Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China
Abstract
:1. Introduction
2. Study Data and Research Methods
2.1. Study Data
2.2. Variable Selection
2.3. Research Methods
3. Results
3.1. Multi-Collinearity Diagnosis
3.2. Impact of Environmental Regulation
3.3. Moderating Effects of Guiding Regulation
3.4. Impact of Environmental Regulation Based on Different Breeding Scales
4. Discussion
4.1. Analysis from the Multi-Dimensional Perspective
4.2. Policy Strategies Implications
4.3. Limitations and Future Research
5. Recommendations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 8, 1062. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, C.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Beach, R.H.; DeAngelo, B.J.; Rose, S.; Li, C.; Salas, W.; DelGrosso, S.J. Mitigation potential and costs for global agricultural greenhouse gas emissions. Agri. Econ. 2010, 38, 109–115. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy. 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Stiglitz, J. Symposium on the economics of exhaustible resources growth with exhaustible natural resources: Efficient and optimal growth paths. Rev. Econ. Stud. 1974, 41, 123–137. [Google Scholar] [CrossRef]
- Isoda, N.; Rodrigues, R.; Silva, A.; Gonçalves, M.; Mandelli, D.; Figueiredo, F.C.A.; Carvalho, W.A. Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technol. 2014, 256, 175–181. [Google Scholar] [CrossRef]
- Vu, T.K.V.; Vu, D.Q.; Jensen, L.S.; Sommer, S.G.; Bruun, S. Life cycle assessment of biogas production in small-scale household digesters in Vietnam. Asian Australas. J. Anim. Sci. 2015, 28, 716–729. [Google Scholar] [CrossRef]
- Vu, T.K.V.; Vu, D.Q.; Jensen, L.S.; Sommer, S.G.; Bruun, S. A survey of manure management on pig farms in Northern Vietnam. Livest. Sci. 2007, 112, 288–297. [Google Scholar] [CrossRef]
- Huong, L.Q.; Madsen, H.; Ngoc, P.T.; Dalsgaard, A. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. Sci. Total Environ. 2014, 470, 53–57. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J.; Phung, L.D.; Banout, J. Current approach to manure management for small-scale Southeast Asian farmers-Using Vietnamese biogas and non-biogas farms as an example. Renew. Energy. 2017, 115, 362–370. [Google Scholar] [CrossRef]
- Kinyua, M.N.; Rowse, L.E.; Ergas, S.J. Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world. Renew. Sustain. Energy Rev. 2016, 58, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Si, R.S.; Lu, Q.; Zhang, Q.Q.; Yu, L. Study on the recycling utilization of dead livestock and poultry wastes based on the context perspective of Chinese and foreign legislation. Resources Sci. 2018, 12, 2392–2400. [Google Scholar]
- He, K.; Zhang, J.B.; Zeng, Y.M.; Zhang, L. Households’ willingness to accept compensation for agricultural waste recycling: Taking biogas production from livestock manure waste in Hubei, P.R. China as an example. J. Clean. Prod. 2016, 131, 410–420. [Google Scholar] [CrossRef]
- Luo, Z.B.; Lam, S.K.; Fu, H.; Hu, S.; Chen, D. Temporal and spatial evolution of nitrous oxide emissions in China: Assessment, strategy and recommendation. J. Clean. Prod. 2019, 223, 360–367. [Google Scholar] [CrossRef]
- Zuo, Y.L.; Yi, L.P.; Mei, Y.F.U. Removal effects of three aquatic plants on chemical oxygen demand(COD_(cr))in livestock breeding wastewater. J. South. Agric. 2016, 47, 911–915. [Google Scholar]
