Towards Auspicious Agricultural Informatization—Implication of Farmers’ Behavioral Intention Apropos of Mobile Phone Use in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Conceptual Framework
2.3. Variable Selection and Measurement
2.3.1. Behavioral Intent
2.3.2. Mobile Phone Use
2.4. Empirical Strategy and Analytical Framework
2.4.1. Role of Behavioral Intention in Mobile Phone Adoption
2.4.2. Mobile Phone Adoption and Household Income
2.4.3. Model Specification Tests
3. Empirical Results and Discussion
3.1. Descriptive Statistics
3.2. Determinants of Farmers’ Behavioral Intention Towards Mobile Phone Use in Agriculture
3.3. Association of Mobile Phone Use and Farmers’ Behavioral Intention
3.4. Household Income Effects
3.5. Implication for Practice and Sustainability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | VIF | 1/VIF |
---|---|---|
Farmexp | 2.082 | 0.48 |
Marital | 2.006 | 0.499 |
Family size | 1.897 | 0.527 |
Gender | 1.693 | 0.591 |
Assets | 1.479 | 0.676 |
Education | 1.218 | 0.821 |
Behavioral intent | 1.208 | 0.828 |
Market | 1.141 | 0.876 |
Cooperative | 1.114 | 0.898 |
Mean VIF | 1.538 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
(1) Behavioral intent | 1.000 | ||||||||
(2) Gender | −0.080 | 1.000 | |||||||
(3) Cooperative | −0.248 | −0.059 | 1.000 | ||||||
(4) Market | −0.076 | −0.061 | 0.082 | 1.000 | |||||
(5) Family size | 0.144 | 0.066 | 0.042 | −0.174 | 1.000 | ||||
(6) Farmexp | −0.040 | −0.100 | 0.142 | 0.038 | 0.574 | 1.000 | |||
(7) Education | 0.185 | 0.072 | −0.155 | −0.256 | −0.031 | −0.248 | 1.000 | ||
(8) Marital | −0.136 | 0.627 | 0.038 | −0.160 | 0.165 | −0.155 | 0.193 | 1.000 | |
(9) Assets | 0.120 | −0.062 | 0.039 | 0.071 | 0.402 | 0.526 | −0.091 | −0.150 | 1.000 |
Explanatory Variable | Coef. (Std.Err) |
---|---|
Age | −0.052 (0.023) ** |
Gender | 0.321 (0.384) |
Cooperative | −0.084 (0.422) |
Market | −0.009 (0.029) |
Family size | −0.130 (0.049) *** |
Farmexp | 0.025 (0.024) |
Education | 0.015 (0.032) |
Marital | 0.033 (0.115) |
Assets | 1.003 (0.198) *** |
Constant | −6.207 (1.718) *** |
References
- Aker, J.C.; Ksoll, C. Can mobile phones improve agricultural outcomes? Evidence from a randomized experiment in Niger. Food Policy 2016, 60, 44–51. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Versteeg, M. Mobile phones in Africa: How much do we really know? Soc. Ind. Res. 2007, 84, 117. [Google Scholar] [CrossRef]
- Sinha, C. Effect of mobile telephony on empowering rural communities in developing countries. In Proceedings of the International Research Foundation for Development (IRFD) Conference on Digital Divide, Global Development and Information Society, Tunis, Tunisia, 14–16 November 2005; pp. 4–8. [Google Scholar]
- GSMA. MMU Deployment Tracker Mobile for Development. Available online: http://www. gsma.com/mobilefordevelopment/programmes/mobile-money-for-the-nbanked/insights/tracker (accessed on 10 November 2018).
