Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011
Abstract
:1. Introduction
2. Theoretical Background
2.1. Energy Management System and ISO 50001
2.2. Integrated Management Systems with ISO 50001 and Other ISO Standards
3. Method
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brundtland, G.H. Report of the World Commission on Environment and Development: Our Common Future; United Nations: Oslo, Norway, 1987. [Google Scholar]
- Güney, T. Renewable energy, non-renewable energy and sustainable development. Int. J. Sustain. Dev. World Ecol. 2019, 26, 389–397. [Google Scholar] [CrossRef]
- Armindo, J.; Fonseca, A.; Abreu, I.; Toldy, T. Perceived importance of sustainability dimensions in the Portuguese metal industry. Int. J. Sustain. Dev. World Ecol. 2019, 26, 154–165. [Google Scholar] [CrossRef]
- UN Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. Available online: https://unstats.un.org/sdgs/indicators/Global Indicator Framework after 2019 refinement_Eng.pdf (accessed on 4 June 2019).
- UN Sustainable Development Goals (SDGs). Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 1 May 2019).
- Bilgen, S.; Sarıkaya, İ. Contribution of efficient energy use on economy, environment, and sustainability. Energy Sources Part B Econ. Plan. Policy 2016, 11, 1166–1172. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pereira, D.S. The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation. Econ. Anal. Policy 2019, 63, 188–206. [Google Scholar] [CrossRef]
- Surana, K.; Anadon, L.D. Public policy and financial resource mobilization for wind energy in developing countries: A comparison of approaches and outcomes in China and India. Glob. Environ. Chang. 2015, 35, 340–359. [Google Scholar] [CrossRef]
- Polzin, F.; Migendt, M.; Täube, F.A.; von Flotow, P. Public policy influence on renewable energy investments-A panel data study across OECD countries. Energy Policy 2015, 80, 98–111. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Cheng, Y.; Yao, X. Influencing factors of energy technical innovation in China: Evidence from fossil energy and renewable energy. J. Clean. Prod. 2019, 232, 57–66. [Google Scholar] [CrossRef]
- Irandoust, M. Innovations and renewables in the Nordic countries: A panel causality approach. Technol. Soc. 2018, 54, 87–92. [Google Scholar] [CrossRef]
- Santra, S. The effect of technological innovation on production-based energy and CO2 emission productivity: Evidence from BRICS countries. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 503–512. [Google Scholar] [CrossRef]
- Khabazi Kenari, N.; Feghhi Farahmand, N.; Iranzadeh, S. A comprehensive model for energy management strategies in coordination with manufacturing and organization strategies and its effect on energy management performance. Cogent Bus. Manag. 2018, 5, 1–17. [Google Scholar] [CrossRef]
- António da Silva Gonçalves, V.; Mil-Homens dos Santos, F.J. Energy management system ISO 50001:2011 and energy management for sustainable development. Energy Policy 2019, 133, 110868. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Quelhas, O.L.G.; Nascimento, D.L.d.M.; Anholon, R.; Leal Filho, W. Towards sustainability by aligning operational programmes and sustainable performance measures. Prod. Plan. Control 2019, 30, 413–425. [Google Scholar] [CrossRef]
- Sousa Lira, J.M.; Salgado, E.G.; Beijo, L.A. Which factors does the diffusion of ISO 50001 in different regions of the world is influenced? J. Clean. Prod. 2019, 226, 759–767. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Quelhas, O.L.G.; Nascimento, D.L.M.; Anholon, R.; Leal Filho, W. Measurement of sustainability performance in Brazilian organizations. Int. J. Sustain. Dev. World Ecol. 2018, 25, 312–326. [Google Scholar] [CrossRef]
- Leal Filho, W.; Manolas, E.; Pace, P. The future we want. Int. J. Sustain. High. Educ. 2015, 16, 112–129. [Google Scholar] [CrossRef]
- Fiorini, L.; Aiello, M. Energy management for user’s thermal and power needs: A survey. Energy Rep. 2019, 5, 1048–1076. [Google Scholar] [CrossRef]
- Mrabet, Z.; Alsamara, M.; Saleh, A.S.; Anwar, S. Urbanization and non-renewable energy demand: A comparison of developed and emerging countries. Energy 2019, 170, 832–839. [Google Scholar] [CrossRef]
- Kanneganti, H.; Gopalakrishnan, B.; Crowe, E.; Al-Shebeeb, O.; Yelamanchi, T.; Nimbarte, A.; Currie, K.; Abolhassani, A. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assess. 2017, 23, 121–135. [Google Scholar] [CrossRef]
