Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Volatilities Components
3.2.1. Volatility Decomposition
3.2.2. Factors Mimicking Volatility Components
3.3. Portfolio Analysis
3.4. Fama-MacBeth Regressions
4. Empirical Results
4.1. Short-and Long-Term Volatilities
4.2. Portfolio Analysis
4.3. Fama-MacBeth Regression
5. Robustness
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sharpe, W.F. Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. J. Financ. 1964, 19, 425–442. [Google Scholar]
- Lintner, J. The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Rev. Econ. Stat. 1965, 47, 13–37. [Google Scholar] [CrossRef]
- Ang, A.; Hodrick, R.J.; Xing, Y.; Zhang, X. The Cross-Section of Volatility and Expected Returns. J. Financ. 2006, 61, 259–299. [Google Scholar] [CrossRef] [Green Version]
- Frazzini, A.; Pedersen, L.H. Betting against beta. J. Financ. Econ. 2014, 111, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F.; Rosenberg, J.V. Testing the Volatility Term Structure Using Option Hedging Criteria. JOD 2000, 8, 10–28. [Google Scholar] [CrossRef]
- Bollerslev, T.; Zhou, H. Estimating stochastic volatility diffusion using conditional moments of integrated volatility. J. Econom. 2002, 109, 33–65. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, S.; Brandt, M.W.; Diebold, F.X. Range-Based Estimation of Stochastic Volatility Models. J. Financ. 2002, 57, 1047–1091. [Google Scholar] [CrossRef] [Green Version]
- Chacko, G.; Viceira, L.M. Spectral GMM estimation of continuous-time processes. J. Econom. 2003, 116, 259–292. [Google Scholar] [CrossRef]
- Chernov, M.; Ronald Gallant, A.; Ghysels, E.; Tauchen, G. Alternative models for stock price dynamics. J. Econom. 2003, 116, 225–257. [Google Scholar] [CrossRef] [Green Version]
- Maheu, J. Can GARCH Models Capture Long-Range Dependence? Stud. Nonlinear Dyn. Econom. 2005, 9. [Google Scholar] [CrossRef]
- Brandt, M.W.; Jones, C.S. Volatility Forecasting With Range-Based EGARCH Models. J. Bus. Econ. Stat. 2006, 24, 470–486. [Google Scholar] [CrossRef]
- Speight, A.E.H.; McMillan, D.G.; Gwilym, O. ap Intra-day volatility components in FTSE-100 stock index futures. J. Futures Mark. 2000, 20, 425–444. [Google Scholar] [CrossRef]
- Christoffersen, P.; Jacobs, K.; Ornthanalai, C.; Wang, Y. Option valuation with long-run and short-run volatility components☆. J. Financ. Econ. 2008, 90, 272–297. [Google Scholar] [CrossRef]
- Ané, T. Short and long term components of volatility in Hong Kong stock returns. Appl. Financ. Econ. 2006, 16, 439–460. [Google Scholar] [CrossRef]
- Adrian, T.; Rosenberg, J. Stock returns and volatility: Pricing the short-run and long-run components of market risk. J. Financ. 2008, 63, 2997–3030. [Google Scholar] [CrossRef]
- Yang, Y.; Copeland, L. The cross-sectional risk premium of decomposed market volatility in UK stock market. Open J. Soc. Sci. 2014, 2, 30. [Google Scholar] [CrossRef]
- Guo, H.; Neely, C.J. Investigating the intertemporal risk–return relation in international stock markets with the component GARCH model. Econ. Lett. 2008, 99, 371–374. [Google Scholar] [CrossRef]
- Zhu, J. Pricing volatility of stock returns with volatile and persistent components. Financ. Mark. Portf. Manag. 2009, 23, 243–269. [Google Scholar] [CrossRef]
- Park, S.; Jung, H. The Effect of Managerial Ability on Future Stock Price Crash Risk: Evidence from Korea. Sustainability 2017, 9, 2334. [Google Scholar] [CrossRef]
- Merton, R.C. An intertemporal capital asset pricing model. Econom. J. Econom. Soc. 1973, 867–887. [Google Scholar] [CrossRef]