- Gonzalez-Sanchez, C.; Martinez-Aguirre, A.; Perez-Garcia, B.; Martínez-Urreaga, J.; María, U.; Fonseca-Valero, C. Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J. Clean. Prod. 2014, 83, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Materechera, S.A. Utilization and management practices of animal manure for replenishing soil fertility among small-scale crop farmers in semi-arid farming districts of the North West Province, South Africa. Nutr. Cycl. Agroecosyst. 2010, 87, 415–428. [Google Scholar] [CrossRef]
- Smith, K.A.; Brewer, A.J.; Dauven, A.; Wilson, D.W. A survey of the production and use of animal manures in England and Wales. I. Pig manure. Soil Use Manag. 2000, 16, 9. [Google Scholar] [CrossRef]
- Thu, C.T.T.; Cuong, P.H.; Van Chao, N.; Trach, N.X.; Sommer, S.G. Manure management practices on biogas and non-biogas pig farms in developing countries—Using livestock farms in Vietnam as an example. J. Clean. Prod. 2012, 27, 64–71. [Google Scholar]
- Roubík, H.; Mazancová, J. Small-scale biogas plants in central Vietnam and biogas appliances with a focus on a flue gas analysis of biogas cook stoves. Renew. Energy 2019, 131, 1138–1145. [Google Scholar] [CrossRef]
- Schaffner, M.; Bader, H.P.; Scheidegger, R. Modeling the contribution of pig farming to pollution of the Thachin River. Clean Technol. Environ. Policy. 2010, 12, 407–425. [Google Scholar] [CrossRef]
- Farzin, Y.H.; Kort, P. Pollution abatement investment when environmental regulation is uncertain. J. Public Econ. Theory 2000, 2, 183–212. [Google Scholar] [CrossRef]
- Posner, R.A. Theories of economic regulation. Bell J. Econ. Manag. Sci. 1974, 5, 335–358. [Google Scholar] [CrossRef]
- Kellenberg, D.K. An empirical investigation of the pollution haven effect with strategic environment and trade policy. J. Int. Econ. 2009, 78, 242–255. [Google Scholar] [CrossRef]
- Outhwaite, O.; Black, R.; Laycock, A. The pursuit of grounded theory in agricultural and environmental regulation: A suggested approach to empirical Legal study in biosecurity. Law Policy. 2007, 29, 493–528. [Google Scholar] [CrossRef]
- Gunningham, N.A.; Sinclair, D. Leaders and laggards: Next-generation environmental regulation. Manag. Environ. Qual. 2002, 13, 4–11. [Google Scholar]
- Reijenga, T. Promotion of sustainable buildings in China-integration of bamboo and renewable energy technologies. Chin. For. Sci. Technol. 2003, 1, 44–49. [Google Scholar]
- Nowak, P.J. The adoption of agricultural conservation technologies: Economic and diffusion explanations. Rural Sociol. 1987, 52, 208–220. [Google Scholar]
- Obubuafo, J.; Gillespie, J.M.; Paudel, K.P.; Kim, S.A. Awareness of and application to the environmental quality incentives program by cow†calf producers. J. Agric. Appl. Econ. 2008, 40, 357–368. [Google Scholar] [CrossRef]
- Afroz, R.; Hanaki, K.; Hasegawa-Kurisu, K. Willingness to pay for waste management improvement in Dhaka city, Bangladesh. J. Environ. Manag. 2009, 90, 492–503. [Google Scholar] [CrossRef]
- Waithaka, M.M.; Thornton, P.K.; Shepherd, K.D.; Ndiwa, N.N. Factors affecting the use of fertilizers and manure by smallholders: The case of Vihiga, western Kenya. Nutr. Cycl. Agroecosyst. 2007, 78, 211–224. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, A. doption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, C.; Xu, J.; Huo, X.; Hussain, Q. Examining the effect of absorptive capacity on waste processing method adoption: A case study on Chinese pig farms. J. Clean. Prod. 2019, 215, 978–984. [Google Scholar] [CrossRef]
- Colman, D. Ethics and externalities: Agricultural stewardship and other behavior: Presidential address. J. Agric. Econ. 1994, 45, 299–311. [Google Scholar] [CrossRef]
