing sustainable consumption: A capability perspective on indicators. J. Int. Dev. 2007, 19, 493–509. [Google Scholar] [CrossRef]
- Cruz, I.; Stahel, A.; Max-Neef, M. Towards a systemic development approach: Building on the Human-Scale Development paradigm. Ecol. Econ. 2009, 68, 2021–2030. [Google Scholar] [CrossRef]
- Cole, M.J.; Bailey, R.M.; New, M.G. Tracking sustainable development with a national barometer for South Africa using a downscaled “safe and just space” framework. Proc. Natl. Acad. Sci. USA 2014, 111, E4399–E4408. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.W.; Kasser, T. Are Psychological and Ecological Well-being Compatible? The Role of Values, Mindfulness, and Lifestyle. Soc. Indic. Res. 2005, 74, 349–368. [Google Scholar] [CrossRef]
- Pepper, M.; Jackson, T.; Uzzell, D. An examination of the values that motivate socially conscious and frugal consumer behaviours. Int. J. Cons. Stud. 2009, 33, 126–136. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Tukker, A.; Jansen, B. Environmental Impacts of Products: A Detailed Review of Studies. J. Ind. Ecol. 2006, 10, 159–182. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernandez, J.; Birkved, M. Testing the Environmental Performance of Urban Agriculture as a Food Supply in Northern Climates. Available online: https://www.sciencedirect.com/science/article/pii/S0959652616308952 (accessed on 30 August 2019).
- Hager, T.J.; Morawicki, R. Energy consumption during cooking in the residential sector of developed nations: A review. Food Policy 2013, 40, 54–63. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Espinoza Orias, N.; Azapagic, A. Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. J. Clean. Prod. 2014, 73, 294–309. [Google Scholar] [CrossRef]
- Aarnio, T.; Hämäläinen, A. Challenges in packaging waste management in the fast food industry. Resour. Conserv. Recycl. 2008, 52, 612–621. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, H.; Wikström, F. Environmental impact of packaging and food losses in a life cycle perspective: A comparative analysis of five food items. J. Clean. Prod. 2011, 19, 43–48. [Google Scholar] [CrossRef]
- Beretta, C.; Stoessel, F.; Baier, U.; Hellweg, S. Quantifying Food Losses and the Potential for Reduction in Switzerland. Available online: https://www.sciencedirect.com/science/article/pii/S0956053X12005302?via%3Dihub (accessed on 2 September 2019).
- Le Mare, A. The Impact of Fair Trade on Social and Economic Development: A Review of the Literature. Geogr. Compass 2008, 2, 1922–1942. [Google Scholar] [CrossRef]
- Arnould, E.J.; Plastina, A.; Ball, D. Does Fair Trade Deliver on Its Core Value Proposition? Effects on Income, Educational Attainment, and Health in Three Countries. J. Public Policy Mark. 2009, 28, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Seyfang, G. Growing sustainable consumption communities. Int. J. Soc. Soc. Policy 2007, 27, 120–134. [Google Scholar] [CrossRef]
- Franklin, A.; Newton, J.; McEntee, J.C. Moving beyond the alternative: Sustainable communities, rural resilience and the mainstreaming of local food. Local Environ. 2011, 16, 771–788. [Google Scholar] [CrossRef]
- Kortright, R.; Wakefield, S. Edible backyards: A qualitative study of household food growing and its contributions to food security. Agric. Hum. Values 2011, 28, 39–53. [Google Scholar] [CrossRef]
- Simmons, D.; Chapman, G.E. The significance of home cooking within families. Br. Food J. 2012, 114, 1184–1195. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; McNeill, G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Buckley, J.D.; Weinstein, P.; Boland, J. Are the dietary guidelines for meat, fat, fruit and vegetable consumption appropriate for environmental sustainability? A review of the literature. Nutrients 2014, 6, 2251–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, R. Arbiters of Waste: Date Labels, the Consumer and Knowing Good, Safe Food. Sociol. Rev. 2012, 60 (Suppl. 2), 84–101. [Google Scholar] [CrossRef]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry of Food and Agriculture (BMEL). Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland; Federal Ministry of Food and Agriculture: Bonn, Germany, 2015.
