Next Article in Journal
Social Capital and Self-Rated Health among Older Adults Living in Urban China: A Mediation Model
Previous Article in Journal
Structure Please; Continuous Improvement and Employee Consequences in a Dynamic Task Environment
Open AccessArticle

Risk Assessment Based on Nitrogen and Phosphorus Forms in Watershed Sediments: A Case Study of the Upper Reaches of the Minjiang Watershed

1
School of Geography Science, Nanjing Normal University, Nanjing 210023, China
2
Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resource Engineering of Wuyi University, Wuyishan 354300, China
3
College of Environmental, Hohai University, Nanjing 210098, China
*
Authors to whom correspondence should be addressed.
Sustainability 2019, 11(20), 5565; https://doi.org/10.3390/su11205565
Received: 14 July 2019 / Revised: 15 September 2019 / Accepted: 26 September 2019 / Published: 10 October 2019
(This article belongs to the Section Social Ecology and Sustainability)
In order to achieve effective eutrophication control and ecosystem restoration, it is of great significance to investigate the distribution characteristics of nutrient elements in sediments, and to perform ecological risk assessments. In the current grading criteria for nutrient elements in sediments, only the overall or organic components of carbon, nitrogen and phosphorus are considered, while the specific species distributions and bioavailability characteristics are rarely taken into account. Hence, using the current grading criteria, the differences in the release, migration and biological activity of nutrient elements in sediments cannot be accurately reflected. Taking the upper reaches of the Minjiang River watershed as an example, we analyzed the overall distributions and the ratio of nutrient elements in sediments, the spatial changes of nitrogen and phosphorus forms, the bioavailability, and the environmental significance. The ecological risk of nitrogen and phosphorus in sediments was assessed using an evaluation method based upon the biological effective parameter. The results were compared with the results of the evaluation methods based on the single pollution index, and then these evaluation methods were confirmed accordingly. From the results, the following conclusions can be obtained: (1) The spatial distributions of nutrient elements in sediments in the upper reaches of the Minjiang River Watershed (including the Jianxi Basin, Futunxi Basin, and Shaxi Basin) were significantly affected by the local ecology and the urban sewage discharge system. (2) The maximum average contents of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in sediments were observed in the Jianxi Basin, the Futunxi Basin and the Shaxi Basin, respectively. (3) According to the contents of nitrogen and phosphorus in sediments, the bioavailable nitrogen (TTN) accounted for 35.49% of the total contents of TN. The components of TTN can be sorted from high to low as follows: Nitrogen in organic sulfide form (SOEF-N) > nitrogen in iron-manganese oxide form (SAEF-N) > nitrogen in ion exchange form (IEF-N) > nitrogen in weak acid leaching form (WAEF-N). Inorganic phosphorus (IP) was the main component of TP. The components of IP can be sorted from high to low as follows: Metal oxide bound phosphorus (NaOH-P) > calcium bound phosphorus (HCl-P) > reduced phosphorus (BD-P) > weakly adsorbed phosphorus (NH4Cl-P). Meanwhile, bioavailable phosphorus (BAP, BAP = NH4Cl-P + BD-P + NaOH-P) accounted for 36.94% of TP. According to the results of the single pollution index method, the risk level of TOC pollution in the sediments was relatively low in the whole area, while the risk level of TN pollution was low or moderate in most zones, and severe in certain ones. The risk level of TP pollution was low to moderate. (4) From the results of the bioavailability index evaluation method, based on the total amounts and forms of N and P, the risk level of N pollution was moderate, while the risk of P pollution was negligible. In addition, the results of the bioavailability index evaluation method were more consistent with the actual situation and reflected the overall environmental effects of nitrogen and phosphorus. View Full-Text
Keywords: sediment; nutrient element; nitrogen forms; phosphorus forms; risk assessment sediment; nutrient element; nitrogen forms; phosphorus forms; risk assessment
Show Figures

Figure 1

MDPI and ACS Style

Ye, H.; Yang, H.; Han, N.; Huang, C.; Huang, T.; Li, G.; Yuan, X.; Wang, H. Risk Assessment Based on Nitrogen and Phosphorus Forms in Watershed Sediments: A Case Study of the Upper Reaches of the Minjiang Watershed. Sustainability 2019, 11, 5565.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop