Using RPL Model to Probe Trade-Offs among Negative Externalities of Controlling Invasive Species
Abstract
:1. Introduction
2. Negative Externalities of IAS Prevention and Control Measures
3. Method
3.1. Questionnaire Design and Sampling Method
3.2. Choice Experiment Methodology
3.3. Model Specification
4. Results
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Attributes | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
Ecological impact (%) | 0 | 15 | 30 | 45 | 60 |
Recreational area (%) | 0 | 20 | 40 | 60 | 80 |
Health risks (%) | 0 | 30 | 60 | 90 | |
Waiting time (min) | 0 | 20 | 40 | 60 | - |
Charges for prevention and Control (NTD) | 40 | 80 | 120 | 160 | 200 |
Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | ||
---|---|---|---|---|---|---|
Severe disturbance to the eco-environment by the prevention and control measures | 45% | 30% | 0% | 60% | 0% | None of these |
Reduction in recreational or visiting areas due to the prevention and control measures | 0% | 60% | 20% | 0% | 60% | |
Possible negative impact of the prevention and control measures on tourist health | 0% | 60% | 60% | 60% | 30% | |
Increased tourist waiting time caused by implementation of prevention and control measures | 0 minute | 0 minute | 60 minutes | 40 minutes | 0 minute | |
Additional fees dedicated to prevention and control charged for entering attractions or parks | 80 NTD | 120 NTD | 80 NTD | 160 NTD | 160 NTD | |
Which alternative would you choose? (Please select and mark only one alternative) | □ | □ | □ | □ | □ | □ |
Sample (%) | Taiwan Population (%) | |
---|---|---|
Age group (in %) | ||
20 and younger | 14.0 | 20.0 |
21–30 | 22.4 | 13.6 |
31–40 | 24.9 | 16.7 |
41–50 | 24.8 | 15.4 |
51–60 | 8.0 | 15.4 |
61–70 | 3.5 | 10.6 |
71 and older | 0.5 | 8.3 |
Gender (in %) | ||
Male | 48.0 | 49.9 |
Female | 51.0 | 50.1 |
Education (in %) | ||
Primary School | 1.0 | 12.2 |
Junior High School | 4.7 | 12.5 |
Senior High School | 18.9 | 30.9 |
University | 53.7 | 36.3 |
Graduate School | 20.4 | 6.4 |
Attributes | Coeff. | Std. Error |
---|---|---|
ASC | −1.872 *** | 0.0846 |
Environment | −0.014 *** | 0.0011 |
Recreation | −0.010 ** | 0.0008 |
Health | −0.011 *** | 0.0007 |
Time | −0.011 ** | 0.0010 |
Fee | −0.002 * | 0.0004 |
Observations | 2998 | |
Respondents | 602 | |
Log-likelihood | −5034.084 |
Variables | Coeff. | Std. Error |
---|---|---|
Random parameter means | ||
ASC a | −6.421 *** | 0.516 |
Environment | −0.018 *** | 0.002 |
Recreation | −0.010 *** | 0.001 |
Health | −0.015 *** | 0.001 |
Time | −0.015 *** | 0.001 |
Non-random parameter means | ||
Fee | −0.002 *** | 0.000 |
Random parameter standard deviations | ||
ASC a | 5.278 *** | 0.488 |
Environment | 0.027 *** | 0.002 |
Recreation | 0.0053 * | 0.0027 |
Health | 0.023 *** | 0.002 |
Time | 0.013 *** | 0.002 |
Summary statistics | ||
Observations | 2998 | |
Respondents | 602 | |
Log likelihood | −4430.499 |
Attribute | MNL | RPL | |
---|---|---|---|
Mean | 95% Conf. Int. | ||
ASC | −1248.8 | −2754.321 | (−4507.754, −1928.333) |
Environment | −9.3 | −7.571 | (−12.962, −5.042) |
Recreation | −6.6 | −4.338 | (−7.416, −2.888) |
Health | −7.3 | −6.395 | (−10.702, −4.381) |