- Aker, J.C. Information from markets near and far: Mobile phones and agricultural markets in Niger. Am. Econ. J. Appl. Econ. 2010, 2, 46–59. [Google Scholar] [CrossRef]
- James, J. Leapfrogging in mobile telephony: A measure for comparing country performance. Technol. Forecast. Soc. Chang. 2009, 76, 991–998. [Google Scholar] [CrossRef]
- Osabutey, E.L.; Jin, Z. Factors influencing technology and knowledge transfer: Configurational recipes for Sub-Saharan Africa. J. Bus. Res. 2016, 69, 5390–5395. [Google Scholar] [CrossRef] [Green Version]
- Balmford, A.; Green, R.E.; Scharlemann, J.P. Sparing land for nature: Exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob. Chang. Biol. 2005, 11, 1594–1605. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Lynd, L.R.; Woods, J. Perspective: A new hope for Africa. Nature 2011, 474, S20–S21. [Google Scholar] [CrossRef] [Green Version]
- Amos, T.T. An analysis of productivity and technical efficiency of smallholder cocoa farmers in Nigeria. J. Soc. Sci. 2007, 15, 127–133. [Google Scholar] [CrossRef]
- Drucker, P. The coming of the new organization: Harvard Business Review on Knowledge Management. Harvard Business School Press: Boston, MA, USA, 1988. [Google Scholar]
- Fafchamps, M. Market Institutions in Sub-Saharan Africa: Theory and Evidence; MIT press: Cambridge, MA, USA, 2003. [Google Scholar]
- Admassie, A.; Ayele, G. Adoption of Improved Technology in Ethiopia, Ethiopian Development Research Institute; Food and Agriculture Organization of the United States: Washington, DC, USA, 2004. [Google Scholar]
- Ansari, M.; Pandey, N. Assessing the potential and use of mobile phones in agriculture. Karnataka J. Agric. Sci. 2013, 26, 388–392. [Google Scholar]
- Baumüller, H. Facilitating Agricultural Technology Adoption among the Poor: The Role of Service Delivery through Mobile Phones; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2012. [Google Scholar]
- Masuki, K.; Kamugisha, R.; Mowo, J.; Tanui, J.; Tukahirwa, J.; Mogoi, J.; Adera, E. Role of mobile phones in improving communication and information delivery for agricultural development: Lessons from South Western Uganda. In Proceedings of the Workshop at Makerere University, Kampala, Uganda, 22–23 March 2010; pp. 22–23. [Google Scholar]
- Mittal, S.; Tripathi, G. Role of mobile phone technology in improving small farm productivity. Agric. Econ. Res. Rev. 2009, 22, 451–460. [Google Scholar]
- Mwalupaso, G.E.; Tian, X.; Matafwali, E.; Mwamba, M.C.; Alavo, E.J.-P.; Ethetie, A.M.; Korotoumou, M.; Waseem, F. Understanding The Purpose and Potential Popularity of Mobile Phone Use in Zambia’s Maize Production. J. Agric. Sci. 2019, 11, 32–42. [Google Scholar] [CrossRef]
- Aker, J.C.; Fafchamps, M. Mobile phone coverage and producer markets: Evidence from West Africa. World Bank Econ. Rev. 2014, 29, 262–292. [Google Scholar] [CrossRef]
- Muto, M.; Yamano, T. The impact of mobile phone coverage expansion on market participation: Panel data evidence from Uganda. World Dev. 2009, 37, 1887–1896. [Google Scholar] [CrossRef]
- Shimamoto, D.; Yamada, H.; Gummert, M. Mobile phones and market information: Evidence from rural Cambodia. Food Policy 2015, 57, 135–141. [Google Scholar] [CrossRef]
- Tadesse, G.; Bahiigwa, G. Mobile phones and farmers’ marketing decisions in Ethiopia. World Dev. 2015, 68, 296–307. [Google Scholar] [CrossRef]
