Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation
Abstract
:1. Introduction
Objective and Scope of Study
2. Literature Review
3. Model Development
3.1. Variables
3.1.1. Data Sources
3.1.2. Data Limitations
3.2. Adaptive Neuro-Fuzzy Model (ANFIS)
3.2.1. Learning Algorithm and Architecture of ANFIS
- Rule 1: if is and is then =
- Rule 2: if is and is then =
3.2.2. Division of the Data and developing the ANFIS Model
4. Results
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pauzi, H.M.; Abdullah, L. Performance comparison of two fuzzy based models in predicting carbon dioxide emissions. In Proceedings of the First International Conference on Advanced Data and Information Engineering DaEng-2013, Kuala Lumpur, Malaysia, 16–18 December 2013; pp. 203–211. [Google Scholar]
- J.A.M. Association. Reducing CO2 Emissions in the Global Road Transport Sector; Japan Automobile Manufacturers Association, Inc.: Tokyo, Japan, 2008. [Google Scholar]
- Loo, R.T. A methodology for calculating CO2 emissions from transport and an evaluation of the impact of European Union emission regulations. In Industrial Engineering and Management Science; Springer: Berlin, Germany, 2009; p. 66. [Google Scholar]
- Pokrovsky, O.M.; Kwok, R.H.F.; Ng, C.N. Fuzzy logic approach for description of meteorological impacts on urban air pollution species: A Hong Kong case study. Comput. Geosci. 2002, 28, 119–127. [Google Scholar] [CrossRef]
- Jain, S.; Khare, M. Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways. Air Qual. Atmos. Health 2010, 3, 203–212. [Google Scholar] [CrossRef]
- Morabito, F.C.; Versaci, M. Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Neural Netw. 2003, 16, 493–506. [Google Scholar] [CrossRef]
- Binh, N.T.; Tuan, V.A. Greenhouse gas emission from freight transport-accounting for the rice supply chain in Vietnam. Procedia CIRP 2016, 40, 46–49. [Google Scholar] [CrossRef]
- Van der Zwaan, B.; Keppo, I.; Johnsson, F. How to decarbonize the transport sector? Energy Policy 2013, 61, 562–573. [Google Scholar] [CrossRef]
- Bellasio, R.; Bianconi, R.; Corda, G.; Cucca, P. Emission inventory for the road transport sector in Sardinia (Italy). Atmos. Environ. 2007, 41, 677–691. [Google Scholar] [CrossRef]
- He, L.-Y.; Chen, Y. Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China. Transp. Policy 2013, 25, 30–40. [Google Scholar] [CrossRef]
- Dallmann, T.R.; Kirchstetter, T.W.; DeMartini, S.J.; Harley, R.A. Quantifying on-road emissions from gasoline-powered motor vehicles: Accounting for the presence of medium- and heavy-duty diesel trucks. Environ. Sci. Technol. 2013, 47, 13873–13881. [Google Scholar] [CrossRef] [PubMed]
- Sider, T.; Sider, T.; Alam, A.; Zukari, M.; Dugum, H.; Goldstein, N.; Eluru, N.; Hatzopoulou, M. Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution. J. Transp. Geogr. 2013, 33, 230–239. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Chandran, V.G.R.; Tang, C.F. The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew. Sustain. Energy Rev. 2013, 24, 445–453. [Google Scholar] [CrossRef]
- Andreoni, V.; Galmarini, S. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy 2012, 45, 595–602. [Google Scholar] [CrossRef]
- Lakshmanan, T.R.; Han, X. Factors underlying transportation CO2 emissions in the U.S.A.: A decomposition analysis. Transp. Res. Part D Transp. Environ. 1997, 2, 1–15. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Zhang, H.; Sun, S. The analysis of CO2 emissions and reduction potential in China transport sector. Math. Probl. Eng. 2016, 2016, 12. [Google Scholar]
- Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef]
- Si, B.; Zhong, M.; Yang, X.; Gao, Z. Modeling the congestion cost and vehicle emission within multimodal traffic network under the condition of equilibrium. J. Syst. Sci. Syst. Eng. 2012, 21, 385–402. [Google Scholar] [CrossRef]