- Fama, E.F.; MacBeth, J.D. Risk, Return, and Equilibrium: Empirical Tests. J. Political Econ. 1973, 81, 607–636. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Altman, E.I.; Schwartz, R.A. Common Stock Price Volatility Measures and Patterns. J. Financ. Quant. Anal. 1970, 4, 603–625. [Google Scholar] [CrossRef]
- Pinches, G.E.; Kinney, W.R. The measurement of the volatility of common stock prices. J. Financ. 1971, 26, 119–125. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- French, K.R.; Schwert, G.W.; Stambaugh, R.F. Expected stock returns and volatility. J. Financ. Econ. 1987, 19, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F.; Lilien, D.M.; Robins, R.P. Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model. Econometrica 1987, 55, 391. [Google Scholar] [CrossRef]
- Goyal, A.; Saretto, A. Cross-section of option returns and volatility. J. Financ. Econ. 2009, 94, 310–326. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.Y. Volatility persistence and stock valuations: Some empirical evidence using garch. J. Appl. Econ. 1988, 3, 279–294. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Hentschel, L. No news is good news. J. Financ. Econ. 1992, 31, 281–318. [Google Scholar] [CrossRef]
- Ghysels, E.; Santa-Clara, P.; Valkanov, R. There is a risk-return trade-off after all. J. Financ. Econ. 2005, 76, 509–548. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Whitelaw, R.F. Uncovering the Risk-Return Relation in the Stock Market. J. Financ. 2006, 61, 1433–1463. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, S.; Garg, V.; Deisting, F. Relationship between cross sectional volatility and stock returns: Evidence from India. Invest. Manag. Financ. Innov. 2012, 9, 91–100. [Google Scholar]
- Breen, W.; Glosten, L.R.; Jagannathan, R. Economic Significance of Predictable Variations in Stock Index Returns. J. Financ. 1989, 44, 1177–1189. [Google Scholar] [CrossRef]
- Turner, C.M.; Startz, R.; Nelson, C.R. A Markov model of heteroskedasticity, risk, and learning in the stock market. J. Financ. Econ. 1989, 25, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Baillie, R.T.; DeGennaro, R.P. Stock Returns and Volatility. J. Financ. Quant. Anal. 1990, 25, 203. [Google Scholar] [CrossRef]
- Chou, R.; Engle, R.F.; Kane, A. Measuring risk aversion from excess returns on a stock index. J. Econom. 1992, 52, 201–224. [Google Scholar] [CrossRef] [Green Version]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Da, Z.; Schaumburg, E. The Pricing of Volatility Risk Across Asset Classes; Unpublished Working Paper; University of Notre Dame: Notre Dame, IN, USA; Federal Reserve Bank of New York: New York, NY, USA, 2011. [Google Scholar]
- Cremers, M.; Halling, M.; Weinbaum, D. Aggregate jump and volatility risk in the cross-section of stock returns. J. Financ. 2015, 70, 577–614. [Google Scholar] [CrossRef]
- Sehgal, S.; Garg, V. Cross-sectional Volatility and Stock Returns: Evidence for Emerging Markets. Vikalpa 2016, 41, 234–246. [Google Scholar] [CrossRef]
- Dimitriou, D.; Simos, T. The relationship between stock returns and volatility in the seventeen largest international stock markets: A semi-parametric approach. Mod. Econ. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Lee, C.F.; Chen, G.; Rui, O.M. Stock Returns and Volatility on China’s Stock Markets. J. Financ. Res. 2001, 24, 523–543. [Google Scholar] [CrossRef]
- De Santis, G.; Imrohoroǧlu, S. Stock returns and volatility in emerging financial markets. J. Int. Money Financ. 1997, 16, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Shin, J. Stock returns and volatility in emerging stock markets. Int. J. Bus. Econ. 2005, 4, 31–43. [Google Scholar]