- McKane, A.; Therkelsen, P.; Scodel, A.; Rao, P.; Aghajanzadeh, A.; Hirzel, S.; Zhang, R.; Prem, R.; Fossa, A.; Lazarevska, A.M.; et al. Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy Policy 2017, 107, 278–288. [Google Scholar] [CrossRef]
- Trianni, A.; Cagno, E.; Bertolotti, M.; Thollander, P.; Andersson, E. Energy management: A practice-based assessment model. Appl. Energy 2019, 235, 1614–1636. [Google Scholar] [CrossRef]
- Polat, B. The impact of renewable and nonrenewable energy consumption on economic growth: A dynamic panel data approach. Asia Pac. J. Acc. Econ. 2018. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W. A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy. J. Clean. Prod. 2019, 221, 73–88. [Google Scholar] [CrossRef]
- Frutos-Bencze, D.; Avdiu, K.; Unger, S. The effect of trade and monetary policy indicators on the development of renewable energy in Latin America. Crit. Perspect. Int. Bus. 2019. [Google Scholar] [CrossRef]
- Armin Razmjoo, A.; Sumper, A.; Davarpanah, A. Energy sustainability analysis based on SDGs for developing countries. Energy Sources Part A Recover. Util. Environ. Eff. 2019. [Google Scholar] [CrossRef]
- Kougias, I.; Aggidis, G.; Avellan, F.; Deniz, S.; Lundin, U.; Moro, A.; Muntean, S.; Novara, D.; Pérez-Díaz, J.I.; Quaranta, E.; et al. Analysis of emerging technologies in the hydropower sector. Renew. Sustain. Energy Rev. 2019, 113, 109257. [Google Scholar] [CrossRef]
- Dogmus, Ö.C.; Nielsen, J.Ø. Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina. Renew. Sustain. Energy Rev. 2019, 110, 278–289. [Google Scholar] [CrossRef]
- Jovanović, B.; Filipović, J. ISO 50001 standard-based energy management maturity model—Proposal and validation in industry. J. Clean. Prod. 2016, 112, 2744–2755. [Google Scholar] [CrossRef]
- Marimon, F.; Casadesús, M. Reasons to Adopt ISO 50001 Energy Management System. Sustainability 2017, 9, 1740. [Google Scholar] [CrossRef]
- Durakbasa, N.M. Micro- and nano-scale manufacturing development through precision metrology. TQM J. 2016, 28, 685–703. [Google Scholar] [CrossRef]
- De Sousa Jabbour, A.B.L.; Verdério Júnior, S.A.; Jabbour, C.J.C.; Leal Filho, W.; Campos, L.S.; De Castro, R. Toward greener supply chains: Is there a role for the new ISO 50001 approach to energy and carbon management? Energy Effic. 2017, 10, 777–785. [Google Scholar] [CrossRef] [Green Version]
- ISO. International Organization for Standardization, ISO 50001; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Barafort, B.; Mesquida, A.L.; Mas, A. Integrating risk management in IT settings from ISO standards and management systems perspectives. Comput. Stand. Interfaces 2017, 54, 176–185. [Google Scholar] [CrossRef]
- Karcher, P.; Jochem, R. Success factors and organizational approaches for the implementation of energy management systems according to ISO 50001. TQM J. 2015, 27, 361–381. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). Available online: https://www.iso.org/home.html (accessed on 2 November 2019).
- Nunhes, T.V.; Ferreira Motta, L.C.; de Oliveira, O.J. Evolution of integrated management systems research on the Journal of Cleaner Production: Identification of contributions and gaps in the literature. J. Clean. Prod. 2016, 139, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.P.; Campbell, L. Developing a knowledge management policy for ISO 9001: 2015. J. Knowl. Manag. 2016, 20, 829–844. [Google Scholar] [CrossRef]
- Wilson, J.P.; Campbell, L. ISO 9001:2015: The evolution and convergence of quality management and knowledge management for competitive advantage. Total Qual. Manag. Bus. Excell. 2018. [Google Scholar] [CrossRef]
- Ciravegna Martins da Fonseca, L.M.; Domingues, J.P.; Baylina Machado, P.; Calderón, M. Management system certification benefits: Where do we stand? J. Ind. Eng. Manag. 2017, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Zimon, D.; Zimon, G. The Impact of Implementation of Standardized Quality Management Systems on Management of Liabilities in Group Purchasing Organizations. Qual. Innov. Prosper. 2019, 23, 60. [Google Scholar] [CrossRef] [Green Version]
- ISO (International Organization for Standardization). Available online: https://www.iso.org/the-iso-survey.html (accessed on 22 October 2019).
