Environmental Implications of Taiwanese Oolong Tea and the Opportunities of Impact Reduction
Abstract
:1. Introduction
2. Methods and Data
2.1. Cultivation and Harvesting
2.2. Manufacturing and Roasting
2.3. Packaging
2.4. Consumption
3. Results
3.1. Global Warming Potential
3.2. Eutrophication Potential
4. Discussion: Opportunities for Impact Reduction
4.1. Systematic Data Collection and Schematic Configuration
4.2. Cultivation and Manufacturing
4.3. Cooking Energy
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Etherington, D.M.; Forster, K. The structural transformation of Taiwan’s tea industry. World Dev. 1992, 20, 401–422. [Google Scholar] [CrossRef]
- Hicks, A. Review of global tea production and the impact on industry of the Asian economic situation. AU J. Technol. 2001, 5, 1–8. [Google Scholar]
- Food and Agriculture Organization. FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 22 January 2019).
- Executive Yuan ROC Taiwan. The Republic of China Yearbook 2016. Available online: https://english.ey.gov.tw/ (accessed on 13 January 2019).
- International Organization for Standardization. ISO 14040: Environmental Management—Life cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Marsmann, M. The ISO 14040 family. Int. J. Life Cycle Assess. 2000, 5, 317–318. [Google Scholar] [CrossRef]
- Pryshlakivsky, J.; Searcy, C. Fifteen years of ISO 14040: A review. J. Clean. Prod. 2013, 57, 115–123. [Google Scholar] [CrossRef]
- Guinée, J.B.; Udo de Haes, H.A.; Huppes, G. Quantitative life cycle assessment of products. J. Clean. Prod. 1993, 1, 3–13. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.; Medina-Salas, D.; Castillo-González, E.; La Cruz-Benavides, D. Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis. Sustainability 2018, 10, 1451. [Google Scholar] [CrossRef]
- Adhikari, B.; Prapaspongsa, T. Environmental Sustainability of Food Consumption in Asia. Sustainability 2019, 11, 5749. [Google Scholar] [CrossRef]
- Egilmez, G.; Kucukvar, M.; Tatari, O.; Bhutta, M.K.S. Supply chain sustainability assessment of the US food manufacturing sectors: A life cycle-based frontier approach. Resour. Conserv. Recycl. 2014, 82, 8–20. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Geier, U. Life cycle assessment framework in agriculture on the farm level. Int. J. Life Cycle Assess. 2000, 5, 345. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A. Assessing the sustainability of the US food system: A life cycle perspective. Agric. Syst. 2003, 76, 1007–1041. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Wrieden, W.; Halligan, J.; Goffe, L.; Barton, K.; Leinonen, I. Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases. Sustainability 2019, 11, 4974. [Google Scholar] [CrossRef]
- Browning, M.; Crossley, T.F. The life-cycle model of consumption and saving. J. Econ. Perspect. 2001, 15, 3–22. [Google Scholar] [CrossRef]
- Hertwich, E.G. Life cycle approaches to sustainable consumption: A critical review. Environ. Sci. Technol. 2005, 39, 4673–4684. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Wikström, F. Environmental impact of packaging and food losses in a life cycle perspective: A comparative analysis of five food items. J. Clean. Prod. 2011, 19, 43–48. [Google Scholar] [CrossRef]
- De Benedetto, L.; Klemeš, J. The Environmental Performance Strategy Map: An integrated LCA approach to support the strategic decision-making process. J. Clean. Prod. 2009, 17, 900–906. [Google Scholar] [CrossRef]
- Lundie, S.; Peters, G.M. Life cycle assessment of food waste management options. J. Clean. Prod. 2005, 13, 275–286. [Google Scholar] [CrossRef]
- Hunt, R.G.; Franklin, W.E.; Hunt, R. LCA—How it came about. Int. J. Life Cycle Assess. 1996, 1, 4–7. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.R.; Medina-Salas, L.D.; Castillo-González, E.; León-Lira, R. Environmental Impact Associated with the Supply Chain and Production of Grounding and Roasting Coffee through Life Cycle Analysis. Sustainability 2018, 10, 4598. [Google Scholar] [CrossRef]
- Coltro, L.; Mourad, A.; Oliveira, P.; Baddini, J.; Kletecke, R. Environmental profile of Brazilian green coffee. Int. J. Life Cycle Assess. 2006, 11, 16–21. [Google Scholar] [CrossRef]
- Eide, M.H. Life cycle assessment (LCA) of industrial milk production. Int. J. Life Cycle Assess. 2002, 7, 115. [Google Scholar] [CrossRef]
- De Boer, I.J.M.; Hoving, I.E.; Vellinga, T.V.; Van de Ven, G.W.J.; Leffelaar, P.A.; Gerber, P.J. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: The case of Dutch milk production in Noord-Brabant. Int. J. Life Cycle Assess. 2013, 18, 193–203. [Google Scholar] [CrossRef]
- Thomassen, M.A.; Dalgaard, R.; Heijungs, R.; de Boer, I. Attributional and consequential LCA of milk production. Int. J. Life Cycle Assess. 2008, 13, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Amienyo, D.; Gujba, H.; Stichnothe, H.; Azapagic, A. Life cycle environmental impacts of carbonated soft drinks. Int. J. Life Cycle Assess. 2013, 18, 77–92. [Google Scholar] [CrossRef]
- Comandaru, I.M.; Bârjoveanu, G.; Peiu, N.; Ene, S.-A.; Teodosiu, C. Life cycle assessment of wine: Focus on water use impact assessment. Environ. Eng. Manag. J. 2012, 11, 533–543. [Google Scholar]
- Neto, B.; Dias, A.C.; Machado, M. Life cycle assessment of the supply chain of a Portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Pattara, C.; Raggi, A.; Cichelli, A. Life cycle assessment and carbon footprint in the wine supply-chain. Environ. Manag. 2012, 49, 1247–1258. [Google Scholar] [CrossRef]
- Taulo, J.; Sebitosi, A. Material and energy flow analysis of the Malawian tea industry. Renew. Sustain. Energy Rev. 2016, 56, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Doublet, G.; Jungbluth, N. Life Cycle Assessment of Drinking Darjeeling Tea. In Conventional and Organic Darjeeling Tea; ESU-services Ltd. Uster: Schaffhausen, Switzerland, 2010; Available online: http://www.avnir.org/documentation/bdd/sg/doublet-2010-LCA-Darjeeling-tea-1.0.pdf (accessed on 16 September 2018).