- Chiang, T.C.; Doong, S.-C. Empirical Analysis of Stock Returns and Volatility: Evidence from Seven Asian Stock Markets Based on TAR-GARCH Model. Rev. Quant. Financ. Account. 2001, 17, 301–318. [Google Scholar] [CrossRef]
- Xu, X.; Taylor, S.J. The Term Structure of Volatility Implied by Foreign Exchange Options. J. Financ. Quant. Anal. 1994, 29, 57–74. [Google Scholar] [CrossRef]
- Bates, D.S. Post-’87 crash fears in the S&P 500 futures option market. J. Econom. 2000, 94, 181–238. [Google Scholar]
- Newey, W.K.; West, K.D. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- Campbell, J.Y. Understanding risk and return. J. Political Econ. 1996, 104, 298–345. [Google Scholar] [CrossRef]
- Chen, J.S. Intertemporal CAPM and the Cross-Section of Stock Returns; Unpublished Working Paper; University of Southern California: Los Angeles, CA, USA, 2003. [Google Scholar]
- Bakshi, G.; Kapadia, N. Volatility Risk Premiums Embedded in Individual Equity Options. J. Deriv. 2003, 11, 45. [Google Scholar] [CrossRef]
- Nelson, D.B. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 1991, 59, 347–370. [Google Scholar] [CrossRef]
0.0106 | −0.0813 | 0.0115 | 0.9339 | −0.0450 | 0.0600 | 0.0011 | 0.9989 | −0.0027 | 0.0298 |
(0.0147) | (0.0724) | (0.0358) | (0.0092) | (0.0040) | (0.0064) | (0.0003) | (0.0004) | (0.0020) | (0.0034) |
Flres | Fsres | MKT | SMB | HML | |
---|---|---|---|---|---|
Min | −0.544 | −1.006 | −24.466 | −20.372 | −19.306 |
Max | 0.770 | 1.739 | 41.952 | 37.037 | 21.977 |
Mean | 0.011 | 0.032 | 0.348 | 0.430 | 0.786 |
Std. Dev | 0.156 | 0.302 | 7.537 | 5.935 | 4.503 |
Skewness | 0.923 | 0.669 | 0.678 | 0.521 | 0.041 |
Kurtosis | 4.667 | 3.669 | 3.595 | 4.711 | 4.356 |
Panel A: Sorted on Flres | Panel B: Sorted on Fsres | ||||
---|---|---|---|---|---|
Portfolio | Return (%) | Flres | Portfolio | Return (%) | Fsres |
1—Low | 32.78 | −53.85 | 1—Low | 32.75 | −27.38 |
(4.08) | (−8.14) | (4.08) | (−11.99) | ||
2 | 11.37 | −15.4 | 2 | 11.39 | −8.56 |
(2.17) | (−5.96) | (2.15) | (−7.27) | ||
3 | 5.61 | 2.76 | 3 | 5.68 | 0.33 |
(1.25) | (1.96) | (1.19) | (0.33) | ||
4 | 5.42 | 20.39 | 4 | 5.22 | 9.20 |
(1.14) | (9.45) | (1.10) | (6.53) | ||
5—High | 18.78 | 57.68 | 5—High | 18.90 | 28.17 |
(2.98) | (11.61) | (3.26) | (10.54) | ||
High-low | −14.00 ** | 111.53 *** | High-low | −13.85 *** | 55.56 *** |
(−2.52) | (10.21) | (−2.61) | (13.65) |
Panel A: Regression with 25 Portfolios | ||||||||
---|---|---|---|---|---|---|---|---|
Equal-Weight | Value-Weight | |||||||
Model | I | II | III | IV | I | II | III | IV |
Intercept | 12.298 ** | 13.651 ** | 11.102 ** | −0.899 | 2.451 | 4.336 | 3.571 | −1.973 |
(2.34) | (2.27) | (2.26) | (−0.19) | (0.55) | (0.84) | (0.85) | (−0.46) | |
MKT | 1.947 | −2.817 | 0.578 | 7.496 | 8.917 ** | 4.89 | 6.378 * | 8.396 |
(0.37) | (−0.59) | (0.11) | (1.23) | (2.04) | (1.32) | (1.67) | (1.53) | |
Flres | −0.500 *** | −0.373 *** | −0.315 *** | −0.362 *** | −0.308 *** | −0.287 *** | ||
(−3.01) | (−2.74) | (−3.02) | (−2.85) | (−2.80) | (-3.96) | |||
Fsres | −0.468 * | −0.467 * | −0.556 ** | −0.500 ** | −0.521 ** | −0.601 *** | ||
(−1.65) | (−1.86) | (-2.32) | (−2.22) | (−2.34) | (−2.62) | |||
HML | 11.711 *** | 9.025 *** | ||||||
(3.30) | (2.87) | |||||||
SMB | 10.079 *** | 4.761 | ||||||
(2.61) | (1.63) | |||||||
Adj. R2 | 0.271 *** | 0.251 *** | 0.344 *** | 0.498 *** | 0.258 *** | 0.233 *** | 0.314 *** | 0.442 *** |
(8.18) | (7.41) | (9.77) | (15.52) | (8.12) | (6.60) | (9.05) | (14.22) | |
Panel B: Regression with Individual Stocks | ||||||||
Model | I | II | III | IV | ||||
Intercept | 8.635 ** | 7.860 * | 7.758 ** | 3.557 | ||||