Time | −7.1 | −6.267 | (−10.939, −4.126) |
References
- Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D. Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience 2000, 50, 53–65. [Google Scholar] [CrossRef]
- Lodge, D.M.; Simonin, P.W.; Burgiel, S.W.; Keller, R.P.; Bossenbroek, J.M.; Jerde, C.L.; Kramer, A.M.; Rutherford, E.S.; Barnes, M.A.; Wittmann, M.E. Risk analysis and bioeconomics of invasive species to inform policy and management. Annu. Rev. Environ. Resour. 2016, 41, 453–488. [Google Scholar] [CrossRef]
- Sharp, R.L.; Larson, L.R.; Green, G.T. Factors influencing public preferences for invasive alien species management. Biol. Conserv. 2011, 144, 2097–2104. [Google Scholar] [CrossRef]
- Hario, M. The Archipelago Birds Census in 1999: Recent trends of common eider, alcids and sea terns in Finland. Yearb. Linnut Mag. 2000, 1999, 40–50. [Google Scholar]
- Nordström, M.; Högmander, J.; Nummelin, J.; Laine, J.; Laanetu, N.; Korpimäki, E. Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography 2002, 25, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Beever, E.A.; Huso, M.; Pyke, D.A. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve. Divers. Distrib. 2006, 12, 258–268. [Google Scholar] [CrossRef]
- Gutiérrez-Yurrita, P.J.; Montes, C. Bioenergetics and phenology of reproduction of the introduced red swamp crayfish, Procambarus clarkii, in Do·ana National Park, Spain, and implications for species management. Freshw. Biol. 1999, 42, 561–574. [Google Scholar] [CrossRef]
- Lejju, J. Ecological recovery of an afromontane forest in south-western Uganda. Afr. J. Ecol. 2004, 42, 64–69. [Google Scholar] [CrossRef]
- Streelman, J.T.; Gmyrek, S.; Kidd, M.; Kidd, C.; Robinson, R.; Hert, E.; Ambali, A.; Kocher, T. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Mol. Ecol. 2004, 13, 2471–2479. [Google Scholar] [CrossRef]
- Magara, Y.; Matsui, Y.; Goto, Y.; Yuasa, A. Invasion of the non-indigenous nuisance mussel, Limnoperna fortunei, into water supply facilities in Japan. J. Water Supply: Res. Technol. Aqua 2001, 50, 113–124. [Google Scholar] [CrossRef]
- Darrigran, G.; Damborenea, C. A South American bioinvasion case history: Limnoperna fortunei (Dunker, 1857), the golden mussel. Am. Malacol. Bull. 2005, 20, 105–112. [Google Scholar]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Burnett, K.M.; D’evelyn, S.; Kaiser, B.A.; Nantamanasikarn, P.; Roumasset, J.A. Beyond the lamppost: Optimal prevention and control of the brown tree snake in Hawaii. Ecol. Econ. 2008, 67, 66–74. [Google Scholar] [CrossRef]
- Julia, R.; Holland, D.W.; Guenthner, J. Assessing the economic impact of invasive species: The case of yellow starthistle (Centaurea solsitialis L.) in the rangelands of Idaho, USA. J. Environ. Manag. 2007, 85, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, J.; Vilà, M. Atmospheric invasion of non-native pollen in the Mediterranean region. Am. J. Bot. 2004, 91, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyšek, P.; Cock, M.; Nentwig, W.; Ravn, H. Ecology and Management of Giant Hogweed (Heracleum mantegazzianum). CAB International; Cabi Publishing: Oxfordshire, UK, 2007. [Google Scholar]
