Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study System
2.2. In Situ Analyses and Sampling
2.3. Ex Situ Laboratory Analyses
3. Data Analyses
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Data Availability
Conflicts of Interest
References
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cismeros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Buytaert, W.; Cuesta-Camacho, F.; Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 2011, 20, 19–33. [Google Scholar] [CrossRef]
- Mosquera, P.V.; Hample, H.; Vázquez, R.F.; Alonso, M.; Catalan, J. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resour. Res. 2017, 53, 7269–7280. [Google Scholar] [CrossRef] [Green Version]
- Van Colen, W.R.; Mosquera, P.; Vanderstukken, M.; Goiris, K.; Carrasco, M.-C.; Decaestecker, E.; Alonso, M.; Léon-Tamariz, F.; Muylaert, K. Limnology and trophic status of glacial lakes in the tropical Andes (Cajas National Park, Ecuador). Freshw. Biol. 2017, 63, 458–473. [Google Scholar] [CrossRef]
- Steinitz-Kannan, M. The lakes in Andean protected areas of Ecuador. George Wright Forum 1997, 14, 33–43. [Google Scholar]
- Miller, M.C.; Kannan, M.; Colinvaux, P.A. Limnology and primary productivity of Andean and Amazonian tropical lakes of Ecuador. Verh. Int. Ver. Limnol. 1984, 22, 1264–1270. [Google Scholar] [CrossRef]
- Roldán-Pérez, G.; Ramírez-Restrepo, J.J. Fundamentos de Limnología Neotropical, 2nd ed.; Universidad de Antioquía: Medellín, Colombia, 2008; pp. 49–71. [Google Scholar]
- Donato, J.C. Phytoplankton of Andean Lakes in Northern South America (Colombia). In Diatom Monographs; Ganter Verlag: Königstein, Germany, 2010; Volume 11, p. 185. [Google Scholar]
- Llames, M.E.; Zagarese, H.E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; Volume 2, pp. 533–543. [Google Scholar]
- Aguilera, X.; Lazzaro, X.; Coronel, J.S. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Photochem. Photobiol. Sci. 2013, 12, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Michelutti, N.; Labaj, A.L.; Grooms, C.; Smol, J.P. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. J. Limnol. 2016, 75, 403–408. [Google Scholar]
- Catala, J.; Donato-Rondón, J.C. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J. Limnol. 2016, 75, 215–234. [Google Scholar]
- Barta, B.; Mouillet, C.; Espinosa, R.; Andino, P.; Jacobsen, D.; Christoffersen, K.S. Glacial-fed and páramo lake ecosystems in the tropical high Andes. Hydrobiologia 2018, 813, 19–32. [Google Scholar] [CrossRef]
- Dorador, C.; Pardo, R.; Vila, I. Variaciones temporales de parámetros físicos, químicos y biológicos de un lago de altura: El caso del lago Chungará. Rev. Chil. Hist. Nat. 2003, 76, 15–22. [Google Scholar] [CrossRef]
- Alcocer, J.; Oseguera, L.A.; Escobar, E.; Peralta, L.; Lugo, A. Phytoplankton biomass and water chemistry in two high-mountain tropical lakes in central Mexico. Arc. Antarct. Alp. Res. 2004, 36, 342–346. [Google Scholar] [CrossRef]
- Aguilera, X.; Declerck, S.; De Meester, L.; Maldonado, , M.; Ollevier, F. Tropical high Andes lakes: A limnological survey and an assessment of exotic rainbow trout (Orcorhynchus mykiss). Limnologica 2006, 36, 258–268. [Google Scholar] [CrossRef]
- Merchán, D.L.; Sparer, P.A. Variación temporal de fitoplancton de seis lagunas altoandinas en relación a las características físico-químicas del medio. Ph.D. Thesis, Universidad el Azuay, Cuenca, Ecuador, 2015. [Google Scholar]