- Duncombe, R.; Boateng, R. Mobile Phones and Financial Services in Developing Countries: A review of concepts, methods, issues, evidence and future research directions. Third World Q. 2009, 30, 1237–1258. [Google Scholar] [CrossRef]
- Kikulwe, E.M.; Fischer, E.; Qaim, M. Mobile money, smallholder farmers, and household welfare in Kenya. PLoS ONE 2014, 9, e109804. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Mobile money, agricultural marketing, and off-farm income in Uganda. Agric. Econ. 2017, 48, 597–611. [Google Scholar] [CrossRef]
- Ilahiane, H. Impacts of information and communication technologies in agriculture: Farmers and mobile phones in Morocco. In Proceedings of the Annual Meetings of the American Anthropological Association, December, Washington, DC, USA, 28 November–2 December 2007; pp. 276–283. [Google Scholar]
- Kabbiri, R.; Dora, M.; Kumar, V.; Elepu, G.; Gellynck, X. Mobile phone adoption in agri-food sector: Are farmers in Sub-Saharan Africa connected? Technol. Forecast. Soc. Chang. 2018, 131, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Kashem, M. Farmers’ use of mobile phones in receiving agricultural information towards agricultural development. M4D 2010 2010, 80, 80–89. [Google Scholar]
- Razaque, A.; Sallah, M. The use of mobile phone among farmers for agriculture development. Int. J. Sci. Res. 2013, 2, 95–98. [Google Scholar]
- Donner, J. The use of mobile phones by microentrepreneurs in Kigali, Rwanda: Changes to social and business networks. Inf. Technol. Int. Dev. 2006, 3, 3–19. [Google Scholar] [CrossRef]
- Rehan Shaukat, M.; Ali Shah, I. Farmers Inclination to Adoption of Mobile Phone Agriculture Information and Trade Systems in Pakistan. J. Econ. Soc. Stud. (Jecoss) 2014, 4, 191. [Google Scholar]
- Sife, A.S.; Kiondo, E.; Lyimo-Macha, J.G. Contribution of mobile phones to rural livelihoods and poverty reduction in Morogoro region, Tanzania. Electron. J. Inf. Syst. Dev. Ctries. 2010, 42, 1–15. [Google Scholar] [CrossRef]
- Aker, J.C. Does Digital Divide or Provide? The Impact of Cell Phones on Grain Markets in Niger; Center for Global Development working paper: Washington, DC, USA, 2008. [Google Scholar]
- Schuttner, L.; Sindano, N.; Theis, M.; Zue, C.; Joseph, J.; Chilengi, R.; Chi, B.H.; Stringer, J.S.; Chintu, N. A mobile phone-based, community health worker program for referral, follow-up, and service outreach in rural Zambia: Outcomes and overview. Telemed. E-Health 2014, 20, 721–728. [Google Scholar] [CrossRef]
- Wyche, S.P.; Densmore, M.; Geyer, B.S. Real mobiles: Kenyan and Zambian smallholder farmers’ current attitudes towards mobile phones. In Proceedings of the Seventh International Conference on Information and Communication Technologies and Development, Singapore, 15–18 May 2015; p. 9. [Google Scholar]
- Brown, L.R. Eradicating hunger: A growing challenge. In State of the World 2001; World Watch Institute: Norton, NY, USA, 2001. [Google Scholar]
- Mwalupaso, G.E.; Wang, S.; Rahman, S.; Alavo, E.J.-P.; Tian, X. Agricultural Informatization and Technical Efficiency in Maize Production in Zambia. Sustainability 2019, 11, 2451. [Google Scholar] [CrossRef]
- Number of mobile cellular subscriptions in Zambia from 2000 to 2018 (in millions). Available online: https://www.statista.com/statistics/501173/number-of-mobile-cellular-subscriptions-in-zambia/ (accessed on 10 November 2018).