- Domingues, J.P.T.; Sampaio, P.; Arezes, P.M. Analysis of integrated management systems from various perspectives. Total Qual. Manag. Bus. Excell. 2015, 26, 1311–1334. [Google Scholar] [CrossRef]
- Hernandez-Vivanco, A.; Domingues, P.; Sampaio, P.; Bernardo, M.; Cruz-Cázares, C. Do multiple certifications leverage firm performance? A dynamic approach. Int. J. Prod. Econ. 2019, 218, 386–399. [Google Scholar] [CrossRef]
- Gianni, M.; Gotzamani, K.; Tsiotras, G. Multiple perspectives on integrated management systems and corporate sustainability performance. J. Clean. Prod. 2017, 168, 1297–1311. [Google Scholar] [CrossRef]
- Dahlin, G.; Isaksson, R. Integrated management systems—Interpretations, results, opportunities. TQM J. 2017, 29, 528–542. [Google Scholar] [CrossRef]
- Laskurain, I.; Heras-Saizarbitoria, I.; Casadesús, M. Do energy management systems add value to firms with environmental management systems? Environ. Eng. Manag. J. 2019, 18, 17–30. [Google Scholar]
- Escorcia, Y.C.; Valencia Ochoa, G.E.; Acevedo, C.H. A systematic procedure to combine the integral management systems in a services sector company. Chem. Eng. Trans. 2018, 67, 373–378. [Google Scholar]
- Klute-Wenig, S.; Refflinghaus, R. Integrating sustainability aspects into an integrated management system. TQM J. 2015, 27, 303–315. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Mendes, P.; Murta, E.; Nunes, L.M. Performance indicators matrix as a methodology for energy management in municipal water services. J. Clean. Prod. 2016, 125, 108–120. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a Systematic Review. In The Sage Handbook of Organizational Research Methods; Buchanan, D.A., Bryman, A., Eds.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Xavier, A.F.; Naveiro, R.M.; Aoussat, A.; Reyes, T. Systematic literature review of eco-innovation models: Opportunities and recommendations for future research. J. Clean. Prod. 2017, 149, 1278–1302. [Google Scholar] [CrossRef]
- Chiu, T.Y.; Lo, S.L.; Tsai, Y.Y. Establishing an integration-energy-practice model for improving energy performance indicators in ISO 50001 energy management systems. Energies 2012, 5, 5324–5339. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, G.; De Los Reyes, P.; Kramer, C.; Björkman, T.; Dahlgren, M.; Noda, F.; Ogawa, J.; Yamashita, Y. Models for Driving Energy Efficiency Nationally Using Energy Management. Strateg. Plan. Energy Environ. 2015, 35, 48–79. [Google Scholar] [CrossRef]
- Păunescu, C.; Blid, L. Effective energy planning for improving the enterprise’s energy performance. Manag. Mark. 2016, 11, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Uriarte-Romero, R.; Gil-Samaniego, M.; Valenzuela-Mondaca, E.; Ceballos-Corral, J. Methodology for the successful integration of an energy management system to an operational environmental system. Sustainability 2017, 9, 1340. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, B.; Ramamoorthy, K.; Crowe, E.; Chaudhari, S.; Latif, H. A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustain. Energy Technol. Assess. 2014, 7, 154–165. [Google Scholar] [CrossRef]
- Menghi, R.; Papetti, A.; Germani, M.; Marconi, M. Energy efficiency of manufacturing systems: A review of energy assessment methods and tools. J. Clean. Prod. 2019, 240, 118276. [Google Scholar] [CrossRef]
- Majerník, M.; Bosák, M.; Štofová, L.; Szaryszová, P. Innovative model of integrated energy management in companies. Qual. Innov. Prosper. 2015, 19, 22–32. [Google Scholar] [CrossRef]
- Du Plessis, W. Energy efficiency and the law: A multidisciplinary approach. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, B.; Filipović, J.; Bakić, V. Energy management system implementation in Serbian manufacturing—Plan-Do-Check-Act cycle approach. J. Clean. Prod. 2017, 162, 1144–1156. [Google Scholar] [CrossRef]
- Laskurain, I.; Heras-Saizarbitoria, I.; Casadesús, M. Fostering renewable energy sources by standards for environmental and energy management. Renew. Sustain. Energy Rev. 2015, 50, 1148–1156. [Google Scholar] [CrossRef]
- Pham, T.H.H. Energy management systems and market value: Is there a link? Econ. Model. 2015, 46, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Nakthong, V.; Kubaha, K. Development of a Sustainability Index for an Energy Management System in Thailand. Sustainability 2019, 11, 4587. [Google Scholar] [CrossRef] [Green Version]
- Manders, B.; De Vries, H.J.; Blind, K. ISO 9001 and product innovation: A literature review and research framework. Technovation 2016, 48–49, 41–55. [Google Scholar] [CrossRef]
- ISO. ISO 9001:1987 Quality Systems—Model for Quality Assurance in Design/Development, Production, Installation and Servicing. Available online: https://www.iso.org/standard/16533.html (accessed on 4 November 2019).