- Cichorowski, G.; Joa, B.; Hottenroth, H.; Schmidt, M. Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea. Int. J. Life Cycle Assess. 2015, 20, 426–439. [Google Scholar] [CrossRef]
- Kouchaki-Penchah, H.; Nabavi-Pelesaraei, A.; O’Dwyer, J.; Sharifi, M. Environmental management of tea production using joint of life cycle assessment and data envelopment analysis approaches. Environ. Prog. Sustain. Energy 2017, 36, 1116–1122. [Google Scholar] [CrossRef]
- Ecoinvent Centre. Ecoinvent Data; Dübendorf, C.H., Ed.; Ecoinvent Centre: Zurich, Switzerland, 2018. [Google Scholar]
- Taiwan Environmental Protection Administration. Taiwan Emission Data System (TEDS v. 9.0). Available online: https://erdb.epa.gov.tw/ (accessed on 3 October 2018).
- Taiwan Bureau of Energy. Energy Balance Datasets. Available online: https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=B_CH&menu_id=145 (accessed on 3 October 2018).
- Taiwan Power Company. Taiwan Power Generation Potential by Sources. Available online: http://www.taipower.com.tw/content/new_info/new_info-c37.aspx (accessed on 23 June 2017).
- Taiwan Power Company. Green House Gas Emission Factor. Available online: https://data.gov.tw/datasets/search?qs=tid%3A465&order=downloadcount&type=dataset (accessed on 3 October 2018).
- Bare, J.C.; Norris, G.A.; Pennington, D.W.; McKone, T. TRACI—The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. J. Ind. Ecol. 2002, 6, 49–78. [Google Scholar] [CrossRef]
- Ryberg, M.; Vieira, M.D.; Zgola, M.; Bare, J.; Rosenbaum, R.K. Updated US and Canadian normalization factors for TRACI 2.1. Clean Technol. Environ. Policy 2014, 16, 329–339. [Google Scholar] [CrossRef]
- Chen, C.F.; Lin, J.Y. Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustain. Environ. Res. 2016, 26, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef]
- Oloruntoba, A. Revenue of the Tea Market Worldwide by Country in 2018. Available online: https://www.statista.com (accessed on 22 June 2019).
- Huang, Y.M. Integrated Crop Management of Tea; Yang, S.J., Ed.; Council of Agriculture, Executive Yuan, Taiwan: Taipei, Taiwan, 2007.