- Destatis. Aus-und Einfuhr (Außenhandel)—Deutschland, Ware, Länder, Jahr. 2010. Available online: https://www-genesis.destatis.de/genesis/online/link/tabellen/51000 (accessed on 20 September 2019).
- Destatis. Vierteljährliche Produktionserhebung im Verarbeitenden Gewerbe; Destatis: Wiesbaden, Germany, 2010. [Google Scholar]
- Destatis. Wirtschaftsrechnungen. Einkommens-und Verbraucherstichprobe. In Aufwendungen privater Haushalte für Nahrungsmittel, Getränke und Tabakwaren; Destatis: Wiesbaden, Germany, 2016. [Google Scholar]
- Krems, C.; Walter., C.; Heuer, T.; Hoffmann, I. Lebensmittelverzehr und Nährstoffzufuhr – Ergebnisse der Nationalen Verzehrsstudie II. In Ernährungsbericht 2012; Deutsche Gesellschaft für Ernährung: Bonn, Germany, 2012. [Google Scholar]
- Mensink, G.; Heseker, H.; Richter, A.; Stahl, A.; Vohmann, C. Ernährungsstudie als KiGGS-Modul (EsKiMo) – Forschungsbericht; Robert-Koch-Institut, University of Paderborn: Berlin, Paderborn, Germany, 2007. [Google Scholar]
- Kersting, M.; Clausen, K. Ernährungsphysiologische Auswertung einer repräsentativen Verzehrsstudie bei Säuglingen und Kleinkindern VELS mit dem Istrumentarium der DONALS Studie; Forschungsinstitut für Kinderernährung: Dortmund, Germany, 2003. [Google Scholar]
- Hafner, G.; Leverenz, D.; Barabosz, J.; Riestenpatt, D. Lebensmittelverluste und Wegwerfarten im Freitaat Bayern; University of Stuttgart: Stuttgart, Germany, 2013. [Google Scholar]
- Hafner, G.; Leverenz, D.; Pilsl, P. Potenziale zur Energieeinsparung durch Vermeidung von Lebensmittelverschwendung; Endbericht, University of Stuttgart: Stuttgart, Germany, 2016. [Google Scholar]
- Bognar, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); Bundesforschungsanstalt für Ernährung: Karlsruhe, Germany, 2002. [Google Scholar]
- Ciroth, A. openlca1.7 UserManual. Available online: https://www.openlca.org/wp-content/uploads/2017/11/openLCA1.7_UserManual.pdf (accessed on 29 January 2019).
- Schmidt, T.; Osterburg, B. Berichtsmodul Landwirtschaft und Umwelt in den Umweltökonomischen Gesamtrechnungen: Tabellenband für die Berichtsjahre 1991, 1995, 1999, 2003 und 2007; vTI: Braunschweig, Germany, 2010. [Google Scholar]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; Koning, A.; Kuenen, J.; Schütz, H.; Acosta-Fernández, J.; Usubiaga, A.; et al. Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Tukker, A.; Koning, A.; Wood, R.; Hawkins, T.; Lutter, S.; Acosta, J.; Cantuche, J.M.R.; Bouwmeester, M.; Oosterhaven, J.; Drosdowski, T.; et al. Exiopol—Development and illustrative analyses of a detailed global mr ee sut/iot. Econ. Syst. Res. 2013, 25, 50–70. [Google Scholar] [CrossRef] [Green Version]
- Sima, A.; Möhrmann, I.; Thomae, D.; Schlich, E. Einkaufswege als Teil des Consumer Carbon Footprints (CCF)—Zum Anteil des Endverbrauchers an der Klimarelevanz von Prozessketten im Lebensmittelbereich. Ernahr. Umsch. 2012, 59, 524. [Google Scholar]
- BVEW. Beiblatt zu BDEW-Chart Stromverbrauch im Haushalt. Publisher: Bundesverband der Energie-und Wasserwirtschaft e.V. Available online: https://www.bdew.de/internet.nsf/id/6FE5E98B43647E00C1257C0F003314E5/$file/708-2_Beiblatt_zu%20BDEW-Charts%20Stromverbrauch%20im%20Haushalt_2013-10-23.pdf (accessed on 2 October 2017).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Keller, M. Flugimporte von Lebensmitteln und Blumen nach Deutschland. Eine Untersuchung im Auftrag der Verbraucherzentralen—PDF. Available online: https://docplayer.org/3958575-Flugimporte-von-lebensmitteln-und-blumen-nach-deutschland-eine-untersuchung-im-auftrag-der-verbraucherzentralen.html (accessed on 30 August 2019).