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Zamasiya, B.; Nyikahadzoi, K.; Mukamuri, B.B. Factors influencing smallholder farmers' behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe. J. Env. Manag. 2017, 198, 233–239. [Google Scholar] [CrossRef]
- Hameed, F.; Qayyum, A. Determinants of Behavioral Intention towards Mobile Learning in Pakistan: Mediating role of Attitude. Bus. Econ. Rev. 2018, 10, 33–61. [Google Scholar] [CrossRef]
- Mohamed, W.; Nazihah, W.; Shaari, A.J.; Ismail, Z.; Yusoff, M.S.A. Instructors’ Behavioral Intention Towards Mobile Technology Device Acceptance. Adv. Sci. Lett. 2018, 24, 2532–2535. [Google Scholar] [CrossRef]
- Pudke, S.S. Attitude of Farmers towards Use of Mobile Phone Services in Transfer of Agricultural Technology; Vasantrao Naik Marathwada Krishi Vidyapeeth: Parbhani, India, 2018. [Google Scholar]
- Singh, R. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- Ango, A.; Illo, A.; Abdullahi, A.; Maikasuwaand, M.; Amina, A. Role of farm-radio agricultural programmes in disseminating agricultural technology to rural famers for agricultural development in Zaria, Kaduna State, Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2013, 2, 54–68. [Google Scholar] [CrossRef]
- Aker, J.C.; Mbiti, I.M. Mobile phones and economic development in Africa. J. Econ. Perspect. 2010, 24, 207–232. [Google Scholar] [CrossRef]
- Parmar, I.S.; Soni, P.; Kuwornu, J.K.; Salin, K.R. Evaluating Farmers’ Access to Agricultural Information: Evidence from Semi-Arid Region of Rajasthan State, India. Agriculture 2019, 9, 60. [Google Scholar] [CrossRef]
- Kumar, D.; Roy, A. Assessing Farmers Access to Information in Arid Western Rajasthan. Indian J. Hill Farm. 2014, 27, 176–183. [Google Scholar]
- Arbuckle, J.G.; Prokopy, L.S.; Haigh, T.; Hobbs, J.; Knoot, T.; Knutson, C.; Loy, A.; Mase, A.S.; McGuire, J.; Morton, L.W. Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Clim. Chang. 2013, 117, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Akturan, U.; Tezcan, N. Mobile banking adoption of the youth market: Perceptions and intentions. Mark. Intell. Plan. 2012, 30, 444–459. [Google Scholar] [CrossRef]
- Ingham, J.; Cadieux, J. From E-shopping system quality to the consumer’ intention to return: A meta-analytic study of the mediation of attitude, usefulness, enjoyment, and trust. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3556–3564. [Google Scholar]
- Lee, M.-C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Blauw, S.; Franses, P.H. Off the hook: Measuring the impact of mobile telephone use on economic development of households in Uganda using copulas. J. Dev. Stud. 2016, 52, 315–330. [Google Scholar] [CrossRef]
- Azjen, I. Understanding attitudes and predicting social behavior. Englewood Cliffs: Bergen, NJ, USA, 1980. [Google Scholar]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Borges, J.A.R.; Lansink, A.G.O.; Ribeiro, C.M.; Lutke, V. Understanding farmers’ intention to adopt improved natural grassland using the theory of planned behavior. Livest. Sci. 2014, 169, 163–174. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy 2017, 73, 95–103. [Google Scholar] [CrossRef]
- Terza, J.V.; Basu, A.; Rathouz, P.J. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. J. Health Econ. 2008, 27, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Terza, J.V. Two-stage residual inclusion estimation: A practitioners guide to Stata implementation. Stata J. 2017, 17, 916–938. [Google Scholar] [CrossRef]
- Jafari Bidgoli, M. Essays On Health And Labor Market Outcomes; Wayne State University: Detroit, MI, USA, 2017. [Google Scholar]
- Vella, F. A simple estimator for simultaneous models with censored endogenous regressors. Int. Econ. Rev. 1993, 34, 441–457. [Google Scholar] [CrossRef]
- Maxwell, S.E.; Camp, C.J.; Arvey, R.D. Measures of strength of association: A comparative examination. J. Appl. Psychol. 1981, 66, 525. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Statistical approaches for non-parametric frontier models: A guided tour. Int. Stat. Rev. 2015, 83, 77–110. [Google Scholar] [CrossRef]
- Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Noltze, M.; Schwarze, S.; Qaim, M. Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste. Ecol. Econ. 2013, 85, 59–68. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef]