- Chou, W.S.; Lee, T.C.; Lin, J.Y.; Shaw, L.Y. Phosphorus load reduction goals for Feitsui Reservoir watershed, Taiwan. Environ. Monit. Assess. 2007, 131, 395–408. [Google Scholar] [CrossRef]
- Hirono, Y.; Watanabe, I.; Nonaka, K. Trends in water quality around an intensive tea-growing area in Shizuoka, Japan. Soil Sci. Plant Nutr. 2009, 55, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xie, Y.; Bi, M.; Wang, X.; Lu, Y.; Fan, Z. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Appl. Geogr. 2018, 90, 200–213. [Google Scholar] [CrossRef]
Production Phase | Category | Item | Unit | Value (Site 1) | Value (Site 2) |
---|---|---|---|---|---|
Cultivation | Geographic | Elevation | m | 1065 | 750 |
Plantation area size | ha | 1.94 | 0.97 | ||
Fertilizer | Fertilizer as N | kg | 883 | 1296 | |
Fertilizer as P | kg | 96 | 270 | ||
Fertilizer as K | kg | 96 | 246 | ||
Organic fertilizer | kg | 9000 a | 3800 b | ||
Irrigation | Surface water | m3 | 130 | 65 | |
Groundwater | m3 | 80 | 40 | ||
Tap water | m3 | 12 | 6 | ||
Agrochemical | Herbicide (active ingredients) | kg | 0 | 70 | |
Pesticide (active ingredients) | kg | 18 | 61 | ||
Energy | Gasoline | L | 47.6 | 0 | |
Harvesting | Transport (labors) | Distance | km | 30 | 40 |
Product | Tea leaf (wet) | kg | 17,400 | 2160 | |
Manufacturing | Material | Tea leaf (wet) | kg | 17,400 | 2160 |
Energy | Gasoline | kg | 0 | 116 | |
Diesel | kg | 1467 | 0 | ||
Electricity | kWh | 127 | 186 | ||
Natural gas | kg | 0 | 320 | ||
Transport (labors) | Distance | km | 15 | n/a | |
Transport (tea leaf) | Distance | km | 15 | 20 | |
Product | Loose tea (roasted, dry) | kg | 4350 | 432 | |
Packaging | Material | Loose tea (roasted, dry) | g | 600 | 420,000 |
Material | Plastic bags | g | 34 | 23,520 | |
Tea can (as 2-mm tin plate) | cm2 | 72 | 50,554 | ||
Energy | Electricity | Whr | 0.75 | 528 | |
Product | Cans of loose tea | item | 1 | 700 |
Emissions | Sink | Output Parameters | |
---|---|---|---|
Ammonia | air | 0.060 | of kg N fertilizer applied |
Nitrogen oxides | air | 0.017 | of kg N fertilizer applied |
Dinitrogen monoxide | air | 0.017 | of kg N fertilizer applied |
Nitrate | groundwater | 0.203 | of kg N fertilizer applied |
Phosphorus | river | 0.003 | of kg P fertilizer applied |
Phosphate | groundwater | 0.001 | of kg P fertilizer applied |
Input Flow | Unit | Amount |
liquefied petroleum gas | g | 32.85 |
natural gas | g | 45.17 |
Output Flow | Unit | Amount |
Cooking energy mix, Taiwan | kcal | 1000 |
Emissions | Unit | Amount |
Carbon dioxide | g | 244.000 |
Carbon monoxide | g | 0.1060 |
Hydrocarbons, unspecified | g | 0.0194 |
Hydrocarbons, unspecified | g | 0.0154 |
Methane | g | 0.0208 |
Nitrogen oxides | g | 0.2140 |
NMVOC, non-methane volatile organic compounds, unspecified origin | g | 0.0208 |
Particulates, <10 um | g | 0.0130 |
Particulates, <2.5 um | g | 0.0122 |
Particulates, >2.5 um, and <10um | g | 0.0126 |
Sulfur dioxide | g | 0.0000 |
Sulfur oxides | g | 0.0358 |
Suspended solids, unspecified | g | 0.0135 |
Input | Unit | Amount |
electricity, low voltage | market for electricity, low voltage | kcal | 0.4985 |
electricity, low voltage | market group for electricity, low voltage | kcal | 0.1183 |
natural gas, low pressure | market for natural gas, low pressure | cm3 | 28.4312 |
Output | Unit | Amount |
Cooking energy mix, Intl | kcal | 0.9110 |
Flow | Unit | Amount |
Acetaldehyde | kg | 1.33 × 10−12 |
Acetic acid | kg | 1.99 × 10−10 |
Benzene | kg | 5.30 × 10−10 |
Benzo(a)pyrene | kg | 1.33 × 10-14 |
Butane | kg | 9.28 × 10−10 |
Carbon dioxide, fossil | kg | 7.43 × 10−5 |
Carbon monoxide, fossil | kg | 1.03 × 10−8 |
Dinitrogen monoxide | kg | 6.63 × 10−10 |
Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin | kg | 3.98 × 10−20 |
Formaldehyde | kg | 1.33 × 10−10 |
Heat, waste | MJ | 1.47 × 10−3 |
Mercury | kg | 3.98 × 10−14 |
Methane, fossil | kg | 2.65 × 10−9 |
Nitrogen oxides | kg | 1.92 × 10−8 |
PAH, polycyclic aromatic hydrocarbons | kg | 1.33 × 10−11 |
Particulates, <2.5 um | kg | 1.33 × 10−10 |
Pentane | kg | 1.59 × 10−9 |
Propane | kg | 2.65 × 10−10 |
Propionic acid | kg | 2.65 × 10−11 |
Sulfur dioxide | kg | 7.29 × 10−10 |
Toluene | kg | 2.65 × 10−10 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-W. Environmental Implications of Taiwanese Oolong Tea and the Opportunities of Impact Reduction. Sustainability 2019, 11, 6042. https://doi.org/10.3390/su11216042
Chiu Y-W. Environmental Implications of Taiwanese Oolong Tea and the Opportunities of Impact Reduction. Sustainability. 2019; 11(21):6042. https://doi.org/10.3390/su11216042
Chicago/Turabian StyleChiu, Yi-Wen. 2019. "Environmental Implications of Taiwanese Oolong Tea and the Opportunities of Impact Reduction" Sustainability 11, no. 21: 6042. https://doi.org/10.3390/su11216042