- Jayaramiah, R.; Krishnaprasad, B.; Kumar, S.; Pramodh, G.; Ramkumar, C.; Sheshadri, T. Harmful effects of Parthenium hysterophorus and management through different approaches—A review. Ann. Plant Sci. 2017, 6, 1614–1621. [Google Scholar]
- Wylie, F.R.; Janssen-May, S. Red Imported Fire Ant in Australia: What if we lose the war? Ecol. Manag. Restor. 2017, 18, 32–44. [Google Scholar] [CrossRef]
- Gutrich, J.J.; VanGelder, E.; Loope, L. Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environ. Sci. Policy 2007, 10, 685–696. [Google Scholar] [CrossRef]
- Rhoades, R.B.; Stafford, C.T.; James, F.K. Survey of fatal anaphylactic reactions to imported fire ant stings. J. Allergy Clin. Immunol. 1989, 84, 159–162. [Google Scholar] [CrossRef]
- Bradshaw, C.J.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.-M.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booy, O.; Cornwell, L.; Parrott, D.; Sutton-Croft, M.; Williams, F. Impact of biological invasions on infrastructure. In Impact of Biological Invasions on Ecosystem Services; Springer: Cham, Switzerland, 2017; pp. 235–247. [Google Scholar]
- Chen, J. Toxicity and efficacy of two Emulsifiable concentrates of 2-Tridecanone against red imported fire Ants. Adv. Entomol. 2015, 4, 37–46. [Google Scholar] [CrossRef]
- Douglas, M.R.; Tooker, J.F. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ. Sci. Technol. 2015, 49, 5088–5097. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.D.; Redak, R.A. The impact of trap type and design features on survey and detection of bark and woodboring beetles and their associates: A review and meta-analysis. Annu. Rev. Entomol. 2017, 62, 127–146. [Google Scholar] [CrossRef]
- Juanes, F. Visual and acoustic sensors for early detection of biological invasions: Current uses and future potential. J. Nat. Conserv. 2018, 42, 7–11. [Google Scholar] [CrossRef]
- Gomes, J.; Matos, A.; Quinta-Ferreira, R.M.; Martins, R.C. Environmentally applications of invasive bivalves for water and wastewater decontamination. Sci. Total Environ. 2018, 630, 1016–1027. [Google Scholar] [CrossRef]
- Colleran, B.P.; Goodall, K.E. In situ growth and rapid response management of flood-dispersed Japanese knotweed (Fallopia japonica). Invasive Plant Sci. Manag. 2014, 7, 84–92. [Google Scholar] [CrossRef]
- Stark, J.D.; Chen, X.D.; Johnson, C.S. Effects of herbicides on Behr’s metalmark butterfly, a surrogate species for the endangered butterfly, Lange’s metalmark. Environ. Pollut. 2012, 164, 24–27. [Google Scholar] [CrossRef]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef]
- Ip, K.K.; Liang, Y.; Lin, L.; Wu, H.; Xue, J.; Qiu, J.-W. Biological control of invasive apple snails by two species of carp: Effects on non-target species matter. Biol. Control 2014, 71, 16–22. [Google Scholar] [CrossRef]
- Olivier-Espejel, S.; Hurley, B.P.; Garnas, J. Assessment of beetle diversity, community composition and potential threats to forestry using kairomone-baited traps. Bull. Entomol. Res. 2017, 107, 106–117. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, C.B.; Martin, D.K. Proposed BMPs for Invasive Plant Mitigation during Timber Harvesting Operations; USDA Forest Service: Newtown Square, PA, USA, 2013.