- Alene, A.D.; Manyong, V.M. The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: An endogenous switching regression analysis. Empir. Econ. 2007, 32, 141–159. [Google Scholar] [CrossRef]
- Fuglie, K.O.; Bosch, D.J. Economic and environmental implications of soil nitrogen testing: A switching-regression analysis. Am. J. Agric. Econ. 1995, 77, 891–900. [Google Scholar] [CrossRef]
- Lomax, R.G.; Schumacker, R.E. A Beginner’s Guide to Structural Equation Modeling; Psychology Press: Hove, UK, 2004. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach; Nelson Education: Toronto, ON, Canada, 2015. [Google Scholar]
- Nachane, D.M. Econometrics: Theoretical Foundations and Empirical Perspectives; OUP Catalogue, Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Damodar, N. Basic Econometrics, 4th ed.; The Mc-Graw Hill: New York, NY, USA, 2004; p. 1032. [Google Scholar]
- Quisumbing, A.R. Male-female differences in agricultural productivity: Methodological issues and empirical evidence. World Dev. 1996, 24, 1579–1595. [Google Scholar] [CrossRef]
- Abate, G.T.; Francesconi, G.N.; Getnet, K. Impact of agricultural cooperatives on smallholders’ technical efficiency: Empirical evidence from Ethiopia. Ann. Public Coop. Econ. 2014, 85, 257–286. [Google Scholar] [CrossRef]
- Sitko, N.J.; Bwalya, R.; Kamwanga, J.; Wamulume, M. Assessing the Feasibility of Implementing the Farmer Input Support Programme (FISP) through an Electronic Voucher System in Zambia; Indaba Agricultural Policy Research Institute ( IAPRI): Lusaka, Zambia, 2012. [Google Scholar]
- Mofya-Mukuka, R.; Kabwe, S.; Kuteya, A.N.; Mason, N.M. How Can the Zambian Government Improve the Targeting of the Farmer Input Support Program? Michigan State University, Department of Agricultural, Food, and Resource Economics: East Lansing, MI, USA, 2013. [Google Scholar]
- Simukanga, A.; Phiri, J.; Nyirenda, M.; Kalumbilo-Kabemba, M.M. ICT in Governance Systems: A Case Study of the FISP Farmer Registration System. In Proceedings of the Proceedings of the ZAPUC Internation Conference, Livingstone, Zambia, 29 April–3 May 2018. [Google Scholar]
- Etzo, S.; Collender, G. The mobile phone ‘revolution’in Africa: Rhetoric or reality? Afr. Aff. 2010, 109, 659–668. [Google Scholar] [CrossRef]
- Jaime, M.M.; Salazar, C.A. Participation in organizations, technical efficiency and territorial differences: A study of small wheat farmers in Chile. Chil. J. Agric. Res. 2011, 71, 104. [Google Scholar] [CrossRef]
- Boschen, M.J.; Casey, L.M. The use of mobile telephones as adjuncts to cognitive behavioral psychotherapy. Prof. Psychol. Res. Pract. 2008, 39, 546. [Google Scholar] [CrossRef]
- Solís, D.; Bravo-Ureta, B.E.; Quiroga, R.E. Technical efficiency among peasant farmers participating in natural resource management programmes in Central America. J. Agric. Econ. 2009, 60, 202–219. [Google Scholar] [CrossRef]
- Rahman, S. Women’s labour contribution to productivity and efficiency in agriculture: Empirical evidence from Bangladesh. J. Agric. Econ. 2010, 61, 318–342. [Google Scholar] [CrossRef]
- Külekçi, M. Technical efficiency analysis for oilseed sunflower farms: A case study in Erzurum, Turkey. J. Sci. Food Agric. 2010, 90, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-F. Extending the theory of planned behavior model to explain people's energy savings and carbon reduction behavioral intentions to mitigate climate change in Taiwan–moral obligation matters. J. Clean. Prod. 2016, 112, 1746–1753. [Google Scholar] [CrossRef]
- Chin, H.-C.; Choong, W.-W.; Alwi, S.R.W.; Mohammed, A.H. Using Theory of Planned Behaviour to explore oil palm smallholder planters' intention to supply oil palm residues. J. Clean. Prod. 2016, 126, 428–439. [Google Scholar] [CrossRef]
- Klöckner, C.A. A comprehensive model of the psychology of environmental behaviour—A meta-analysis. Glob. Environ. Chang. 2013, 23, 1028–1038. [Google Scholar] [CrossRef]
- Toluwase, S.; Apata, O. Impact of Farmers’ Cooperative on Agricultural Productivity in Ekiti State, Nigeria. Greener J. Agric. Sci. 2011, 3, 63–67. [Google Scholar] [CrossRef]
- Mittal, S.; Gandhi, S.; Tripathi, G. Socio-economic impact of mobile phones on Indian agriculture. Dev. Econ. Work. Pap No. 246 2010. Available online: http://hdl.handle.net/10419/176264 (accessed on 10 November 2018).
