# Energy Performance Certificates and Its Capitalization in Housing Values in Sweden

## Abstract

**:**

## 1. Introduction

## 2. Methodology

^{2}, Akaike Information Criterion (AIC), and Bayesian information criterion (BIC).

## 3. Empirical Analysis

#### Data

^{2}) is around 75–87 percent, which can be considered to be excellent and comparable to other hedonic price studies. The difference between the default model and the models controlling for outlier and selection bias is substantial. Estimated coefficients concerning living area, number of rooms, and age are of reasonable magnitude, and they are all statistically significant. For example, one extra room is expected to increase the price by around 3 percent, and a year-older, single-family house will decrease the price by 0.16 percent. The estimates are also robust across specifications of the hedonic model. The EPC variable is estimated to be at its lowest at 3.36 percent (coefficient 0.033) in the Matched model 2 compared to 5.27 percent (coefficient 0.0514) in the Default model. That is equivalent to almost SEK 100,000 (Euro 9278) and approximately SEK 200,000 (Euro 18,556), respectively. Hence, failure to consider outliers and potential selection problems can have significant consequences and policy implications.

## 4. Discussion and Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Energy consumption and use by households. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190620-1 (accessed on 29 October 2019).
- Takano, A.; Pal, S.K.; Kuittinen, M.; Kari Alanne, K. Life cycle energy balance of residential buildings: A case study on hypothetical building models in Finland. Energy Build.
**2015**, 105, 154–164. [Google Scholar] [CrossRef] - ECOFYS. Prices and Costs of EU Energy, the European Commission; Directorate-General for Energy: Brussels, Belgium, 2016.
- Arcipowska, A.; Anagnostopoulos, F.; Mariottini, F.; Kunkel, S. Energy Performance Certificate across the EU; Buildings Performance Institute Europe (BPIE): Brussels, Belgium, 2014. [Google Scholar]
- Mangold, M.; Österbring, M.; Wallbaum, H. Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy Build.
**2015**, 102, 328–336. [Google Scholar] [CrossRef] [Green Version] - Amecke, H. The impact of energy performance certificate: A survey of German homeowners. Energy Policy
**2012**, 46, 4–14. [Google Scholar] [CrossRef] - Hårsman, B.; Daghbashyan, Z.; Chaudhary, P. On the quality and impact of residential energy performance certificates. Energy Build.
**2016**, 33, 711–723. [Google Scholar] [CrossRef] - Jensen, O.M.; Hansen, A.R.; Kragh, J. Market response to the public display of energy performance rating at property sales. Energy Policy
**2016**, 93, 229–235. [Google Scholar] [CrossRef] - Fuerst, F.; McAllister, P.; Nanda, A.; Wyatt, P. Energy performance ratings and house prices in Wales: An empirical study. Energy Policy
**2016**, 92, 20–33. [Google Scholar] [CrossRef] - Wahlström, M. Doing good but not that well? A dilemma for energy conserving homeowners. Energy Econ.