- Ahanchian, M.; Biona, J.B.M. Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila. Energy Policy 2014, 66, 615–629. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T.; Salema, A.A.; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035. Energy 2014, 64, 355–366. [Google Scholar] [CrossRef]
- Kanzian, C.; Kühmaier, M.; Zazgornik, J.; Stampfer, K. Design of forest energy supply networks using multi-objective optimization. Biomass Bioenerg. 2013, 58, 294–302. [Google Scholar] [CrossRef]
- Szendrő, G.; Török, Á. Theoretical investigation of environmental development pathways in the road transport sector in the European Region. Transport 2014, 29, 12–17. [Google Scholar] [CrossRef]
- Börjesson, M.; Ahlgren, E.O. Assessment of transport fuel taxation strategies through integration of road transport in an energy system model—the case of Sweden. Int. J. Energy Res. 2012, 36, 648–669. [Google Scholar] [CrossRef]
- Bai, H.; Wei, J.-H. The CO2 mitigation options for the electric sector. A case study of Taiwan. Energy Policy 1996, 24, 221–228. [Google Scholar] [CrossRef]
- Wang, C.; Larsson, M.; Ryman, C.; Grip, C.E.; Wikström, J.O.; Johnsson, A.; Engdahl, J. A model on CO2 emission reduction in integrated steelmaking by optimization methods. Int. J. Energy Res. 2008, 32, 1092–1106. [Google Scholar] [CrossRef]
- Saboori, B.; Sapri, M.; bin Baba, M. Economic growth, energy consumption and CO2 emissions in OECD’s transport sector: A fully modified bi-directional relationship approach. Energy 2014, 66, 150–161. [Google Scholar] [CrossRef]
- Tan, S.T.; Hashim, H.; Ho, W.S.; Lee, C.T. Optimal planning of waste-to-energy through mixed integer linear programming. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2013, 7, 372–379. [Google Scholar]
- Lu, I.J.; Lewis, C.; Lin, S.J. The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector. Energy Policy 2009, 37, 2952–2961. [Google Scholar] [CrossRef]
- Meyer, I.; Leimbach, M.; Jaeger, C.C. International passenger transport and climate change: A sector analysis in car demand and associated emissions from 2000 to 2050. Energy Policy 2007, 35, 6332–6345. [Google Scholar] [CrossRef]
- Tokunaga, K.; Konan, D.E. Home grown or imported? Biofuels life cycle GHG emissions in electricity generation and transportation. Appl. Energy 2014, 125, 123–131. [Google Scholar] [CrossRef]
- Konur, D. Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks. Int. J. Prod. Econ. 2014, 153, 268–279. [Google Scholar] [CrossRef]
- Tolón-Becerra, A.; Pérez-Martínez, P.; Lastra-Bravo, X.; Otero-Pastor, I. A methodology for territorial distribution of CO2 emission reductions in transport sector. Int. J. Energy Res. 2012, 36, 1298–1313. [Google Scholar] [CrossRef]
- Sultan, R. Short-run and long-run elasticities of gasoline demand in Mauritius: An ARDL bounds test approach. J. Emerg. Trends Econ. Manag. Sci. 2010, 1, 90–95. [Google Scholar]
- Bekhet, H.; Yasmin, T. Disclosing the relationship among CO2 emissions, energy consumption, economic growth and bilateral trade between Singapore and Malaysia: An econometric analysis. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2013, 7, 2529–2534. [Google Scholar]
- Bekhet, H.A.; Yusop, N.Y.M. Assessing the relationship between oil prices, energy consumption and macroeconomic performance in Malaysia: Co-integration and vector error correction model (VECM) approach. Int. Bus. Res. 2009, 2, 152. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W. CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Ivy-Yap, L.L.; Bekhet, H.A. Examining the feedback response of residential electricity consumption towards changes in its determinants: Evidence from Malaysia. Int. J. Energy Econ. Policy 2015, 5, 772–781. [Google Scholar]
- Talbi, B. CO2 emissions reduction in road transport sector in Tunisia. Renew. Sustain. Energy Rev. 2017, 69, 232–238. [Google Scholar] [CrossRef]