Targets of the Seventh Goal | Indicators of the Targets |
---|---|
7.1 “By 2030, ensure universal access to affordable, reliable and modern energy services”. | 7.1.1 “Proportion of population with access to electricity”. |
7.1.2 “Proportion of population with primary reliance on clean fuels and technology”. | |
7.2 “By 2030, increase substantially the share of renewable energy in the global energy mix”. | 7.2.1 “Renewable energy share in the total final energy consumption”. |
7.3 “By 2030, double the global rate of improvement in energy efficiency”. | 7.3.1 “Energy intensity measured in terms of primary energy and GDP”. |
7.a “By 2030, enhance international cooperation to facilitate access to clean energy research and technology, including renewable energy, energy efficiency, and advanced and cleaner fossil-fuel technology, and promote investment in energy infrastructure and clean energy technology”. | 7.a.1 “International financial flows to developing countries in support of clean energy research and development and renewable energy production, including in hybrid systems”. |
7.b “By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all in developing countries, in particular, least developed countries, small island developing States and landlocked developing countries, in accordance with their respective programmes of support”. | 7.b.1 “Investments in energy efficiency as a proportion of GDP and the amount of foreign direct investment in financial transfer for infrastructure and technology to sustainable development services”. |
Challenges | References | Portion of References |
---|---|---|
Lack of Resources–Limitations (HR, Technologies, Infrastructure, Financial, Time) | [31,33,55,56,57,58,59,60,61] | 9/17 |
Difficulty in determining the energy baseline and energy performance indicators | [31,55,61,62,63,64] | 6/17 |
Human Resources deficiencies (competences, knowledges, and abilities) | [32,37,57,63] | 4/17 |
Lack of management support and/or commitment | [22,57,62] | 3/17 |
Lack of clear policies (organizational or governmental) | [23,62] | 2/17 |
Difficulty with properly evaluating the benefits generated by the adoption of ISO 50001 | [23,65] | 2/17 |
Difficulty with fully reaching the energy and carbon efficiency enabled by ISO 50001 | [34] | 1/17 |
Barrier in the acquisition of external consultants | [37] | 1/17 |
Difficulty in managing third-party international certifications | [61] | 1/17 |
Lack of proper management of documentation | [63] | 1/17 |
Difficulty in maintaining the certification | [66] | 1/17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampasso, I.S.; Melo Filho, G.P.; Anholon, R.; de Araujo, R.A.; Alves Lima, G.B.; Perez Zotes, L.; Leal Filho, W. Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011. Sustainability 2019, 11, 6321. https://doi.org/10.3390/su11226321
Rampasso IS, Melo Filho GP, Anholon R, de Araujo RA, Alves Lima GB, Perez Zotes L, Leal Filho W. Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011. Sustainability. 2019; 11(22):6321. https://doi.org/10.3390/su11226321
Chicago/Turabian StyleRampasso, Izabela Simon, Geraldo Pereira Melo Filho, Rosley Anholon, Robson Amarante de Araujo, Gilson Brito Alves Lima, Luis Perez Zotes, and Walter Leal Filho. 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011" Sustainability 11, no. 22: 6321. https://doi.org/10.3390/su11226321