**2016**, 60, 197–205. [Google Scholar] [CrossRef] - De Ayala, A.; Galarraga, I.; Spadaro, J.V. The price of energy efficiency in the Spanish housing market. Energy Policy
**2016**, 94, 16–24. [Google Scholar] [CrossRef] [Green Version] - Hyland, M.; Lyons, R.C.; Lyons, S. The value of domestic building energy efficiency-evidence from Ireland. Energy Econ.
**2013**, 40, 943–952. [Google Scholar] [CrossRef] - Högberg, L. The impact of energy performance on single-family home selling prices in Sweden. J. Eur. Real Estate Res.
**2013**, 6, 242–261. [Google Scholar] [CrossRef] - Cerin, P.; Hassel, L.G.; Semenova, N. Energy performance and housing prices. Sustain. Devel.
**2014**, 22, 404–419. [Google Scholar] [CrossRef] - Fuerst, F.; Oikarinen, E.; Harjunen, O. Green signaling effects in the markets for energy-efficient residential buildings. Appl. Energy
**2016**, 180, 560–571. [Google Scholar] [CrossRef] - Bruegge, C.; Carrión-Flores, C.; Pope, J.C. Does the housing market value energy efficient homes? Evidence from the energy star program. Region. Sci. Urban Econ.
**2016**, 57, 63–76. [Google Scholar] [CrossRef] - Zhang, L. Flood hazards impact on neighborhood house prices: A spatial quantile regression analysis. Region. Sci. Urban Econ.
**2016**, 60, 12–19. [Google Scholar] [CrossRef] - Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ.
**1974**, 82, 34–55. [Google Scholar] [CrossRef] - Schumacker, R.E.; Monahan, M.P.; Mount, R.E. A comparison of OLS and robust regr4ession using S-PLUS. Mult. Linear Regres. Viewp.
**2002**, 28, 10–13. [Google Scholar] - Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; Wiley Interscience: New York, NY, USA, 1987. [Google Scholar]
- Huber, P.J. Robust estimation of a location parameter. Ann. Math. Stat.
**1964**, 35, 73–101. [Google Scholar] [CrossRef] - Beaton, A.E.; Tukey, J.W. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics
**1974**, 16, 147–185. [Google Scholar] [CrossRef] - Berk, R.A. A primer on robust regression. In Modern Methods of Data Analysis; Fox, J., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1990; pp. 292–324. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score on observational studies for causal effects. Biometrica
**1983**, 70, 41–55. [Google Scholar] [CrossRef] - Jauregui, A.; Tidwell, A.; Hite, D. Sample Selection Approaches to Estimating House Price Cash Differentials. J. Real Estate Financ. Econ.
**2015**, 54, 117–137. [Google Scholar] [CrossRef] - Andersen, S.; Nielsen, K.M. Fire Sales and House Prices: Evidence from Estate Sales Due to Sudden Death. Manag. Sci.
**2017**, 63, 201–212. [Google Scholar] [CrossRef] [Green Version] - Austin, P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Mult. Behav. Res.
**2011**, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] - Reichardt, A. Operating Expenses and the Rent Premium of Energy Star and LEED Certified Buildings in the Central and Eastern U.S. J. Real Estate Financ. Econ.
**2013**, 49, 413–433. [Google Scholar] - Hirano, K.; Imbens, G.W.; Ridder, G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica
**2003**, 71, 1161–1189. [Google Scholar] [CrossRef] - Ding, L.; Quercia, R.Q.; Li, W.; Ratcliffe, J. Risky Borrowers or risky mortgage disaggregating effects using propensity score models. J. Real Estate Res.