- Sadorsky, P. The effect of urbanization on CO2 emissions in emerging economies. Energy Econ. 2014, 41, 147–153. [Google Scholar] [CrossRef]
- Shu, Y.; Lam, N.S.N. Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple linear regression model. Atmos. Environ. 2011, 45, 634–640. [Google Scholar] [CrossRef]
- Alhindawi, R.; Nahleh, Y.A.; Kumar, A.; Shiwakoti, N. A multivariate regression model for road sector greenhouse gas emission. In Proceedings of the 27th ARRB Conference, Melbourne, Australia, 16–18 November 2016. [Google Scholar]
- Xu, S.-C.; He, Z.-X.; Long, R.-Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [Google Scholar] [CrossRef]
- Friedrich, E.; Trois, C. Current and future greenhouse gas (GHG) emissions from the management of municipal solid waste in the eThekwini Municipality—South Africa. J. Clean. Prod. 2016, 112, 4071–4083. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Belloumi, M. Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 75, 1339–1347. [Google Scholar] [CrossRef]
- Lin, B.; Benjamin, N.I. Influencing factors on carbon emissions in China transport industry. A new evidence from quantile regression analysis. J. Clean. Prod. 2017, 150, 175–187. [Google Scholar] [CrossRef]
- Baloch, M.A.; Suad, S. Modeling the impact of transport energy consumption on CO2 emission in Pakistan: Evidence from ARDL approach. Environ. Sci. Pollut. Res. 2018, 25, 9461–9473. [Google Scholar]
- Khajeh, A.; Modarress, H.; Rezaee, B. Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 2009, 36, 5728–5732. [Google Scholar] [CrossRef]
- Horikawa, S.-I.; Furuhashi, T.; Uchikawa, Y. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. Neural Netw. 1992, 3, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.H.; Tsay, H.S.; Liang, S.H. Application of an adaptive-network-based fuzzy inference system for the optimal design of a chinese braille display. Biomed. Eng. Appl. Basis Commun. 2005, 17, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Chan, C.W.; Tontiwachwuthikul, P. An application of neuro-fuzzy technology for analysis of the CO2 capture process. Fuzzy Sets Syst. 2010, 161, 2597–2611. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Chuen-Tsai, S. Neuro-fuzzy modeling and control. Proc. IEEE 1995, 83, 378–406. [Google Scholar] [CrossRef]
- Al-Ghandoor, A.; Samhouri, M. Electricity consumption in the industrial sector of Jordan: Application of multivariate linear regression and adaptive neuro-fuzzy techniques. JJMIE 2009, 3, 69–76. [Google Scholar]
- North American Transportation Statistics, N. Section 12: Transportation Vehicles. Available online: https://www144.statcan.gc.ca/nats-stna/index-eng.htm (accessed on 8 November 2015).
- OECD. Strategies to Reduce Greenhouse Gas Emissions from Road Transport; OECD Publishing: Paris, France, 2002. [Google Scholar]
- Jang, J.R. MATLAB: Fuzzy Logic Toolbox User’s Guide: Version 1; Math Works: Natick, MA, USA, 1997. [Google Scholar]
- Bektas Ekici, B.; Aksoy, U.T. Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 2011, 38, 5352–5358. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, Y.; Chan, C.W.; Tontiwachwuthikul, P. From neural network to neuro-fuzzy modeling: Applications to the carbon dioxide capture process. Energy Procedia 2011, 4, 2066–2073. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Rafiee, S.; Iqbal, J.; Shamshirband, S.; Omid, M.; Badrul, A.N.; Abdul, W.A. A comparative study between artificial neural networks and adaptive neuro-fuzzy inference systems for modeling energy consumption in greenhouse tomato production—A Case Study in Isfahan Province. J. Agr. Sci. Tech. 2015, 17, 49–62. [Google Scholar]
Techniques | Pros | Cons |
---|---|---|