- Kinzie, R.A., III; Banaszak, A.T.; Lesser, M.P. Effects of ultraviolet radiation on primary productivity in a high altitude tropical lake. Hydrobiologia 1998, 385, 23–32. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Matulich, K.L.; Hooper, D.U.; Byrnes, J.E.; Duffy, E.; Gamfeldt, L.; Balvanera, P.; O’Connor, M.I.; Gonzalez, A. The functional role of producer diversity in ecosystems. Am. J. Bot. 2011, 98, 572–592. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Gross, K.; Fritschie, K.; Flombaun, P.; Fox, J.W.; Rixen, C.; Van Ruijven, J.; Reich, P.B.; Scherer-Lorenzen, M.; Wilsey, B.J. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 2013, 94, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, K.; Cardinale, B.J.; Gross, K.; Fox, J.W.; Gonzalez, A.; Loreau, M.; Wayne Polley, H.; Reich, P.B.; Van Ruijven, J. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 2013, 183, 1–12. [Google Scholar] [CrossRef]
- O’Connor, M.; Gonzalez, A.; Byrnes, J.E.K.; Cardinale, B.J.; Duffy, J.E.; Gamfeldt, L.; Griffin, J.N.; Hooper, D.; Hungate, B.A.; Paquette, A.; et al. A general biodiversity-function relationship is mediated by trophic level. Oikos 2017, 126, 18–31. [Google Scholar] [CrossRef]
- Duffy, J.E.; Godwin, C.S.; Cardinale, B.J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2017, 549, 261–264. [Google Scholar] [CrossRef]
- Interlandi, S.J.; Kilham, S.S. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 2001, 82, 1270–1282. [Google Scholar] [CrossRef]
- Grover, J.P.; Chrzanowski, T.H. Limiting resources, disturbance, and diversity in phytoplankton communities. Ecol. Monogr. 2004, 74, 533–551. [Google Scholar] [CrossRef]
- Passy, S.I.; Legendre, P. Are algal communities driven toward maximum biomass? Proc. R. Soc. B 2006, 273, 2667–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ptacnik, R.; Solimini, A.G.; Andersen, T.; Taminen, T.; Brettum, P.; Lepisto, L.; Willén, E.; Rekolainen, S. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5134–5138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, B.; Nordin, R.; Mazumder, A. Relationship between phytoplankton paleoproduction and diversity in contrasting trophic states. Aquat. Ecosyst. Health Manag. 2008, 11, 78–90. [Google Scholar] [CrossRef]
- Striebel, M.; Behl, S.; Stibor, H. The coupling of biodiversity and productivity in phytoplankton communities: Consequences for biomass stoichiometry. Ecology 2009, 90, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Hogsden, K.L.; Xenopoulos, M.A.; Rusak, J.A. Asymmetrical food web responses in trophic-level richness, biomass, and function following lake acidification. Aquat. Ecol. 2009, 43, 591–606. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Hillebrand, H.; Harpole, W.S.; Gross, K.; Ptacnik, R. Separating the influence of resource “availability” from resource “imbalance” on productivity-diversity relationships. Ecol. Lett. 2009, 12, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Kruk, C.; Rodríguez-Gallego, L.; Meerhoff, M.; Quintans, F.; Lacerot, G.; Mazzeo, N.; Scasso, F.; Paggi, J.C.; Peeters, E.T.H.M.; Marten, S. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshw. Biol. 2009, 54, 2628–2641. [Google Scholar] [CrossRef]
- Vogt, R.J.; Beisner, B.E.; Prairie, Y.T. Functional diversity is positively associated with biomass for lake diatoms. Freshw. Biol. 2010, 55, 1636–1646. [Google Scholar] [CrossRef]
- Korneva, L.G. Changes in phytoplankton diversity in the Volga basin waterbodies. Inland Water Biol. 2010, 3, 322–328. [Google Scholar] [CrossRef]
- Korhonen, J.J.; Wang, J.; Soininen, J. Productivity-diversity relationships in lake plankton communities. PLoS ONE 2011, 6, e22041. [Google Scholar] [CrossRef] [PubMed]
- Stomp, M.; Huisman, J.; Mittelbach, G.G.; Litchman, E.; Klausmeier, C.A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 2011, 92, 2096–2107. [Google Scholar] [CrossRef] [PubMed]
- Pomati, F.; Matthews, B.; Jokela, J.; Schildknecht, A.; Ibelings, B.W. Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Oikos 2012, 121, 1317–1327. [Google Scholar] [CrossRef]