- Mueller, W. The effectiveness of recycling policy options: Waste diversion or just diversions? Waste Manag. 2013, 33, 508–518. [Google Scholar] [CrossRef]
- Zheng, C.; Bluemling, B.; Liu, Y.; Mol, A.P.; Chen, J. Managing manure from China’s pigs and poultry: The influence of ecological rationality. AMBIO 2014, 43, 661–672. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.B. An analysis of waste cyclic utilization in livestock breeding based on the grounded theory: Farmers’ behaviour and policy intervention paths. J. Jiangxi Univ. Financ. Econ. 2018, 3, 95–104. [Google Scholar]
- He, K.; Zhang, J.; Feng, J.; Hu, T.; Zhang, L. The impact of social capital on farmers’ Willingness to reuse agricultural waste for sustainable development. Sustain. Dev. 2016, 24, 101–108. [Google Scholar] [CrossRef]
- Guo, D.S.; Wang, W.L.; Peng, X.L.; Gong, Q.H. Estimation of environmental emissions of livestock and poultry in Hunan Province and environmental effects. Chin. Anim. Husb. Vet. Med. 2012, 39, 199–204. [Google Scholar]
- Dasgupta, S.; Mody, A.; Roy, S.; Wheeler, D. Environmental regulation and development: A cross-country empirical analysis. Oxf. Dev. Stud. 2001, 29, 173–187. [Google Scholar] [CrossRef]
- Kalungu, J.W.; Leal Filho, W. Adoption of appropriate technologies among smallholder farmers in Kenya. Clim. Dev. 2016, 1–13. [Google Scholar] [CrossRef]
- Pratt, O.J.; Wingenbach, G. Factors affecting adoption of green manure and cover crop technologies among Paraguayan smallholder farmers. Agroecol. Sustain. Food Syst. 2016, 40, 1043–1057. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationship for limited dependent variables. Econometrica. 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Liu, H.H.; Wu, W. Analysis of the availability of Chinese farmers′ loans and their influencing factors based on the two-column model. Econ. Surv. 2015, 2, 37–42. [Google Scholar]
- Cragg, J.G. Some Statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 1971, 5, 829–844. [Google Scholar] [CrossRef]
- Xie, X.X.; Li, X.P.; Zhao, M.J.; Shi, H.T. How does capital endowment affect herdsman to reduce livestock?—An empirical analysis based on 372 herdsmen in Inner Mongolia. Resour. Sci. 2018, 40, 1730–1741. [Google Scholar]
- Somanathan, E. Earthly politics: Local and global in environmental governance. Am. J. Agric. Econ. 2006, 88, 520–522. [Google Scholar] [CrossRef]
- Shen, F.W.; Liu, Z.Y. The logic reconstruction of rural environmental good governance: Based on the analysis of Stakeholder Theory. Chin. Popul. Resour. Environ. 2016, 26, 32–38. [Google Scholar]
- Tutkun, A.; Lehmann, B. Explaining the conversion to particularly animal-friendly stabling system of farmers of the Obwalden Canton, Switzerland—Extension of the theory of planned behavior within a Structural Equation Modeling Approach. J. Stat. Phys. 2006, 97, 51–65. [Google Scholar]
- Rao, J.; Zhang, Y.Q. From scale to type: Study on pollution control and resource utilization of pig breeding—Taking LP county of Hebei Province as an Example. Agric. Econ. 2018, 4, 121–130. [Google Scholar]
- Wu, L.H.; Qiu, G.Q.; Xu, G.Y.; Chen, X.J. Effect of harmless treatment policy on the farmers’ behavior. Chin. Rural Econ. 2017, 2, 58–71. [Google Scholar]
- Shao, B.; Hu, Z.; Liu, D. Using improved principal component analysis to explore construction accident situations from the multi-dimensional perspective: A Chinese study. Int. J. Environ. Res. Public Health 2019, 16, 3476. [Google Scholar] [CrossRef] [PubMed]
