Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China
Abstract
:1. Introduction
2. Research Areas and Data Sources
2.1. Research Area
2.2. Data Sources
3. Research Methods
3.1. Land Use Transfer Matrix
3.2. Selection and Quantification of Influence Factors for Land Use Transition
3.2.1. Influence Factors of Land Use Transition
3.2.2. Spatial Correlation
3.3. Spatial Econometric Regression Analysis
4. Results
4.1. Characteristics of Land Use Transition in Sangzhi County
4.2. Influence Factors of Land Use Transition in Sangzhi County
4.2.1. Spatial Correlation Test
4.2.2. Influence Factors of Five Main Land Use Types Conversion
5. Conclusion and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grainger, A. National land use morphology: Patterns and possibilities. Geography 1995, 80, 235–245. [Google Scholar]
- Long, H.L. Land use transition: A new integrated approach of land use/cover change study. Geogr. Geoinf. Sci. 2003, 19, 87–90. [Google Scholar]
- Li, S.F.; Li, X.B. Progress and prospect on farmland abandonment. Acta Geogr. Sin. 2016, 71, 370–389. [Google Scholar]
- Zhang, B.L.; Gao, J.B.; Gao, Y.; Cai, W.M.; Zhang, F.R. Land use transition of mountainous rural areas in China. Acta Geogr. Sin. 2018, 73, 503–517. [Google Scholar]
- Mather, A.S. The forest transition. Area 1992, 24, 367–379. [Google Scholar]
- Mather, A.S. Recent Asian forest transitions in relation to forest-transition theory. Int. For. Rev. 2007, 9, 491–502. [Google Scholar]
- Grainger, A. The forest transition: An alternative approach. Area 1995, 27, 242–251. [Google Scholar]
- Barbier, E.B.; Burgess, J.C.; Grainger, A. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 2010, 27, 98–107. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Jin, W.F.; Zhou, C.S.; Liu, T.; Zhang, G.J. Exploring the factors affecting regional land development patterns at different developmental stages: Evidence from 289 Chinese cities. Cities 2019, 91, 193–201. [Google Scholar]
- Shao, J.A.; Li, Y.B.; Wei, C.F.; Xie, D.T. The drivers of land use change at regional scale: Assessment and prospects. Adv. Earth Sci. 2007, 22, 798–808. [Google Scholar]
- Xie, H.L.; Li, B. Driving forces analysis of land- use pattern changes based on logistic regression model in the farming-pastoral zone: A case study of Ongiud Banner, Inner Mongolia. Geogr. Res. 2008, 27, 294–304. [Google Scholar]
- Peng, J.; Xu, Y.Q.; Cai, Y.L.; Xiao, H.L. Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: A case study on the Maotiaohe watershed. Environ. Earth Sci. 2011, 64, 2107–2118. [Google Scholar] [CrossRef]
- Olaniyi, A.O.; Abdullah, A.M.; Ramli, M.F.; Alias, M.S. Assessment of drivers of coastal land use change in Malaysia. Ocean Coast. Manag. 2012, 67, 113–123. [Google Scholar] [CrossRef]
- Chi, V.K.; Rompaey, A.V.; Gerard, G.; Vanacker, V.; Schmook, B.; Hieu, N. Land Transitions in Northwest Vietnam: An Integrated Analysis of Biophysical and Socio-Cultural Factors. Hum. Ecol. 2013, 41, 37–50. [Google Scholar] [CrossRef]
- Sylvestera, K.M.; Brownb, D.G.; Deanec, G.D. Land transitions in the American plains: Multilevel modeling of drivers of grassland conversion (1956–2006). Agric. Ecosyst. Environ. 2013, 168, 7–15. [Google Scholar] [CrossRef]
- Chen, T.T.; Peng, L.; Liu, S.Q.; Wang, Q. Land cover change in different altitudes of Guizhou-Guangxi karst mountain area, China: Patterns and drivers. J. Mt. Sci. 2017, 14, 1873–1888. [Google Scholar] [CrossRef]
- Najmuddin, O.; Deng, X.Z.; Bhattacharya, R. The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin. Sustainability 2018, 10, 423. [Google Scholar] [CrossRef]
- Long, H.L.; Tang, G.P.; Li, X.B. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Chen, J.F.; Wei, S.Q.; Chang, K.T.; Chang, K.T.; Tsaidet, B.W. A comparative case study of cultivated land changes in Fujian and Taiwan. Land Use Policy 2007, 24, 386–395. [Google Scholar] [CrossRef]
- Chen, C.C.; Xie, G.D.; Zhen, L.; Leng, Y.F. Long-term Dynamics of Cultivated Land Resources and Their Driving Forces of Guyuan City in Upper Reaches of Jinghe River. Chin. Geogr. Sci. 2008, 18, 033–040. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C.H.; Fan, L. Farmland changes and the driving forces in Yucheng, North China Plain. J. Geogr. Sci. 2012, 22, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Li, X.M.; Zhou, W.Q.; Ouyang, Z.Y. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Temesgen, H.; Bekele, B. Socioeconomic drivers of spatio-temporal land use/land cover changes in a rapidly urbanizing area. Appl. Ecol. Environ. Res. 2017, 15, 809–827. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.H.D.; Meng, R.M. Spatiotemporal Dynamics and Spatial Determinants of Urban Growth in Suzhou, China. Sustainability 2017, 9, 393. [Google Scholar] [CrossRef]
- Lin, G.C.S.; Ho, S.P.S. The state, land system, and land development processes in contemporary China. Ann. Assoc. Am. Geogr. 2005, 95, 411–436. [Google Scholar] [CrossRef]
- Li, T.T.; Long, H.L.; Liu, Y.Q.; Tu, S.S. Multi-scale analysis of rural housing land transition under China’s rapid urbanization: The case of Bohai Rim. Habitat Int. 2015, 48, 227–238. [Google Scholar] [CrossRef]
- Chen, C.; Gao, J.L.; Chen, J.L. Institutional changes, land use dynamics, and the transition of rural settlements in suburban China: A case study of Huishan District in Wuxi city. Habitat Int. 2017, 70, 24–33. [Google Scholar] [CrossRef]
- Cao, Y.G.; Bai, Z.K.; Zhou, W.; Wang, J. Forces driving changes in cultivated land and management countermeasures in the Three Gorges Reservoir Area, China. J. Mt. Sci. 2013, 10, 149–162. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.H.D.; Huang, Z.J. Urban Land Expansion and Spatial Dynamics in Globalizing Shanghai. Sustainability 2014, 6, 8856–8875. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.S.; Zhang, Y.F.; Li, G.D. Driving mechanism of cultivated land transition in Yantai Proper, Shandong Province, China. Chin. Geogr. Sci. 2015, 25, 337–349. [Google Scholar] [CrossRef]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Long, H.L. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. Acta Geogr. Sin. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press Taylor & Francis Group: New York, NY, USA, 2009; pp. 45–75. [Google Scholar]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. Remote Sensing Monitoring Data Set for Land Use and Cover in China(CNLUCC). Data Registration and Publishing System of Resource and Environment Science Data Center of Chinese Academy of Sciences. 2018. Available online: http://www.resdc.cn/ (accessed on 25 January 2019).
- GDEMV2 30M Resolution Digital Elevation Data. Available online: http://www.gscloud.cn/ (accessed on 10 January 2019).
- 1:20,000 National Basic Geographic Databases. Available online: http://webmap.cn/main.do?method=index (accessed on 14 January 2019).
- Chen, L.; Michishita, R.; Xu, B. Abrupt spatiotemporal land and water changes and their potential drivers in Poyang Lake, 2000–2012. ISPRS J. Photogramm. Remote Sens. 2014, 98, 85–93. [Google Scholar] [CrossRef]
- Ding, C.R.; Lichtenberg, E. Land and Urban Economic Growth in China. J. Reg. Sci. 2011, 51, 299–317. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.H.D.; Liao, H.F.F.; Huang, Z.J. Administrative hierarchy and urban land expansion in transitional China. Appl. Geogr. 2015, 56, 177–186. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef] [Green Version]
- Long, H.L.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S.J. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Grossman, G.M.; Helpman, E. Trade, knowledge spillovers, and growth. Eur. Econ. Rev. 1991, 35, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. Available online: http://circos.ca/ (accessed on 31 March 2019). [CrossRef]
- He, C.F.; Huang, Z.J.; Wang, R. Land use change and economic growth in urban China: A structural equation analysis. Urban Stud. 2014, 51, 2880–2898. [Google Scholar] [CrossRef]
- Wang, Y.; Bilsborrow, R.E.; Zhang, Q.; Li, J.F.; Song, C.H. Effects of payment for ecosystem services and agricultural subsidy programs on rural household land use decisions in China: Synergy or trade-off? Land Use Policy 2019, 81, 785–801. [Google Scholar] [CrossRef]
- Meijers, E.; van der Wouw, D. Struggles and strategies of rural regions in the age of the ‘urban triumph’. J. Rural Stud. 2019, 66, 21–29. [Google Scholar] [CrossRef]
- Jin, W.F.; Zhou, C.S.; Luo, L.J. Impact of Land Input on Economic Growth at Different Stages of Development in Chinese Cities and Regions. Sustainability 2018, 10, 2847. [Google Scholar] [CrossRef]
Variable Category | Variable | Description | Unit |
---|---|---|---|
Interpreted Variables | FL2CL | Conversion of forest land to cultivated land | ha |
GL2FL | Conversion of grassland to forest land | ha | |
CL2FL | Conversion of cultivated land to forest land | ha | |
GL2CL | Conversion of grassland to cultivated land | ha | |
CL2URL | Conversion of cultivated land to urban and rural construction land | ha | |
Terrain | Elevation | Average elevation | m |
Slope | Slope elevation | ° | |
Hydrology | Dis2W | Shortest distance to rivers | m |
Territoriality | Dis2NV | Shortest distance to natural village center | m |
Dis2AV | Shortest distance to administrative village center | m | |
Dis2TS | Shortest distance to township government | m | |
Dis2T | Shortest distance to town government | m | |
Dis2C | Shortest distance to county government | m | |
Transportation | Dis2VR | Shortest distance to village roads | m |
Dis2RR | Shortest distance to rural roads | m | |
Dis2CR | Shortest distance to county roads | m | |
Dis2PR | Shortest distance to province roads | m | |
Population | Pop | Average population growth rate | % |
Urbanization | Urb | Average urbanization rate | % |
Public Finance Expenditure | Pfe | Average change rate of public finance expenditure | % |
Land Use Types in 2010 | Land Use Types in 2018 | |||||
---|---|---|---|---|---|---|
CL | FL | GL | WL | URL | Total | |
CL | 65,154.15 | 869.49 | 300.6 | 125.73 | 453.33 | 66,903.3 |
WL | 3474.45 | 232,277.76 | 208.26 | 659.79 | 228.06 | 236,848.32 |
GL | 1688.22 | 3630.51 | 36,209.07 | 63.99 | 19.35 | 41,611.14 |
WL | 33.03 | 122.58 | 0 | 1029.42 | 1.08 | 1186.11 |
URL | 5.67 | 12.51 | 1.89 | 6.84 | 511.47 | 538.38 |
Total | 70,355.52 | 236,912.85 | 36,719.82 | 1885.77 | 1213.29 | 347,087.25 |
Land Use Types | Increase or Decrease Rate During the Period (%) | Conversion Type 1 | Contribution Rate (%) | Conversion Type 2 | Contribution Rate (%) | Conversion Type3 | Contribution Rate (%) | Conversion Type 4 | Contribution Rate (%) |
---|---|---|---|---|---|---|---|---|---|
CL | 4.91 | FL | 49.71 | URL | 25.92 | GL | 17.19 | WL | 7.19 |
FL | 0.03 | CL | 76.02 | WL | 14.44 | URL | 4.99 | GL | 4.56 |
GL | −13.32 | FL | 67.21 | CL | 31.25 | WL | 1.18 | URL | 0.36 |
WL | 58.99 | FL | 78.23 | CL | 21.08 | GL | 0.00 | URL | 0.00 |
URL | 55.63 | FL | 46.49 | WL | 25.42 | CL | 21.07 | GL | 7.02 |
Interpreted Variables | FL2CL | GL2FL | CL2FL | GL2CL | CL2URL |
Moran’s I | 0.3199 *** | 0.3382 *** | 0.1298 * | 0.0719* | 0.0799 *** |
Explanatory variable | Elevation | Slope | Dis2T | Dis2NV | Dis2AV |
Moran’s I | 0.4335 *** | 0.4264 *** | 0.4359 *** | 0.3548 *** | 0.4166 *** |
Explanatory variable | Dis2TS | Dis2C | Dis2VR | Dis2RR | Dis2CR |
Moran’s I | −0.0035 | 0.7864 *** | −0.0718 | 0.0545 | 0.2115 ** |