- Borics, G.; Tóthmérész, B.; Lukács, B.A.; Várbíró, G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 2012, 698, 251–262. [Google Scholar] [CrossRef]
- Fornarelli, R.; Antenucci, J.P.; Marti, C.L. Disturbance, diversity and phytoplankton production in a reservoir affected by inter-basin water transfers. Hydrobiologia 2013, 705, 9–26. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Peter, H.; Willén, E. Shifts in phytoplankton species richness and biomass along a latitudinal gradient—Consequences for relationships between biodiversity and ecosystem functioning. Freshw. Biol. 2013, 58, 612–623. [Google Scholar] [CrossRef]
- Pálffy, K.; Présing, M.; Vörös, L. Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat. Ecol. 2013, 47, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Skácelová, O.; Leps, J. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia 2014, 724, 67–77. [Google Scholar] [CrossRef]
- Filstrup, C.T.; Hillebrand, H.; Heathcote, A.J.; Stanley Harpole, W.; Downing, J.A. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecol. Lett. 2014, 17, 464–474. [Google Scholar] [CrossRef]
- Fernández, C.; Cáceres, E.J.; Parodi, E.R. Phytoplankton development in a highly eutrophic man-made lake from the pampa plain of Argentin—A functional approach. Int. J. Environ. Res. 2014, 8, 1–14. [Google Scholar]
- Santos, A.M.C.; Carneiro, F.M.; Cianciaruso, M.V. Predicting phytoplankton in tropical reservoirs: The roles of phytoplankton taxonomic and functional diversity. Ecol. Indic. 2014, 48, 428–435. [Google Scholar] [CrossRef]
- Zimmerman, E.K.; Cardinale, B.J. Is the relationship between algal diversity and biomass in North American lakes consistent with biodiversity experiments? Oikos 2014, 123, 267–278. [Google Scholar] [CrossRef]
- Beyter, D.; Tang, P.-Z.; Becker, S.; Hoang, T.; Bilgin, D.; Lim, Y.M.; Peterson, T.C.; Mayfield, S.; Haerizadeh, F.; Shurin, J.B.; et al. Diversity, productivity and stability of an industrial microbial ecosystem. Appl. Environ. Microb. 2016, 82, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, H.; Zhao, L.; Xu, X.; Huang, H. The relationship between phytoplankton evenness and copepod abundance in Lake Nansihu, China. Int. J. Environ. Res. Public Health 2016, 31, 855. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.F.; Barbosa, J.E.L.; Dantas, E.W. Productivity–diversity relationships in reservoir phytoplankton communities in the semi-arid region of northeastern Brazil. J. Arid Environ. 2016, 129, 64–70. [Google Scholar] [CrossRef]
- Fontana, S.; Thomas, M.K.; Moldoveanu, M.; Spaak, P.; Pomati, F. Individual-level trait diversity predicts phytoplankton community properties better than species richness or evenness. ISME J. 2018, 12, 356–366. [Google Scholar] [CrossRef]
- Abonyi, A.; Horváth, Z.; Ptacnik, R. Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshw. Biol. 2018, 63, 178–186. [Google Scholar] [CrossRef]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to water supplies in the tropical Andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bièvre, B. The impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48, 8503. [Google Scholar] [CrossRef]
Study | Country | Lake(s) * | Latitude ° | Altitude (m.a.s.l) |
---|---|---|---|---|
Interlandi & Kilham 2001 | USA | Jackson, Lewis & Yellowstone | 43N–44N | 2064–2372 |
Grover & Chrzanowski 2004 | USA | Joe Pool & Eagle Mountain | 32N–33N | 162–198 |
Passy & Legendre 2006 | USA | >50 lakes | 21S, 25N–68N | n.a. |
Ptacnik et al. 2008 | Finland, Norway, Sweden | ca. 500 lakes | 55N–65N | n.a. |
Das et al. 2008 | Canada | Elk, Shawnigan & Sooke | 48N | 60–183 |
Striebel et al. 2009 | Germany | 46 lakes | n.a. | n.a. |