Variables | Assignment of Variables | Mean | Std. Error |
---|---|---|---|
Dependent variable | |||
Recycling willingness | Willing = 1, unwilling = 0 | 0.623 | 0.207 |
Recycling degree | Ratio of LMWR amount to LMW discharge amount | 0.425 | 0.301 |
Independent variable | |||
Imperative regulation | Impact intensity of government regulatory policy (1–5) | 3.356 | 1.004 |
Incentive regulation | Impact intensity of government subsidy policy (1–5) | 3.712 | 1.406 |
Guiding regulation | Impact intensity of government technical guidance (1–5) | 4.478 | 1.850 |
Control variable | |||
Gender | Male = 1, female = 0 | 0.855 | 0.926 |
Age | Actual age (years) | 50.121 | 9.579 |
Education level | Actual years of schooling (years) | 8.205 | 2.550 |
Number of laborers | Number of laborers over 16 years old (people) | 3.102 | 0.650 |
Cultivated area | Cultivated area for agricultural planting (hectares) | 0.418 | 0.102 |
Breeding income proportion | Ratio of income from breeding pigs to the total household income | 0.723 | 0.863 |
Breeding period | Breeding pig period (year) | 8.262 | 3.155 |
Breeding scale | Sum of pig stock amount and released amount (head) | 285.132 | 26.101 |
Distance between pen and livestock department | Distance between pen and livestock department (km) | 6.232 | 2.781 |
Dependent Variable | Independent Variable | Multi-collinearity Diagnosis | |
---|---|---|---|
VIF Value | Expansion Factor | ||
Imperative regulation | Incentive regulation | 1.235 | 0.810 |
Guiding regulation | 1.916 | 0.522 | |
Gender | 2.021 | 0.495 | |
Age | 1.201 | 0.833 | |
Education level | 1.019 | 0.981 | |
Number of laborers | 1.876 | 0.533 | |
Cultivated area | 1.691 | 0.591 | |
Breeding income proportion | 2.320 | 0.431 | |
Breeding period | 1.870 | 0.535 | |
Breeding scale | 1.099 | 0.910 | |
Distance between pen and livestock department | 2.012 | 0.497 |
Independent Variables | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|
RW | RD | RW | RD | RW | RD | RW | RD | |
Imperative regulation | 0.1252 * (0.0728) | 0.0921 (0.0783) | 0.2935 *** (0.0978) | 0.1068 ** (0.0508) | ||||
Incentive regulation | 0.2745 (0.1830) | 0.1623 (0.1912) | 0.1610 * (0.0875) | 0.1923 * (0.1041) | ||||
Guiding regulation | 0.1989 ** (0.0994) | 0.1430 * (0.0764) | 0.2001 * (0.1087) | 0.1970 ** (0.0916) | ||||
Gender | 0.2001 (0.3026) | 0.1024 (0.0920) | 0.1026 (0.0890) | 0.0903 * (0.0531) | 0.4501 (0.3721) | 0.2132 (0.3025) | 0.1346 (0.1091) | 0.0403 (0.0631) |
Age | 0.0452 *** (0.0130) | 0.0625 * (0.0347) | 0.0726 * (0.0413) | 0.0830 (0.0553) | 0.0823 ** (0.0413) | 0.1740 * (0.0967) | 0.0726 * (0.0398) | 0.0623 * (0.0350) |
Square of age | −0.0720 *** (0.0205) | −0.1035 ** (0.0510) | −0.1401 ** (0.0692) | −0.0825 * (0.0427) | −0.1425 * (0.0742) | −0.1635 * (0.0843) | −0.2351 * (0.1264) | −0.1025 * (0.0510) |
Education level | 0.0512 * (0.0291) | 0.0326 ** (0.0160) | 0.0725 ** (0.0351) | 0.0522 ** (0.0131) | 0.0623 ** (0.0260) | 0.0402 ** (0.0202) | 0.2321 ** (0.1064) | 0.0602 ** (0.0270) |
Number of laborers | 0.0967 (0.1024) | 0.0825 (0.0645) | 0.1266 (0.0928) | 0.0725 (0.0610) | 0.1012 (0.0826) | 0.0789 (0.0625) | 0.1266 (0.0928) | 0.0725 (0.0610) |
Cultivated area | 0.1630 *** (0.0512) | 0.0629 ** (0.0320) | 0.1835 *** (0.0655) | 0.0920 * (0.0506) | 0.2014 *** (0.0694) | 0.1015 *** (0.0302) | 0.1095 ** (0.0474) | 0.0625 * (0.0334) |
Breeding income proportion | 0.0722 (0.0820) | 0.0326 (0.0281) | 0.0528 (0.0391) | 0.0410 (0.0526) | 0.0601 (0.0527) | 0.0422 (0.0520) | 0.0528 (0.0391) | 0.0410 (0.0526) |