**2011**, 33, 245–277. [Google Scholar] - Holupka, S.; Newman, S.J. The Effects of Homeownership on Children’s Outcomes: Real Effects or Self-Selection? Real Estate Econ.
**2012**, 40, 566–602. [Google Scholar] [CrossRef] - Liu, Y.; Gallimore, P.; Wiley, J.W. Nonlocal Office Investors: Anchored by their Markets and Impaired by their Distance. J. Real Estate Financ. Econ.
**2012**, 50, 129–149. [Google Scholar] [CrossRef] - Koenker, R.; Bassett, G., Jr. Regression quantiles. Econometrica
**1978**, 46, 33–50. [Google Scholar] [CrossRef] - McMillen, D. Changes in the distribution of house prices over time: Structural characteristics, neighborhood, or coefficients? J. Urban Econ.
**2008**, 64, 573–589. [Google Scholar] [CrossRef] - Ceccato, V.; Wilhelmsson, M. Crime and its impact on apartment prices: evidence from Stockholm, Sweden. Geogr. Ann. Ser. B
**2011**, 93, 81–103. [Google Scholar] [CrossRef] - Liao, W.-C.; Wang, X. Hedonic house prices and spatial quantile regression. J. Hous. Econ.
**2012**, 21, 16–27. [Google Scholar] [CrossRef] - Zahirovich-Herbert, V.; Gibler, K.M. The effect of new residential construction on housing prices. J. Hous. Econ.
**2014**, 26, 1–18. [Google Scholar] [CrossRef] - Zhang, H.; Wang, X. Effectiveness of macro-regulation policies on housing prices: A spatial quantile regression approach. Hous. Theory Soc.
**2016**, 33, 23–40. [Google Scholar] [CrossRef] - Zhang, L.; Li, Y.; Stephenson, R.; Ashuri, B. Valuation of energy efficient certificates in buildings. Energy Build.
**2018**, 158, 1226–1240. [Google Scholar] [CrossRef] - Amédée-Manesme, C.-O.; Baroni, M.; Barthélémy, F.; des Rosiers, F. Market heterogeneity and the determinants of Paris apartment prices: A quantile regression approach. Urban Stud.
**2017**, 54, 3260–3280. [Google Scholar] [CrossRef] - Waltl, S. Variation across price segments and locations: A comprehensive quantile regression analysis of the Sydney housing market. Real Estate Econ.
**2019**, 47, 723–756. [Google Scholar] [CrossRef] - Rajapaksa, D.; Wilson, C.; Hoang, V.-N.; Lee, B.; Managi, S. Who responds more to environmental amenities and dis-amenities? Land Use Policy
**2017**, 62, 151–158. [Google Scholar] [CrossRef] - Yoo, J.; Frederick, T. The varying impact of land subsidence and earth fissures on residential property values in Maricopa County—A quantile regression approach. Int. J. Urban Sci.
**2017**, 21, 204–216. [Google Scholar] [CrossRef] - Zietz, J.; Zietz, E.N.; Sirmans, G.S. Determinants of house prices: A quantile regression approach. J. Real Estate Financ. Econ.
**2008**, 37, 317–333. [Google Scholar] [CrossRef] - Becker, S.O.; Ichino, A. Estimation of average treatment effects based on propensity scores. Stata J.
**2002**, 4, 358–377. [Google Scholar] [CrossRef] - Wilhelmsson, M. Spatial models in real estate economics. Hous. Theory Soc.
**2002**, 19, 92–101. [Google Scholar] [CrossRef] - Elhorst, J.P. Applied Spatial Econometrics. Spat. Econ. Anal.
**2010**, 5, 9–28. [Google Scholar] [CrossRef]