Hogsden et al. 2009 | USA | Little Rock | 46N | 500 |
Cardinale et al. 2009 | Norway | 492 lakes | 58N–70N | n.a. |
Kruk et al. 2009 | Uruguay | 18 lakes | 33S–35S | 0–5 |
Vogt et al. 2010 | Canada | 65 lakes | 48N | n.a. |
Korneva 2010 | Russia | 9 reservoirs & 7 lakes | 49N–59N | 10–120 |
Korhonen et al. 2011 | Finland | 100 lakes | 59N–66N | n.a. |
Stomp et al. 2011 | USA | 540 lakes & reservoirs | 27N–49N | 1–2753 |
Pomati et al. 2012 | Switzerland | Zurich | 47N | 406 |
Borics et al. 2012 | Hungary | 26 lakes | n.a. | n.a. |
Fornarelli et al. 2013 | Australia | Fitzroy falls reservoir | 34S | 60–822 |
Weyhenmeyer et al. 2013 | Sweden | 205 lakes | 56N–69N | n.a. |
Palffy et al. 2013 | Hungary | Balaton | 46N | 105 |
Skacelova & Leps 2014 | Czech Republic | >400 lakes * | 48N–50N | 160–720 |
Filstrup et al. 2014 | USA | 131 lakes | 40N–43N | <500 |
Fernandez et al. 2014 | Argentina | Paso de las Piedras reservoir | 38S–39S | 155 |
Santos et al. 2014 | Brazil | 19 reservoirs | 13S–18S | 300–820 |
Zimmerman & Cardinale 2014 | USA | 1033 lakes | 26N–49N | 0–3403 |
Beyter et al. 2016 | USA | Las Cruces pond | 32N | 1190 |
Tian et al. 2016 | China | Nansihu | 34N–35N | 28 |
Costa et al. 2016 | Brazil | 7 reservoirs | 6S–8S | 413–560 |
Fontana et al. 2017 | Switzerland, Romania | 28 lakes | 44N–47N | 0, 406, 435 |
Abonyi et al. 2018 | Finland, Norway, Sweden | n.a. | 55N–65N | <300 |
This study | Ecuador | 24 lakes | 3.56S–3.62S | >3280 |
Response Variable | Related Variable | Correlation Coefficient | p-Value |
---|---|---|---|
Chlorophyll-a | Total Phosphate | 0.725 | <0.0001 |
Chlorophyll-a | Oxygen | 0.559 | 0.004 |
Chlorophyll-a | Altitude | 0.436 | 0.033 |
Log biovolume | Total Phosphate | 0.429 | 0.037 |
Chlorophyll-a | Shannon (Biovolume) | −0.393 | 0.058 |
Chlorophyll-a | Log Surface | −0.504 | 0.012 |
Log biovoulme | Shannon (Biovolume) | −0.658 | <0.001 |
Factors Included in Model | R2 | p-Value | AICc |
---|---|---|---|
Total phosphate, oxygen, altitude, log surface | 0.777 | <0.0001 | 50.764 |
Total phosphate, oxygen, log Surface | 0.724 | <0.0001 | 52.249 |
Total phosphate, altitude | 0.684 | <0.0001 | 52.322 |
Total phosphate, oxygen, altitude | 0.719 | <0.0001 | 52.707 |
Total phosphate, altitude, log Surface | 0.717 | <0.0001 | 52.877 |
Total phosphate, oxygen | 0.628 | <0.0001 | 56.198 |
Total phosphate, log Surface | 0.586 | <0.0001 | 58.776 |
Total phosphate | 0.525 | <0.0001 | 59.166 |
Oxygen, log Surface | 0.578 | 0.0001 | 59.244 |
Oxygen, altitude, log Surface | 0.602 | 0.0003 | 61.099 |
Oxygen | 0.312 | 0.0045 | 68.062 |
Altitude, log Surface | 0.379 | 0.0067 | 68.52 |
Oxygen, altitude | 0.375 | 0.0071 | 68.659 |
Log Surface | 0.254 | 0.012 | 70.011 |
Altitude | 0.190 | 0.0331 | 71.984 |
Factors Included in the Model | R2 | p-value | AICc |
---|---|---|---|
Total phosphate, Shannon’s diversity | 0.503 | <0.001 | 63.223 |
Shannon’s diversity | 0.433 | <0.001 | 63.466 |
Total phosphate | 0.184 | 0.0367 | 72.226 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartuche, A.; Guan, Z.; Ibelings, B.W.; Venail, P. Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability 2019, 11, 5235. https://doi.org/10.3390/su11195235
Cartuche A, Guan Z, Ibelings BW, Venail P. Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability. 2019; 11(19):5235. https://doi.org/10.3390/su11195235
Chicago/Turabian StyleCartuche, Alonso, Ziyu Guan, Bastiaan W. Ibelings, and Patrick Venail. 2019. "Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador" Sustainability 11, no. 19: 5235. https://doi.org/10.3390/su11195235
APA StyleCartuche, A., Guan, Z., Ibelings, B. W., & Venail, P. (2019). Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability, 11(19), 5235. https://doi.org/10.3390/su11195235