(2.16) | (1.96) | (1.98) | (1.02) | |||||
MKT | 7.611 ** | 7.202 ** | 7.740 ** | 8.473 ** | ||||
(2.32) | (2.52) | (2.39) | (2.37) | |||||
Flres | −0.125 ** | −0.111 ** | −0.095 * | |||||
(−2.10) | (−2.02) | (−1.75) | ||||||
Fsres | −0.361 *** | −0.340 *** | −0.332 *** | |||||
(−3.10) | (−3.04) | (−3.07) | ||||||
HML | 2.305 | |||||||
(1.65) | ||||||||
SMB | 3.853 ** | |||||||
(2.26) | ||||||||
Adj.R2 | 0.065 *** | 0.065 *** | 0.083 *** | 0.109 *** | ||||
(5.23) | (4.55) | (5.44) | (6.23) |
Panel A: Sorted on Flres | Panel B: Sorted on Fsres | ||||
---|---|---|---|---|---|
Portfolio | Return | Flres | Portfolio | Return | Fsres |
1—Low | 26.61 | −44.39 | 1—Low | 28.13 | −22.12 |
(4.50) | (−11.05) | (4.34) | (−12.82) | ||
2 | 10.11 | −13.35 | 2 | 10.72 | −7.71 |
(2.00) | (−6.93) | (2.01) | (−8.21) | ||
3 | 6.66 | 1.41 | 3 | 6.61 | −1.05 |
(1.36) | (0.95) | (1.36) | (−1.58) | ||
4 | 7.39 | 16.07 | 4 | 7.48 | 5.40 |
(1.40) | (9.31) | (1.55) | (8.54) | ||
5—High | 19.49 | 47.09 | 5—High | 17.31 | 19.02 |
(3.22) | (14.29) | (3.10) | (19.93) | ||
High-low | −7.12 ** | 91.48 *** | High-low | −10.82 *** | 41.14 *** |
(−2.19) | (14.13) | (−3.43) | (18.96) |
Panel A: Regression with 25 Portfolios | ||||||||
---|---|---|---|---|---|---|---|---|
Equal-Weight | Value-Weight | |||||||
Model | I | II | III | IV | I | II | III | IV |
Intercept | 6.912 | 5.969 | 3.768 | −3.824 | 0.735 | 0.812 | 1.298 | −3.186 |
(1.47) | (1.23) | (0.81) | (−0.90) | (0.15) | (0.16) | (0.27) | (−0.81) | |
MKT | 2.938 | 3.107 | 4.184 | 8.529 * | 9.573 *** | 8.012 ** | 7.641 ** | 9.796 ** |
(0.66) | (0.73) | (0.97) | (1.84) | (2.65) | (2.34) | (2.24) | (2.24) | |
Flres | −0.300 ** | −0.286 ** | −0.280 *** | −0.283 *** | −0.274 *** | −0.207 *** | ||
(−2.01) | (−2.38) | (−2.78) | (−2.64) | (−2.95) | (−2.64) | |||
Fsres | −0.777 ** | −0.730 ** | −0.561 ** | −0.625 ** | −0.582 ** | −0.425 ** | ||
(−2.29) | (−2.18) | (−2.14) | (−2.49) | (−2.41) | (−2.36) | |||
HML | 11.978 *** | 7.853 *** | ||||||
(3.44) | (2.76) | |||||||
SMB | 8.845 *** | 4.222 | ||||||
(2.74) | (1.46) | |||||||
Adj. R2 | 0.177 *** | 0.219 *** | 0.249 *** | 0.400 *** | 0.160 *** | 0.174 *** | 0.214 *** | 0.355 *** |
(6.03) | (7.17) | (7.71) | (12.11) | (5.38) | (5.28) | (6.26) | (9.75) | |
Panel B: Regression with Individual Stocks | ||||||||
Model | I | II | III | IV | ||||
Intercept | 7.154 * | 6.573 | 6.485 | 1.242 | ||||
(1.75) | (1.62) | (1.62) | (0.36) | |||||
MKT | 7.935 *** | 7.825 *** | 8.167 *** | 9.078 *** | ||||
(2.97) | (3.09) | (3.02) | (2.79) | |||||
Flres | −0.136 ** | −0.121 ** | −0.109 * | |||||
(−2.21) | (−2.10) | (−1.86) | ||||||
Fsres | −0.358 *** | −0.351 *** | −0.361 *** | |||||
(−3.33) | (−3.38) | (−3.40) | ||||||
HML | 3.474 ** | |||||||
(2.35) | ||||||||
SMB | 4.140 ** | |||||||
(2.34) | ||||||||
Adj. R2 | 0.069 *** | 0.071 *** | 0.092 *** | 0.128 *** | ||||
(6.24) | (5.27) | (6.71) | (8.45) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, T.T.T.; Kim, J. Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market. Sustainability 2019, 11, 5123. https://doi.org/10.3390/su11185123
Truong TTT, Kim J. Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market. Sustainability. 2019; 11(18):5123. https://doi.org/10.3390/su11185123
Chicago/Turabian StyleTruong, Thuy Thi Thu, and Jungmu Kim. 2019. "Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market" Sustainability 11, no. 18: 5123. https://doi.org/10.3390/su11185123
APA StyleTruong, T. T. T., & Kim, J. (2019). Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market. Sustainability, 11(18), 5123. https://doi.org/10.3390/su11185123