Breeding period | 0.1205 (0.0921) | 0.0829 (0.0735) | 0.0601 (0.0906) | 0.0850 (0.0692) | 0.0728 (0.0823) | 0.0925 (0.0702) | 0.0601 (0.0906) | 0.0850 (0.0692) |
Breeding scale | 0.0721 * (0.0405) | 0.0328 (0.0270) | 0.0610 ** (0.0284) | 0.0256 * (0.0131) | 0.0626 ** (0.0285) | 0.0425 * (0.0223) | 0.1510 ** (0.0662) | 0.0656 * (0.0373) |
Distance between pen and livestock department | 0.0260 (0.0421) | 0.0018 (0.0021) | 0.3520 (0.2931) | 0.0035 * (0.0019) | 0.0302 (0.0612) | 0.0025 ** (0.0012) | 0.2920 (0.4901) | 0.1235 (0.2819) |
Log-likelihood | −356.125 | −358.320 | −362.131 | −363.557 | ||||
Chi-square value | 64.129 *** | 64.200 *** | 65.205 *** | 65.704 *** |
Explanatory Variables | Model 5 | Model 6 | Model 7 | |||
---|---|---|---|---|---|---|
RW | RD | RW | RD | RW | RD | |
Guiding regulation × Imperative regulation | 0.2152 ** (0.1076) | 0.1023 * (0.0553) | 0.1352 * (0.0738) | 0.1023 * (0.0538) | ||
Guiding regulation × Incentive regulation | 0.1221 * (0.0654) | 0.1109 ** (0.0465) | 0.0921 ** (0.0409) | 0.0857 * (0.0478) | ||
Imperative regulation | 0.1652 ** (0.0751) | 0.0923 * (0.0502) | 0.1458 * (0.0814) | 0.1225 ** (0.0510) | 0.1358 ** (0.0585) | 0.1129 ** (0.0517) |
Incentive regulation | 0.0921 (0.1283) | 0.1082 (0.0994) | 0.1224 (0.1783) | 0.1085 (0.0996) | 0.0821 (0.2783) | 0.1486 (0.1994) |
Guiding regulation | 0.1645 *** (0.0531) | 0.1430 * (0.0752) | 0.1745 ** (0.0730) | 0.1232 ** (0.0552) | 0.1545 * (0.0898) | 0.1482 ** (0.0667) |
Control variable | Control | Control | Control | |||
Log-likelihood | −324.102 | −325.321 | −324.135 | |||
Chi-square value | 61.105 *** | 61.250 *** | 61.455 *** |
Explanatory Variables | Model 8 Small-Scale Households | Model 9 Professional Households | Model 10 Large-Scale Households | |||
---|---|---|---|---|---|---|
RW | RD | RW | RD | RW | RD | |
Guiding regulation × Imperative regulation | 0.0725 (0.1124) | 0.0502 (0.1234) | 0.1406 *** (0.0351) | 0.0924 ** (0.0430) | 0.1412 (0.1761) | 0.1559 (0.1644) |
Guiding regulation × Incentive regulation | 0.1338 ** (0.0704) | 0.1022 (0.1552) | 0.1835 * (0.0986) | 0.1220 * (0.0701) | 0.1254 ** (0.0531) | 0.1012 ** (0.0434) |
Imperative regulation | 0.0742 (0.1203) | 0.0956 (0.1541) | 0.1018 ** (0.0424) | 0.0959 (0.0878) | 0.0861 * (0.0473) | 0.0602 (0.0748) |
Incentive regulation | 0.1002 * (0.0544) | 0.0913 (0.0875) | 0.1202 (0.0906) | 0.1190 (0.1492) | 0.1158 (0.1423) | 0.0625 (0.0822) |
Guiding regulation | 0.1460 ** (0.0655) | 0.1048 ** (0.0492) | 0.1420 ** (0.0654) | 0.1518 ** (0.0643) | 0.0702 *** (0.0201) | 0.0645 * (0.0350) |
Control variables | Control | Control | Control | |||
Log-likelihood | −176.125 | −225.356 | −210.130 | |||
Chi-square value | 57.155 *** | 62.230 *** | 59.418 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, R.; Pan, S.; Yuan, Y.; Lu, Q.; Zhang, S. Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China. Sustainability 2019, 11, 5737. https://doi.org/10.3390/su11205737
Si R, Pan S, Yuan Y, Lu Q, Zhang S. Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China. Sustainability. 2019; 11(20):5737. https://doi.org/10.3390/su11205737
Chicago/Turabian StyleSi, Ruishi, Sitong Pan, Yuxin Yuan, Qian Lu, and Shuxia Zhang. 2019. "Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China" Sustainability 11, no. 20: 5737. https://doi.org/10.3390/su11205737
APA StyleSi, R., Pan, S., Yuan, Y., Lu, Q., & Zhang, S. (2019). Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China. Sustainability, 11(20), 5737. https://doi.org/10.3390/su11205737