- Coates, N.; Nikolaus, L. Zambia and e-government: An assessment and recommendations. In E-Agriculture and E-Government for Global Policy Development: Implications and Future Directions; IGI Global: Hershey, PA, USA, 2010; pp. 137–161. [Google Scholar]
- Dlodlo, N.; Kalezhi, J. The internet of things in agriculture for sustainable rural development. In Proceedings of the 2015 international conference on emerging trends in networks and computer communications (ETNCC), Otjozondjupa, Namibia, 17–20 May 2015; pp. 13–18. [Google Scholar]
- Noordam, A.C.; Kuepper, B.M.; Stekelenburg, J.; Milen, A. Improvement of maternal health services through the use of mobile phones. Trop. Med. Int. Health 2011, 16, 622–626. [Google Scholar] [CrossRef]
- van Baardewijk, M. Is the Mobile Phone the Panacea for Rural Poverty? Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2016. [Google Scholar]
- Akudugu, M.A.; Guo, E.; Dadzie, S.K. Adoption of Modern Agricultural Production Technologies by Farm Households in Ghana: What Factors Influence Their Decisions; International Institute for Science, Technology and Education: Beijing, China, 2012. [Google Scholar]
- Guliyev, O.; Liu, A.; Mwalupaso, G.E.; Niemi, J. The Determinants of Technical Efficiency of Hazelnut Production in Azerbaijan: An Analysis of the Role of NGOs. Sustainability 2019, 11, 4332. [Google Scholar] [CrossRef]
- Mwalupaso, G.E.; Korotoumou, M.; Eshetie, A.M.; Alavo, J.-P.E.; Xu, T. Recuperating dynamism in agriculture through adoption of sustainable agricultural technology-Implications for cleaner production. J. Clean. Prod. 2019, 232, 639–647. [Google Scholar] [CrossRef]
- Kebede, Y.; Gunjal, K.; Coffin, G. Adoption of new technologies in Ethiopian agriculture: The case of Tegulet-Bulga district Shoa province. Agric. Econ. 1990, 4, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Aina, L. Informing African farmers: Some obstacles to information flow. Inf. Dev. 1990, 6, 201–203. [Google Scholar] [CrossRef]
- Kyun Choi, Y.; Kim, J.; McMillan, S.J. Motivators for the intention to use mobile TV: A comparison of South Korean males and females. Int. J. Advert. 2009, 28, 147–167. [Google Scholar] [CrossRef]
- Wei, R.; Lo, V.-H. Staying connected while on the move: Cell phone use and social connectedness. New Media Soc. 2006, 8, 53–72. [Google Scholar] [CrossRef]
- Potnis, D. Culture’s consequences: Economic barriers to owning mobile phones experienced by women in India. Telemat. Inform. 2016, 33, 356–369. [Google Scholar] [CrossRef]
- Gutiérrez, L.H. ICT and labor productivity in Colombian manufacturing industry. In ICT in Latin America: Microdata Analysis; ECLAC: Santiago, Chile, 2011; pp. 121–144. [Google Scholar]
- Alam, G.M.M.; Alam, K.; Mushtaq, S. Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Clim. Risk Manag. 2017, 17, 52–63. [Google Scholar] [CrossRef]
- Campbell, B.M.; Hansen, J.; Rioux, J.; Stirling, C.M.; Twomlow, S.; Wollenberg, E. Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 2018, 34, 13–20. [Google Scholar] [CrossRef]