- BMEL. Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten 57; BMEL: Bonn, Germany, 2013. [Google Scholar]
- Di Giulio, A.; Fuchs, D. Sustainable Consumption Corridors: Concept, Objections, and Responses. GAIA Ecol. Perspect. Sci. Soc. 2014, 23, 184–192. [Google Scholar] [CrossRef]
- Schmidt, T.; Baumgardt, S.; Blumenthal, A.; Burdick, B.; Claupein, E.; Dirksmeyer, W.; Hafner, G.; Klockgether, K.; Koch, F.; Leverenz, D.; et al. Ergebnisse des Forschungsprojektes Wege zur Reduzierung von Lebensmittelabfällen Pathways to reduce food waste (REFOWAS) Maßnahmen, Bewertungsrahmen und Analysewerkzeuge sowie zukunftsfähige Ansätze für einen nach-haltigen Umgang mit Lebensmitteln unter Einbindung sozio-ökologischer Innovationen; Thünen Report 73; Johann Heinrich von Thünen Institute: Braunschweig, Germany, 2019; Volumes 1 and 2. [Google Scholar]
- Horcea-Milcu, A.-I.; Abson, D.J.; Apetrei, C.I.; Duse, I.A.; Freeth, R.; Riechers, M.; Lam, D.P.M.; Dorninger, C.; Lang, D.J. Values in transformational sustainability science: Four perspectives for change. Sustain. Sci. 2019, 14, 1425–1437. [Google Scholar] [CrossRef]
- Gibson, R.B. Sustainability assessment: Basic components of a practical approach. Impact Assess. Proj. Apprais. 2006, 24, 170–182. [Google Scholar] [CrossRef]
- Federal Government of Germany. German Sustainable Develepment Strategy. New Version 2016; Federal Government: Berlin, Germany, 2016.
- Suh, S.; Lenzen, M.; Treloar, G.J.; Hondo, H.; Horvath, A.; Huppes, G.; Jolliet, O.; Klann, U.; Krewitt, W.; Moriguchi, Y.; et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 2004, 38, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Dijk, M.; Kraker, J.; van Zeijl-Rozema, A.; van Lente, H.; Beumer, C.; Beemsterboer, S.; Valkering, P. Sustainability assessment as problem structuring: Three typical ways. Sustain. Sci. 2017, 12, 305–317. [Google Scholar] [CrossRef]
- Brits, A.; Burke, M.I.; Han, H. Towards an Urban Sustainability Assessment Framework: Supporting Public Deliberation around Sustainability of Specific Contexts. Available online: https://www.researchgate.net/publication/44001088_Towards_an_Urban_Sustainability_Assessment_Framework_Supporting_Public_Deliberation_around_Sustainability_of_Specific_Contexts (accessed on 18 November 2019).
- Rodríguez López, F.; Fernández Sánchez, G. Challenges for Sustainability Assessment by Indicators. Leadersh. Manag. Eng. 2011, 11, 321–325. [Google Scholar] [CrossRef]
- Rotmans, J. Tools for Integrated Sustainability Assessment: A two-track approach. Integr. Assess. 2006, 6, 35–57. [Google Scholar]
- Bond, A.; Morrison-Saunders, A.; Pope, J. Sustainability assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 53–62. [Google Scholar] [CrossRef]
- Alrøe, H.F.; Moller, H.; Læssøe, J.; Noe, E. Opportunities and challenges for multicriteria assessment of food system sustainability. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- “Sustainability and the U.S. EPA” at NAP.edu. Available online: https://www.nap.edu/read/13152/chapter/6 (accessed on 18 November 2019).
- Bond, A.; Morrison, S. Challenges in Determining the Effectiveness of Sustainability Assessment. Available online: https://researchrepository.murdoch.edu.au/id/eprint/6735/ (accessed on 18 November 2019).
- Frame, B.; O’Connor, M. Integrating Valuation and Deliberation: The Purposes of Sustainability Assessment. Available online: https://www.sciencedirect.com/science/article/pii/S1462901110001395 (accessed on 18 November 2019).