Bottom-up approach | ▪ Able to determine a typical end-use energy consumption ▪ Encompasses occupant behaviors ▪ Does not require detailed data (only billing data and simple survey information) ▪ Easy to develop and use | ▪ Relies on historical consumption data ▪ Limited capacity to assess the impact of retrofited or new technologies ▪ Provides fewer data and less flexibility ▪ Requires large survey sample ▪ Multicollinearity |
Decomposition models | ▪ It is easy to understand | ▪ The cycle component must be input by the forecaster since it is not estimated by the algorithm. |
System optimization | ▪ Can be simple to implement ▪ Have few parameters to adjust ▪ Able to run parallel computation ▪ Can be robust | ▪ Can be difficult to define initial design parameters ▪ Cannot work out the problems of scattering |
Time series analysis | ▪ It is a very effective method of forecasting because it makes use of the seasoned patterns. ▪ It helps to understand the past behavior and would be helpful for future predictions. ▪ It helps us to compare the present performance of the series with that of the past. ▪ It helps to compare the performance of two different series of a different type for the same time duration. | ▪ It is costly because the forecasts are based on the historical data patterns that are used to predict the future market behavior. ▪ The conclusion drawn from the analysis of time series is not always perfect. ▪ The various factors that affected the fluctuations of a series cannot be fully adjusted by the time series analysis. ▪ The various factors that influence the time series may not remain the same for an extended period of time and so forecasting made on this basis may become unreliable. |
Regression analysis | ▪ Easy to implement and interpret | ▪ It involves a very lengthy and complicated procedure of calculations and analysis. |
Neuro-Fuzzy inference system (ANFIS) | ▪ Ability to change the qualitative aspects of human knowledge into the process of precise quantitative analysis | ▪ Time-consuming |
Author/Year | Methodology/Approach | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COPERT III | Johansen Cointegration | Granger Causality | Linear Programming | Time Series | Autoregressive Distributed Lag (ARDL) Approach | Logarithmic Mean Division Index (LMDI) | Vector Error Correction Model VECM | System Optimization | Vector Autoregressive (VAR)model | Autoregressive Integrated Moving Average (ARIMA) | Seasonal Autoregressive Integrated Moving Average (S-ARIMA) | Toda–Yamamoto | Decomposition | Life Cycle Assessment (LCA) | Regression Analysis | Double Exponential Smoothing | ANFIS | |
Horikawa, Furuhashi, and Uchikawa (1992) | x | |||||||||||||||||
Jang (1993) | x | |||||||||||||||||
Jang and Chuen-Tsai (1995) | x | |||||||||||||||||
Bai and Wei (1996) | x | |||||||||||||||||
Lakshmanan and Han (1997) | x | |||||||||||||||||
Shi and Mizumoto (2000) | x | |||||||||||||||||
YEH, TSAY, and LIANG (2005) | x | |||||||||||||||||
Hashim et al. (2005) | x | |||||||||||||||||
Ediger and Akar (2007) | x | x | ||||||||||||||||
Meyer, Leimbach, and Jaeger (2007) | x | |||||||||||||||||
Bellasio et al. (2007) | x | |||||||||||||||||
Ang (2008) | x | |||||||||||||||||
Wang et al. (2008) | x | |||||||||||||||||
Lu, Lewis, and Lin (2009) | x | |||||||||||||||||
Bekhet and Yusop (2009) | x | |||||||||||||||||
Timilsina and Shrestha (2009) | x | |||||||||||||||||
Khajeh, Modarress, and Rezaee (2009) | x | x | ||||||||||||||||
Zhou, Chan, and Tontiwachwuthikul (2010) | x | |||||||||||||||||
Sultan (2010) | x | x | ||||||||||||||||
Borjesson and Ahlgren (2012) | x | |||||||||||||||||
Shu and Lam (2011) | x | |||||||||||||||||
Wang et al. (2011) | x | |||||||||||||||||
Andreoni and Galmarini (2012) | x | |||||||||||||||||
Tolón-Becerra et al. (2012) | x | |||||||||||||||||
Si et al. (2012) | x | |||||||||||||||||
Bekhet and Yasmin (2013) | x | x | x | |||||||||||||||
Tan et al. (2013) | x | |||||||||||||||||
Chandran and Tang (2013) | x | x | x | |||||||||||||||