- Edame, G.E.; Ekpenyong, A.; Fonta, W.M.; Duru, E. Climate change, food security and agricultural productivity in Africa: Issues and policy directions. Int. J. Humanit. Soc. Sci. 2011, 1, 205–223. [Google Scholar]
- Jensen, R. The digital provide: Information (technology), market performance, and welfare in the South Indian fisheries sector. Q. J. Econ. 2007, 122, 879–924. [Google Scholar] [CrossRef]
- Lio, M.; Liu, M.C. ICT and agricultural productivity: Evidence from cross-country data. Agric. Econ. 2006, 34, 221–228. [Google Scholar] [CrossRef]
- Nakasone, E.; Torero, M. A text message away: ICTs as a tool to improve food security. Agric. Econ. 2016, 47, 49–59. [Google Scholar] [CrossRef] [Green Version]
Variable | Description | Mean (SD) N = 201 |
---|---|---|
MP ownership | Whether at least one adult member in the household owns a mobile phone (1 = owns) | 0.537 (0.5) |
Gender | Gender of household head (1 = male) | 0.856 (0.352) |
Cooperative | Whether household is a member of a cooperative (1 = member) | 0.93 (0.255) |
Market | Distance in kilometers from the farm to the market | 8.502 (3.704) |
Govsubsidy | Whether household is a beneficiary of FISP (1 = beneficiary) | 0.905 (0.293) |
Family size | The number of people in a household | 6.139 (3.318) |
Farmexp | Years of farming experience of the household head | 21.711 (12.243) |
Education | Education of household head (1 = has basic education) | 0.697 (0.461) |
Marital | Marital status of household head (1 = married) | 0.771 (0.421) |
Seducation | Education of the household head’s spouse (1 = has basic education) | 0.522 (0.501) |
MP duration | Length of mobile phone ownership (years) | 3.83 (3.11) |
Assets | Value of household assets in Zambian kwacha (ZMK) | 13,807.25 (4079.04) |
Variables | Attitude in General | Specific Attitude Outcomes | ||
---|---|---|---|---|
Positive | Undecided | Negative | ||
MP ownership | 2.938 (0.342) *** | 0.392(0.118) *** | 0.522 (0.176) *** | −0.914(0.123) *** |
Gender | −0.366 (0.593) | −0.059 (0.116) | −0.042 (0.039) | 0.102 (0.147) |
Govsubsidy | −1.582 (0.660) ** | −0.440(0.244) * | 0.178 (0.213) | 0.262 (0.060) *** |
Cooperative | −0.938 (0.667) | −0.210(0.213) | 0.006 (0.136) | 0.204 (0.090) ** |
Market | 0.058 (0.037) | 0.007(0.005) | 0.010 (0.007) | −0.018 (0.012) |
Family size | 0.580 (0.087) *** | 0.077(0.028) *** | 0.103 (0.035) *** | −0.181 (0.030) *** |
Farmexp | 0.031 (0.019) | 0.004(0.003) | 0.006 (0.004) | −0.010 (0.006) |
Education | 0.319 (0.342) | 0.039 (0.041) | 0.065 (0.079) | −0.104 (0.116) |
Seducation | 1.405 (0.415) *** | 0.205 (0.091) ** | 0.213 (0.078) *** | −0.418 (0.118) *** |
Marital | −1.026 (0.542) * | −0.206 (0.157) | −0.042 (0.083) | 0.248 (0.096) *** |
Electricity access | 0.695 (0.447) | 0.078 (0.050) | 0.155(0.120) | −0.232 (0.159) |
MP duration | −0.077 (0.061) | −0.010 (0.009) | −0.014 (0.012) | 0.024 (0.019) |