- Sala, S.; Vasta, A.; Mancini, L.; Dewulf, J.; Rosenbaum, E. Social Life Cycle Assessment. In State of the Art and Challenges for Product Policy Support; Publications Office: Luxembourg, 2015; ISBN 9279540548. [Google Scholar]
- Sustainability and the, U.S. EPA; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-21252-6. [Google Scholar]
- Wiek, A.; Ness, B.; Schweizer-Ries, P.; Brand, F.S.; Farioli, F. From complex systems analysis to transformational change: A comparative appraisal of sustainability science projects. Sustain. Sci. 2012, 7, 5–24. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Hunkeler, D.; Lichtenvort, K.; Rebitzer, G. Environmental Life Cycle Costing; CRC Press: Hoboken, NJ, USA, 2008; ISBN 9781420054705. [Google Scholar]
- Guinée, J.; Heijungs, R.; Beltran, E.G.; Henriksson, P.; Groen, E. Book of Abstracts. In Proceedings of the 11th International Conference of Life Cycle Assessment of Food 2018 (LCA Food), Bangkok, Thailand, 16–20 October 2018. [Google Scholar]
- Winterberg, L. Was der Mensch essen darf—Ökonomischer Zwang, ökologisches Gewissen und globale Konflikte. In Ernährung und Wissen: Theoretische Annäherungen an eine Ethik des Essens und Trinkens; Springer: Wiesbaden, Germany, 2015; ISBN 9783658014650. [Google Scholar]
- Trummer, M. Was der Mensch essen darf-Ökonomischer Zwang, ökologisches Gewissen und globale Konflikte. In Die kulturellen Schranken des Gewissens—Fleischkonsum zwischen Tradition, Lebensstil und Ernährungswissen; Soringer: Wiesbaden, Germany, 2015. [Google Scholar]
- Kofahl, D. Was der Mensch essen darf—Ökonomischer Zwang, ökologisches Gewissen und globale Konflikte. In Vorsicht! Kann Spuren von Moral enthalten!—Begleiterscheinungen und Komplikationen moralisch infizierter Ernährungskommunikation; Soringer: Wiesbaden, Germany, 2015; ISBN 9783658014643. [Google Scholar]
- Mayes, C.R.; Thompson, D.B. What Should We Eat? Biopolitics, Ethics, and Nutritional Scientism. J. Bioeth. Inq. 2015, 12, 587–599. [Google Scholar] [CrossRef]
- Methfessel, B. Was der Mensch essen darf—Ökonomischer Zwang, ökologisches Gewissen und globale Konflikte. In Welche Moral hätten Sie denn gerne?—Essen im Konflikt zwischen unterschiedlichen Anforderungen an die Lebensführung; Springer: Wiesbaden, Germany, 2015. [Google Scholar]
- Lemke, H. Was der Mensch essen darf—Ökonomischer Zwang, ökologisches Gewissen und globale Konflikte. In Darf es Fleisch sein; Springer: Wiesbaden, Germany, 2015. [Google Scholar]
- Shenoy, M. Industrial Ecology in Developing Countries. In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer Open: Cham, Switzerland, 2016; pp. 229–246. ISBN 9783319205700. [Google Scholar]
- Schmidt-Bleek, F. Wieviel Umwelt braucht der Mensch? MIPS—das Maß für ökologisches Wirtschaften; Birkhäuser: Berlin, Germany, 1993; ISBN 3764329599. [Google Scholar]
Indicators/Indices | Product-Related Assessment | Project-Related Assessment | Sector and Country-Related Assessment | |
---|---|---|---|---|
Environmental |
|
|
|
|
Economic |
|
|
|
|
Social |
|
|
| |
Sustainable Integrated Development |
|
|
|
Project | Fostering Sustainable Food Out of Home (NAHGAST Project) | Fostering Sustainable Mindsets (BiNKA Project) | Fostering a Sustainable GERMAN Food Sector (REFOWAS Project) |
---|---|---|---|
Focus | Development of a tool for kitchen professionals to determine the sustainability performance of their products—the offered meal. | Mindfulness meditation intervention designed to promote sustainable consumer behavior among participants. | Analysis of the German food sector as regards to reasons for food waste. Identification and testing of strategies and preventing options to reduce food waste. Development of a complex hybrid-LCA model of the German food sector to quantify environmental indicators. |
Objective | Assess the sustainability performance of a single meal which is a different starting point than assessment tools that monitor, e.g., the overall processes of a company. The assessment of the single meal revolves around one product, which is related to multiple processes in- and outside of companies that all play a part in the life-cycle of this meal. | Detect changes in individuals’ consumer behavior (more frequent/rare occurrence of sustainable behavior) using a questionnaire | Understand the food supply chain in terms of sustainable production and consumption. |