He and Chen (2013) | x | |||||||||||||||||
Dallmann et al. (2013) | x | |||||||||||||||||
Kanzian et al. (2013) | x | |||||||||||||||||
Sider et al. (2013) | x | |||||||||||||||||
Sadorsky (2014) | x | |||||||||||||||||
Xu et al. (2014) | x | |||||||||||||||||
Ahanchian and Biona (2014) | x | |||||||||||||||||
Motasemi et al. (2014) | x | |||||||||||||||||
Szendrő and Török (2014) | x | |||||||||||||||||
Saboori, Sapri, and bin Baba (2014) | x | |||||||||||||||||
Tokunaga and Konan (2014) | x | |||||||||||||||||
Konur (2014) | x | |||||||||||||||||
Xu, He, and Long (2014) | x | |||||||||||||||||
Begum et al. (2015) | x | x | ||||||||||||||||
Ivy and Bekhet (2015) | x | x | ||||||||||||||||
Friedrich, E., & Trois, C. (2016) | x | x | ||||||||||||||||
Alhindawi et al. (2016) | x | |||||||||||||||||
Li et al. (2016) | x | |||||||||||||||||
Fan, F., & Lei, Y. (2016) | x | |||||||||||||||||
Alshehry et al. (2017) | x | x | ||||||||||||||||
Talbi, B. (2017) | x | x | ||||||||||||||||
Lin, B., & Benjamin, N. I. (2017) | x | |||||||||||||||||
Danish et al. (2018) | x | x |
Year * | GHG Emissions | Ratio (Vehicle-Kilometres by Mode (Millions of Vehicle-kilometers)/Number of Transportation Vehicles/Equipment) | |||||
---|---|---|---|---|---|---|---|
Passenger cars | Motorcycles | Light trucks | Bus | Single-unit trucks | Tractor | ||
1990 | 1,235,100 | 16,951.2 | 3611.02 | 19,154.65 | 14,697.27 | 18,615.41 | 88,845.13 |
1995 | 1,352,700 | 18,029.19 | 4045.73 | 19,340.74 | 15,072.14 | 20,087.7 | 109,567.97 |
1996 | 1,388,200 | 18,234.27 | 4123.62 | 19,007.95 | 15,201.91 | 19,580.98 | 109,556.01 |
1997 | 1,416,900 | 18,637.02 | 4240.05 | 19,496.62 | 15,785.29 | 20,337.56 | 112,012.62 |
1998 | 1,461,200 | 18,915.58 | 4265.81 | 19,589.92 | 15,760.13 | 19,088.13 | 103,424.3 |
1999 | 1,511,800 | 19,068.06 | 4101.93 | 19,242.62 | 16,920.13 | 19,633.12 | 105,025.63 |
2000 | 1,521,500 | 19,273.95 | 3876.61 | 18,783.83 | 16,371.25 | 19,145.87 | 103,640.19 |
2001 | 1,527,400 | 19,028.74 | 3161.7 | 18,019.17 | 15,179.82 | 20,427.1 | 102,001.97 |
2002 | 1,562,500 | 19,636.86 | 3071.85 | 18,287.93 | 14,481.08 | 21,607.19 | 98,071.69 |
2003 | 1,571,300 | 19,833.21 | 2869.81 | 18,163.64 | 14,054.47 | 21,394.12 | 118,171.31 |
2004 | 1,604,400 | 20,052 | 2824.23 | 17,998.3 | 13,762.55 | 20,489.92 | 113,972.05 |
2005 | 1,612,100 | 20,132.35 | 2701.72 | 17,573.58 | 13,919.78 | 19,753.29 | 111,076.55 |
2006 | 1,609,800 | 20,093.44 | 2903.45 | 17,574.81 | 13,281.68 | 19,445.7 | 105,453.36 |
2007 | 1,614,100 | 17,236.04 | 4823.72 | 24,091.42 | 27,996.16 | 23,788.94 | 112,486.14 |
2008 | 1,540,100 | 16,560.69 | 4319.92 | 24,552.89 | 28,287.41 | 24,632.22 | 114,434.35 |
2009 | 1,500,100 | 16,704.39 | 4221.33 | 24,521.05 | 27,443.22 | 23,142.86 | 103,211.24 |
2010 | 1,509,000 | 17,144.27 | 3711.09 | 24,895.69 | 26,239.55 | 21,684.42 | 110,940.84 |
2011 | 1,489,900 | 17,089.15 | 3575.54 | 23,499.82 | 33,315.12 | 21,314.6 | 107,497.11 |
2012 | 1,487,100 | 18,128.56 | 4053.84 | 19,121.97 | 31,059.15 | 20,623.94 | 106,475.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhindawi, R.; Abu Nahleh, Y.; Kumar, A.; Shiwakoti, N. Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation. Sustainability 2019, 11, 6346. https://doi.org/10.3390/su11226346
Alhindawi R, Abu Nahleh Y, Kumar A, Shiwakoti N. Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation. Sustainability. 2019; 11(22):6346. https://doi.org/10.3390/su11226346
Chicago/Turabian StyleAlhindawi, Reham, Yousef Abu Nahleh, Arun Kumar, and Nirajan Shiwakoti. 2019. "Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation" Sustainability 11, no. 22: 6346. https://doi.org/10.3390/su11226346
APA StyleAlhindawi, R., Abu Nahleh, Y., Kumar, A., & Shiwakoti, N. (2019). Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation. Sustainability, 11(22), 6346. https://doi.org/10.3390/su11226346