Assets | −1.934 (0.344) *** | −0.258 (0.082) *** | −0.344(0.128) *** | 0.601 (0.116) *** |
Cut 1 | −14.064 (2.831) | |||
Cut 2 | −11.879 (2.722) | |||
Model Diagnostics | ||||
Mean dependent var | 1.819 | SD dependent var | 0.811 | |
Pseudo r-squared | 0.526 | Number of obs | 184.000 | |
Chi-square | 100.412 | Prob > chi2 | 0.000 | |
Akaike crit. (AIC) | 159.208 | Bayesian crit. (BIC) | 201.871 |
MP Use | Whole Sample | Mobile Owners Only |
---|---|---|
Attitude | ||
Undecided | 0.172 (0.518) | −0.327 (0.651) |
Positive | 2.205 (0.539) *** | 1.358 (0.609) ** |
Gender | 0.864 (0.588) | 0.290 (0.655) |
Cooperative | −0.136 (0.497) | −1.169 (0.716) * |
Market | −0.087 (0.055) | −0.133 (0.059) ** |
Family size | 0.193 (0.136) | 0.144 (0.179) |
Farmexp | −0.076 (0.026) *** | −0.067 (0.031) ** |
Education | 0.373 (0.113) *** | 0.475 (0.115) *** |
Marital | −1.660 (0.550) *** | −1.663 (0.495) *** |
Assets | 0.695 (0.406) * | 0.386 (0.663) |
GR/IMR | −0.206 (0.280) | 0.847 (1.012) |
Constant | −8.387 (3.755) ** | −4.110 (5.851) |
Model Diagnostics | ||
Pseudo r-squared | 0.705 | 0.759 |
Chi-square | 57.500 *** | 46.698 *** |
Log pseudolikelihood | −20.472 | −17.010 |
Correctly classified | 94.49% | 93.46% |
Attitude | Mobile Phone Use | Total (201) | |
---|---|---|---|
Non-User (159) | User (42) | ||
Negative | 86 (93.48%) | 6 (6.52%) | 92 (100%) |
Undecided | 57 (95%) | 3 (5%) | 60 (100%) |
Positive | 16 (32.65%) | 33 (67.35%) | 49 (100%) |
Key Statistics | |||
Pearson chi2(2) = 84.6356 *** Fisher’s exact *** Cramer’s V = 0.6489 |
Adoption Status | N | With Mobile Phone Adoption | Without Mobile Phone Adoption | Treatment Effect | % Change |
---|---|---|---|---|---|
Adopters | 41 | 8999.78 | 5541.98 | ATT: 3457.80 (538.669) *** | 62.39 |
Non-adopters | 156 | 8639.82 | 7605.37 | ATU: 1034.45 (274.51) *** | 13.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwalupaso, G.E.; Wang, S.; Xu, Z.; Tian, X. Towards Auspicious Agricultural Informatization—Implication of Farmers’ Behavioral Intention Apropos of Mobile Phone Use in Agriculture. Sustainability 2019, 11, 6282. https://doi.org/10.3390/su11226282
Mwalupaso GE, Wang S, Xu Z, Tian X. Towards Auspicious Agricultural Informatization—Implication of Farmers’ Behavioral Intention Apropos of Mobile Phone Use in Agriculture. Sustainability. 2019; 11(22):6282. https://doi.org/10.3390/su11226282
Chicago/Turabian StyleMwalupaso, Gershom Endelani, Shangao Wang, Zhangxing Xu, and Xu Tian. 2019. "Towards Auspicious Agricultural Informatization—Implication of Farmers’ Behavioral Intention Apropos of Mobile Phone Use in Agriculture" Sustainability 11, no. 22: 6282. https://doi.org/10.3390/su11226282
APA StyleMwalupaso, G. E., Wang, S., Xu, Z., & Tian, X. (2019). Towards Auspicious Agricultural Informatization—Implication of Farmers’ Behavioral Intention Apropos of Mobile Phone Use in Agriculture. Sustainability, 11(22), 6282. https://doi.org/10.3390/su11226282