Indicator | Target Value (Range of Tolerance) | Source |
---|---|---|
Carbon footprint | <800 (1200) (g CO2eq) per meal | Lukas et al. 2016 [23] |
Water demand | <640 (975) l per meal | Lukas et al. 2016 [23] |
Material footprint | <2670 (4000) g per meal | Lukas et al. 2016 [23] |
Demand for land | <1.25 (1875) m2 per meal | Lukas et al. 2016 [23] |
Energy content | <670 (830) kcal per meal | Lukas et al. 2016 [23] |
Fiber content | >8 (6) g per meal | Lukas et al. 2016 [23] |
Salinity | <2 (3.3) g per meal | Lukas et al. 2016 [23] |
Content of carbohydrate | <90 (95) g carbohydrates per meal | DGE 2011c [24] |
thereof sugar | <17 (19) g sugar per meal | DGE 2011c [24] |
Fat content | 24 (30) g fat per meal <6.7 (10) g saturated fat | Lukas et al. (2016), DGE 2014, [23,25] |
Share of animal products from species-appropriate environment | 60% (55%) of animal products | Own estimation based on multi-stakeholder dialogue [23] |
Share of fair-trade products | 90% (85%) of products from developing and emerging countries with fair trade label | Own estimation based on multi-stakeholder dialogue [23] |
Sustainability Dimension | Ecologic | Socio-Economic | ||
---|---|---|---|---|
Theoretical Approach | Planetary Boundaries | Ecological Footprint | Capability Approach | Fundamental human needs |
Criteria | Climate change | Land use | Poverty | Livelihood |
Indicator | CO2 | km2 of arable land | Income | Income |
Behavioral Item | I buy imported fruits from overseas. | I buy organically grown food. | I buy fair trade food products. | I buy fair trade food products. |
Challenges | Similar Challenges | Solution Approaches |
---|---|---|
External/Context Related Challenges | The main purpose—deliberation or assessment—has to be worked out; deliberation about case-specific sustainability should definitely be done, although the importance of the deliberation process depends on the ambiguity of the assessment subject. Data quality, data reliability and data availability can be seen as key challenges in all contexts, as well as the feasibility of the SA tool, especially if gastronomic practitioners shall be able to use the tool. | A sufficiently detailed, participative discussion process with all key stakeholders is to be integrated into the project design to receive a common understanding of sustainability. The lack of available data and insufficient resources for creating primary data can hardly be solved in single projects. Researchers should commit to mutual transparency regarding data and methods. Feasibility can be enhanced by a transdisciplinary, participative project design with iterative improvement loops; further technical solutions, e.g., for the integration in the usual software of companies, should be sought. |
Internal Challenges | The selection of indicators is not exclusively based on scientific knowledge, but also on normative assessment principles like underlying values—this becomes all the more important, the more the field of research is influenced by, e.g., cultural norms and values, and the more scope for interpretation is left to the subject of the study. | In interdisciplinary teams, researchers should reflect their priorities regarding certain sustainability aspects and SA indicators and integrate key stakeholders in this process. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelmann, T.; Fischer, D.; Lörchner, M.; Bowry, J.; Rohn, H. “Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison. Sustainability 2019, 11, 7041. https://doi.org/10.3390/su11247041
Engelmann T, Fischer D, Lörchner M, Bowry J, Rohn H. “Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison. Sustainability. 2019; 11(24):7041. https://doi.org/10.3390/su11247041
Chicago/Turabian StyleEngelmann, Tobias, Daniel Fischer, Marianne Lörchner, Jaya Bowry, and Holger Rohn. 2019. "“Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison" Sustainability 11, no. 24: 7041. https://doi.org/10.3390/su11247041
APA StyleEngelmann, T., Fischer, D., Lörchner, M., Bowry, J., & Rohn, H. (2019). “Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison. Sustainability, 11(24), 7041. https://doi.org/10.3390/su11247041