**Table 1.**Descriptive statistics in the treatment and control group. Mean and standard deviation (within brackets).

Treatment | Control | Total | |
---|---|---|---|

Price (SEK) | 3,257,628 | 3,133,500 | 3,162,818 |

(2,088,475) | (2,104,361) | (2,101,268) | |

Living area (Square meter) | 140 | 130 | 132 |

(43) | (44) | (44) | |

Number of rooms | 5.50 | 5.15 | 5.23 |

(1.42) | (1.49) | (1.48) | |

Age(years) | 45 | 52 | 51 |

(28) | (27) | (28) | |

Plot size (square meter) | 2358 | 2199 | 2237 |

(20,008) | (16,743) | (17,569) | |

Year-month | 2015-06 | 2016-06 | 2015-22 |

(126) | (128) | (128) | |

Latitude | 58.10 | 59.10 | 58.64 |

(2.42) | (2.42) | (2.23) | |

Longitude | 15.44 | 15.23 | 15.28 |

(2.70) | (2.56) | (2.59) | |

Number of observations | 19,550 | 63,224 | 82,774 |

**Table 2.**Balancing property, matched samples using nearest neighbor and nearest neighbor within the radius. Average and standard deviation (within brackets).

Nearest Neighbor | Within Radius | |||
---|---|---|---|---|

Treated | Control | Treated | Control | |

Age (years) | 45.94 | 49.17 | 51.85 | 51.20 |

(27.71) | (27.60) | (24.42) | (26.92) | |

Living area (square meters) | 139.84 | 134.51 | 132.60 | 131.43 |

(42.42) | (41.16) | (36.72) | (37.50) | |

Plot size (square meters) | 2271.13 | 2185.66 | 2216.00 | 2104.97 |

(19,562) | (15,091) | (18,353) | (15,982) | |

Number of rooms | 5.50 | 5.32 | 5.32 | 5.23 |

(1.42) | (1.44) | (1.30) | (1.34) | |

Year-month | 2015-12 | 2015-12 | 2015-12 | 2015-12 |

(137.09) | (133.27) | (128.29) | (129.80) | |

Latitude | 59.11 | 58.77 | 58.54 | 58.54 |

(2.42) | (2.24) | (2.06) | (2.07) | |

Longitude | 15.43 | 15.33 | 15.16 | 15.21 |

(2.70) | (2.64) | (2.57) | (2.59) | |

Price (SEK) | 3,241,247 | 3,245,903 | 3,158,499 | 3,217,498 |

(2,047,234) | (2,128,380) | (1,998,327) | (2,111,472) | |

Number of observations | 18,774 | 10,814 | 9312 | 7658 |

Default | Multivariate (1) | Multivariate (2) | Matched (1) | Matched (2) | Stratified | |
---|---|---|---|---|---|---|

EPC | 0.0514 | 0.0368 | 0.0410 | 0.0331 | 0.0356 | 0.0371 |

(17.66) | (16.72) | (17.19) | (10.29) | (8.76) | (16.91) | |

Ln(Living area) | 0.5925 | 0.5502 | 0.5603 | 0.5763 | 0.5445 | 0.5282 |

(108.75) | (116.06) | (76.83) | (76.81) | (54.50) | (96.42) | |

Number of rooms | 0.0359 | 0.0243 | 0.0431 | 0.0398 | 0.0444 | 0.0303 |

(32.41) | (22.62) | (23.50) | (26.99) | (21.69) | (22.72) | |

Plot size | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |

(24.53 | (26.46) | (7.48) | (16.40) | (10.45) | (26.80) | |

Ln(Age) | −0.0998 | −0.0404 | −0.0801 | −0.0879 | −0.0817 | −0.0472 |

(−56.05) | (−12.43) | (−46.58) | (−45.20) | (−21.52) | (−12.35) | |

Propensity score | - | 0.5042 | - | - | - | - |

16.27 | ||||||

Constant | 55.4015 | 58.0831 | 71.8171 | 73.3430 | 76.7408 | 76.7566 |

(47.32) | (46.70) | (45.02) | (43.37) | (31.95) | (73.77) | |

Fixed strata effect | No | No | No | No | No | Yes |

Sample weights | No | No | Yes | No | No | No |

Fixed county and municipality effects | Yes | Yes | Yes | Yes | Yes | Yes |

Fixed time effects | Yes | Yes | Yes | Yes | Yes | Yes |

R^{2} adjusted | 0.7507 | 0.8636 | 0.8653 | 0.8553 | 0.8489 | 0.8581 |

Shapiro-Francia (p-value) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | - |

Breusch-Pagan (p-value) | 0.0000 | 0.0000 | - | 0.0000 | 0.0000 | - |

VIF (Treatment) | 1.06 | 1.13 | 1.12 | 1.08 | 1.05 | - |

No. of observations | 99,877 | 80,260 | 80,260 | 29,588 | 16,970 | 80,260 |

Percentile | Coefficient | t-Value | Impact (%) |
---|---|---|---|

0.9 | 0.0269 | 7.03 | 2.73 |

0.8 | 0.0277 | 7.42 | 2.81 |

0.7 | 0.0284 | 7.81 | 2.88 |

0.6 | 0.0290 | 8.15 | 2.94 |

0.5 | 0.0270 | 7.31 | 2.74 |

0.4 | 0.0266 | 7.10 | 2.70 |

0.3 | 0.0277 | 7.20 | 2.81 |

0.2 | 0.0285 | 7.25 | 2.89 |

0.1 | 0.0259 | 5.37 | 2.62 |

**Table 5.**Spatial error model, spatial autoregressive model, and spatial Durbin model (direct effects). Matched sample. Maximum likelihood estimates.