Explanatory variable | Dis2PR | Dis2W | Pop | Urb | Pfe |
Moran’s I | 0.7165 *** | 0.344 ***2 | 0.2066 ** | 0.2379 *** | − 0.0346 |
Spatial Correlation Test | FL2CL | GL2FL | CL2FL | GL2CL | CL2URL |
---|---|---|---|---|---|
Lagrange Multiplier (LM) (lag) | 1.9419 | 8.5341 *** | 2.8996 * | 8.1287 *** | 1.0126 |
Robust LM (lag) | 3.7125 * | 0.1017 | 0.2049 | 4.1211 ** | 5.6459 ** |
LM (error) | 7.9309 *** | 8.4945 *** | 3.6613 * | 6.1463 ** | 2.4101 |
Robust LM (error) | 9.7014 *** | 0.0621 | 0.9666 | 2.1388 | 7.0433 *** |
FL2CL | GL2FL | CL2FL | GL2CL | CL2URL | |
---|---|---|---|---|---|
Elevation | 0.0476 | 0.0488 | 0.0371 | −0.1695 * | −0.3205 ** |
Slope | −0.0059 *** | −0.0011 | −0.0057 *** | −0.0164 *** | −0.0001 |
Dis2W | −0.1454 | −1.0088 | 1.1832 | −21.3594 ** | −44.0126 ** |
Dis2NV | −0.6978 *** | 0.7107 * | −0.3031 | −0.7905 | 0.9176 |
Dis2AV | 7.4135 *** | 0.8827 | 6.9958 *** | 5.8137 | 29.4551 *** |
Dis2TS | −1.2612 *** | −0.9608 | −1.5503 *** | 1.1374 | 4.1304** |
Dis2T | 0.4210 ** | 0.1686 | −0.4249 ** | 1.2603 *** | 1.5212 ** |
Dis2C | −0.3519 ** | −0.8019 ** | 0.0665 | 0.4279 | −4.5495 *** |
Dis2VR | −2.7261 | 3.4871 | 6.9422 *** | −10.4978 ** | −9.2845 |
Dis2RR | −0.0985 | 0.3209 | −0.3905 * | −1.4146 *** | −1.6866 * |
Dis2CR | 0.2713 | 0.8735 | 1.2779 *** | −1.1452 * | 0.5424 |
Dis2PR | 0.0439 | 1.1331*** | −0.1351 | −0.9277 ** | 1.2321* |
Pop | −0.0543 | 0.0361 | 0.0204 | −0.3423 ** | 0.9919 *** |
Urb | −0.1540 | −0.3914 | −0.1587 | −0.8173 ** | 0.9419 |
Pfe | −0.0293 ** | −0.0308 | −0.0723 *** | −0.0564 ** | −0.0076 |
W*Elevation | 0.1169 | −0.0244 | 0.2417 * | −0.5038 * | −0.3180 |
W*Slope | −0.0186 *** | 0.0011 | −0.0210 *** | −0.0418 *** | −0.0001 |
W*Dis2W | 54.5218 *** | 8.8070 | 59.6920*** | 36.7964 | 35.7646 |
W*Dis2NV | 1.6318 *** | 4.4328 *** | 0.5211 | −2.2738 ** | 1.7365 |
W*Dis2AV | 9.8095 ** | 4.8530 | 12.4066 ** | −5.1335 | 4.8154 |
W*Dis2TS | −6.6493 *** | −3.2487 | −6.8396 *** | −7.2986 ** | 0.0664 |
W*Dis2T | −0.6960 * | −0.3980 | −1.1312** | −0.0538 | 3.5310 *** |
W*Dis2C | 0.0194 | 1.1678 ** | 0.3324 | 0.3538 | 4.2506 *** |
W*Dis2VR | 14.7821** | −7.2570 | 26.1450 *** | 11.4441 | −9.0691 |
W*Dis2RR | 3.1223 *** | 0.9218 | −1.2920 | 4.5040 ** | −6.6422 * |
W*Dis2CR | 4.5908 *** | −1.9423 | 2.3060 *** | 6.2409 *** | 3.3055 |
W*Dis2PR | −0.1445 | −1.7685 ** | −0.6851 * | 2.1973 *** | −1.9666 |
W*Pop | −0.4651 *** | −0.0960 | −0.2640 | −0.9986 *** | 0.2222 |
W*Urb | 0.3763 | 0.2915 | 0.2569 | −1.9004 * | 5.2210 *** |
W*Pfe | −0.0295 | 0.0111 | −0.1735*** | −0.0157 | −0.2006 |
W*FL2CL | −0.4374 ** | - | - | - | - |
W*GL2FL | - | −0.6532 *** | - | - | - |
W*CL2FL | - | - | −0.7494 *** | - | - |
W*GL2CL | - | - | - | −0.7408 *** | - |
W*CL2URL | - | - | - | - | −0.5047 ** |
R-squared | 0.9340 | 0.9067 | 0.8855 | 0.8691 | 0.8766 |
Log likelihood | 124.0870 | 96.6056 | 115.9320 | 90.0028 | 65.7257 |
Akaike info criterion | −184.1740 | −129.2110 | −167.8630 | −116.0060 | −67.4515 |
Schwarz criterion | −130.9400 | −75.9773 | −114.6290 | −62.7717 | −14.2175 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Jin, W.; Chen, K.; Wu, J.; Zhou, C. Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China. Sustainability 2019, 11, 4915. https://doi.org/10.3390/su11184915
Xie W, Jin W, Chen K, Wu J, Zhou C. Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China. Sustainability. 2019; 11(18):4915. https://doi.org/10.3390/su11184915
Chicago/Turabian StyleXie, Wenhai, Wanfu Jin, Kairui Chen, Jilin Wu, and Chunshan Zhou. 2019. "Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China" Sustainability 11, no. 18: 4915. https://doi.org/10.3390/su11184915
APA StyleXie, W., Jin, W., Chen, K., Wu, J., & Zhou, C. (2019). Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China. Sustainability, 11(18), 4915. https://doi.org/10.3390/su11184915