- Judge, C.A.; Neal, J.C.; Shear, T.H. Japanese stiltgrass (Microstegium vimineum) management for restoration of native plant communities. Invasive Plant Sci. Manag. 2008, 1, 111–119. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Han, Y. Managing the side effects of invasion control. Science 2014, 344, 975–976. [Google Scholar] [CrossRef] [Green Version]
- Head, L.; Larson, B.M.; Hobbs, R.; Atchison, J.; Gill, N.; Kull, C.; Rangan, H. Living with invasive plants in the Anthropocene: The importance of understanding practice and experience. Conserv. Soc. 2015, 13, 311. [Google Scholar]
- Nimmo, D.G.; Miller, K.K. Ecological and human dimensions of management of feral horses in Australia: A review. Wildl. Res. 2007, 34, 408–417. [Google Scholar] [CrossRef]
- Mwebaze, P.; MacLeod, A.; Tomlinson, D.; Barois, H.; Rijpma, J. Economic valuation of the influence of invasive alien species on the economy of the Seychelles islands. Ecol. Econ. 2010, 69, 2614–2623. [Google Scholar] [CrossRef]
- Adams, D.C.; Bwenge, A.N.; Lee, D.J.; Larkin, S.L.; Alavalapati, J.R. Public preferences for controlling upland invasive plants in state parks: Application of a choice model. For. Policy Econ. 2011, 13, 465–472. [Google Scholar] [CrossRef]
- McIntosh, C.R.; Shogren, J.F.; Finnoff, D.C. Invasive species and delaying the inevitable: Valuation evidence from a national survey. Ecol. Econ. 2010, 69, 632–640. [Google Scholar] [CrossRef]
- Rolfe, J.; Windle, J. Public preferences for controlling an invasive species in public and private spaces. Land Use Policy 2014, 41, 1–10. [Google Scholar] [CrossRef]
- Bithas, K.; Latinopoulos, D.; Kolimenakis, A.; Richardson, C. Social benefits from controlling invasive Asian tiger and native mosquitoes: A stated preference study in Athens, Greece. Ecol. Econ. 2018, 145, 46–56. [Google Scholar] [CrossRef]
- Chakir, R.; David, M.; Gozlan, E.; Sangare, A. Valuing the impacts of an invasive biological control agent: A choice experiment on the Asian ladybird in France. J. Agric. Econ. 2016, 67, 619–638. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L.; Swait, J.; Williams, M.; Louviere, J. A comparison of stated preference methods for environmental valuation. Ecol. Econ. 1996, 18, 243–253. [Google Scholar] [CrossRef]
- Kanninen, B.J. Valuing environmental amenities using stated choice studies: A common sense approach to theory and practice; Springer: Dordrecht, The Netherlands, 2007; Volume 8. [Google Scholar]
- Kjær, T. A review of the discrete choice experiment-with emphasis on its application in health care; Syddansk Universitet Denmark: Odense, Denmark, 2005. [Google Scholar]
- Lee, C.E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 2002, 17, 386–391. [Google Scholar] [CrossRef]
- Thomas, M.B.; Reid, A.M. Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol. Evol. 2007, 22, 447–453. [Google Scholar] [CrossRef]
- Brown, M.; Roth, J.; Smith, B.; Boscarino, B. The light at the end of the funnel?: Using light-based traps for the detection and collection of a nearshore aquatic, invasive invertebrate, Hemimysis anomala. J. Great Lakes Res. 2017, 43, 717–727. [Google Scholar] [CrossRef]
- Haack, R.A.; Britton, K.O.; Brockerhoff, E.G.; Cavey, J.F.; Garrett, L.J.; Kimberley, M.; Lowenstein, F.; Nuding, A.; Olson, L.J.; Turner, J. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS One 2014, 9, e96611. [Google Scholar] [CrossRef]
- Tobin, P.C.; Liebhold, A.M.; Anderson Roberts, E. Comparison of methods for estimating the spread of a non-indigenous species. J. Biogeogr. 2007, 34, 305–312. [Google Scholar] [CrossRef]
- Bothwell, M.L.; Lynch, D.R.; Wright, H.; Deniseger, J. On the boots of fishermen: The history of Didymo blooms on Vancouver Island, British Columbia. Fisheries 2009, 34, 382–388. [Google Scholar] [CrossRef]
- Corona, P.; Chirici, G.; McRoberts, R.E.; Winter, S.; Barbati, A. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. Manag. 2011, 262, 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Wood, J.H.; Christopher Macgregor, R.J.H.; Catford, J.A. Non–target impacts of weed control on birds, mammals and reptiles. Ecosphere 2017, 8, e01804. [Google Scholar]