SEM | SAR | SDM | ||||
---|---|---|---|---|---|---|

W1 | W2 | W1 | W2 | W1 | W2 | |

EPC | 0.0342 | 0.0342 | 0.0337 | 0.0340 | 0.0340 | 0.0343 |

(5.43) | (5.43) | (5.35) | (5.39) | (5.39) | (5.43) | |

Ln(Age) | −0.0844 | −0.0844 | −0.0837 | −0.0837 | −0.0847 | −0.0849 |

(−14.33) | (−14.34) | (−14.23) | (−14.22) | (−14.32) | (−14.35) | |

Ln(Living area) | 0.5460 | 0.5460 | 0.5474 | 0.5473 | 0.5470 | 0.5472 |

(35.08) | (35.08) | (35.18) | (35.18) | (35.15) | (35.16) | |

No. of rooms | 0.0453 | 0.0453 | 0.0453 | 0.0453 | 0.0451 | 0.0452 |

(14.33) | (14.33) | (14.32) | (14.31) | (14.26) | (14.27) | |

Plot size | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |

(9.41) | (9.41) | (9.37) | (9.36) | (9.22) | (9.07) | |

Constant | 81.3160 | 81.3747 | 81.45453 | 81.5450 | 81.3110 | 81.4391 |

(20.81) | (24.69 | (23.06) | (27.49) | (19.70) | (23.43) | |

Rho | −0.0009 | −0.0030 | ||||

(−0.24) | (−0.79) | |||||

Lamda | 0.7491 | 0.7087 | ||||

(6.26) | (6.57) | |||||

Fixed time effect | Yes | Yes | Yes | Yes | Yes | Yes |

Fixed county effect | Yes | Yes | Yes | Yes | Yes | Yes |

Fixed municipality effect | Yes | Yes | Yes | Yes | Yes | Yes |

Wald test (p-value) | 0.0000 | 0.0000 | 0.8134 | 0.4271 | 0.0000 | 0.0000 |

Pseudo R2 | 0.8290 | 0.8290 | 0.8290 | 0.8428 | 0.8294 | 0.8293 |

Interaction | South | North | Stratified | |
---|---|---|---|---|

EPC | 0.0316 | 0.0261 | 0.0693 | 0.0347 |

(9.69) | (7.91) | (7.23) | (15.37) | |

EPC-north | 0.0208 | - | - | 0.0315 |

(2.78) | (4.71) | |||

Ln(Living area) | 0.5758 | 0.5664 | 0.6117 | 0.5277 |

(76.72) | (72.44) | (28.91) | (96.32) | |

Number of rooms | 0.0398 | 0.0401 | 0.0366 | 0.03028 |

(27.01) | (26.29) | (8.63) | (22.73) | |

Plot size | 0.0001 | 0.0001 | 0.0001 | 0.0001 |

(10.45) | (18.70) | (6.81) | (26.76) | |

Ln(Age) | −0.0879 | −0.0856 | −0.1105 | −0.0474 |

(−45.23) | (−43.67) | (−16.62) | (−12.40) | |

Constant | 75.4048 | 76.5737 | 65.6259 | 76.7954 |

(43.41) | (38.37) | (16.74) | (73.81) | |

Fixed strata effect | No | No | No | Yes |

Fixed county and municipality effects | Yes | Yes | Yes | Yes |

Fixed time effects | Yes | Yes | Yes | Yes |

R^{2} adjusted | 0.8553 | 0.8502 | 0.7878 | 0.8582 |

No. of observations | 29,588 | 23,995 | 5,633 | 80,253 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wilhelmsson, M.
Energy Performance Certificates and Its Capitalization in Housing Values in Sweden. *Sustainability* **2019**, *11*, 6101.
https://doi.org/10.3390/su11216101

**AMA Style**

Wilhelmsson M.
Energy Performance Certificates and Its Capitalization in Housing Values in Sweden. *Sustainability*. 2019; 11(21):6101.
https://doi.org/10.3390/su11216101

**Chicago/Turabian Style**

Wilhelmsson, Mats.
2019. "Energy Performance Certificates and Its Capitalization in Housing Values in Sweden" *Sustainability* 11, no. 21: 6101.
https://doi.org/10.3390/su11216101