- Ryan, M.; Gerard, K.; Amaya-Amaya, M. Using discrete choice experiments to value health and health care; Springer: Dordrecht, The Netherlands, 2007; Volume 11. [Google Scholar]
- Gundersen, V.; Mehmetoglu, M.; Vistad, O.I.; Andersen, O. Linking visitor motivation with attitude towards management restrictions on use in a national park. J. Outdoor Recreat. Tour. 2015, 9, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, J.; Kuwano, M. An integrated model of tourists’ time use and expenditure behaviour with self–selection based on a fully nested Archimedean copula function. Tour. Manag. 2012, 33, 1562–1573. [Google Scholar] [CrossRef]
- Rose, J.; Bliemer, M.C. Stated choice experimental design theory: The who, the what and the why. In Handbook of Choice Modelling; Hess, S., Daly, A., Eds.; Edward Elgar Publishing: Glos, UK, 2014; pp. 152–177. [Google Scholar]
- Johnson, F.R.; Kanninen, B.; Bingham, M.; Özdemir, S. Experimental design for stated–choice studies. In Valuing Environmental Amenities Using Stated Choice Studies; Springer: Dordrecht, The Netherlands, 2006; pp. 159–202. [Google Scholar]
- Rischatsch, M. Who joins the network? Physicians’ resistance to take budgetary co–responsibility. J. Health Econ. 2015, 40, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Kessels, R. Homogeneous versus heterogeneous designs for stated choice experiments: Ain’t homogeneous designs all bad? J. Choice Model. 2016, 21, 2–9. [Google Scholar] [CrossRef]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuatioin? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Liu, T.-M. Testing on–site sampling correction in discrete choice experiments. Tour. Manag. 2017, 60, 439–441. [Google Scholar] [CrossRef]
- McFadden, D. Econometric Models of Probabilistic Choice; The MIT Press: London, UK, 1981. [Google Scholar]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Tempesta, T.; Vecchiato, D.; Girardi, P. The landscape benefits of the burial of high voltage power lines: A study in rural areas of Italy. Landsc. Urban Plan. 2014, 126, 53–64. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Liu, T.-M.; Tien, C.-M. Assessing Tourists’ Preferences of Negative Externalities of Environmental Management Programs: A Case Study on Invasive Species in Shei–Pa National Park, Taiwan. Sustainability 2019, 11, 2953. [Google Scholar] [CrossRef]
- Prosser, L.A.; Payne, K.; Rusinak, D.; Shi, P.; Uyeki, T.; Messonnier, M. Valuing health across the lifespan: Health state preferences for seasonal influenza illnesses in patients of different ages. Value Health 2011, 14, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Bolhaar, J.; Lindeboom, M.; Van Der Klaauw, B. A dynamic analysis of the demand for health insurance and health care. Eur. Econ. Rev. 2012, 56, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Croson, R.; Gneezy, U. Gender differences in preferences. J. Econ. Lit. 2009, 47, 448–474. [Google Scholar] [CrossRef]
- Train, K.E. Recreation demand models with taste differences over people. Land economics 1998, 230–239. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Beville, S.T.; Kerr, G.N.; Hughey, K.F. Valuing impacts of the invasive alga Didymosphenia geminata on recreational angling. Ecol. Econ. 2012, 82, 1–10. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-M. Using RPL Model to Probe Trade-Offs among Negative Externalities of Controlling Invasive Species. Sustainability 2019, 11, 6184. https://doi.org/10.3390/su11216184
Liu T-M. Using RPL Model to Probe Trade-Offs among Negative Externalities of Controlling Invasive Species. Sustainability. 2019; 11(21):6184. https://doi.org/10.3390/su11216184
Chicago/Turabian StyleLiu, Tzu-Ming. 2019. "Using RPL Model to Probe Trade-Offs among Negative Externalities of Controlling Invasive Species" Sustainability 11, no. 21: 6184. https://doi.org/10.3390/su11216184
APA StyleLiu, T. -M. (2019). Using RPL Model to Probe Trade-Offs among Negative Externalities of Controlling Invasive Species. Sustainability, 11(21), 6184. https://doi.org/10.3390/su11216184