Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems
Abstract
:1. Introduction
- Fulfills the basic needs of access of individuals and societies in a manner that is safe, that is consistent with the environment, and that provides equity between generations.
- Operates efficiently, offers different modes of transport, and is cost efficient.
2. Study Objectives
- Introducing the concept of sustainability in transportation systems.
- Designing and fabricating prototypes with two mechanisms.
- Conducting tests to examine the power generation capability of each mechanism.
- Investigating the effects of traffic loading on the power generation potential.
- Evaluating the effect of electromagnetic energy harvesting in roadways on transportation sustainability.
3. Literature Review of Energy Harvesting from Roadways
4. Electromagnetic Energy Harvesting Technology
5. Materials, Design, and Experimental Tests
5.1. Design and Fabrication of Mechanisms
5.1.1. The Power Generation Component of the Rotational Mechanism
5.1.2. The Power Generation Component of the Cantilever Generator Mechanism
5.2. Laboratory Testing
5.3. Experimental Results, Analysis, and Discussion
6. Benefits to Sustainability Indicators and Strategies
6.1. Benefits of the Technology in Strategies
6.2. Benefits of the Technology Regarding Indicators
6.2.1. Environmental Benefits
6.2.2. Social Benefits
6.2.3. Economic Benefits
7. Potential Challenges and Limitations
8. Conclusions and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deakin, E. Sustainable Development & Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity; University of California at Berkeley: Berkeley, CA, USA, 2001. [Google Scholar]
- Banister, D. Unsustainable Transport: City Transport in the New Century; Routledge: London, UK, 2005. [Google Scholar]
- Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331–347. [Google Scholar] [CrossRef]
- Beatley, T. The Many Meanings of Sustainability: Introduction to a Special Issue of JPL; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Quaddus, M.A.; Siddique, M. Modelling sustainable development planning: a multicriteria decision conferencing approach. Environ. Int. 2001, 27, 89–95. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Park, Y.S.; Lim, S.H.; Egilmez, G.; Szmerekovsky, J. Environmental efficiency assessment of US transport sector: A slack-based data envelopment analysis approach. Transp. Res. Part D Transp. Environ. 2018, 61, 152–164. [Google Scholar] [CrossRef]
- Zhou, J. Sustainable transportation in the US: A review of proposals, policies, and programs since 2000. Front. Archit. Res. 2012, 1, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Black, W.R. Sustainable transportation: A US perspective. J. Transp. Geogr. 1996, 4, 151–159. [Google Scholar] [CrossRef]
- Kuang, X.; Zhao, F.; Hao, H.; Liu, Z. Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis. Sustainability 2019, 11, 3273. [Google Scholar] [CrossRef]
- Schulte, J.; Ny, H. Electric Road Systems: Strategic Stepping Stone on the Way towards Sustainable Freight Transport? Sustainability 2018, 10, 1148. [Google Scholar] [CrossRef]
- Wang, L. Framework for Evaluating Sustainability of Transport. System in Megalopolis and its Application. IERI Procedia 2014, 9, 110–116. [Google Scholar] [CrossRef]
- Gransberg, D.D.; Tighe, S.L.; Pittenger, D.; Miller, M.C. Sustainable pavement preservation and maintenance practices. In Climate Change, Energy, Sustainability and Pavements; Springer: Berlin, Germany, 2014; pp. 393–418. [Google Scholar]
- Haghshenas, H.; Vaziri, M. Urban sustainable transportation indicators for global comparison. Ecol. Indic. 2012, 15, 115–121. [Google Scholar] [CrossRef]
- Haghshenas, H.; Vaziri, M.; Gholamialam, A. Evaluation of sustainable policy in urban transportation using system dynamics and world cities data: A case study in Isfahan. Cities 2015, 45, 104–115. [Google Scholar] [CrossRef]
- Gilbert, R.; Irwin, N.; Hollingworth, B.; Blais, P. Sustainable transportation performance indicators (STPI). Transp. Res. Board (TRB) CD ROM 2003, 1–20. [Google Scholar]
- Steg, L.; Gifford, R. Sustainable transportation and quality of life. J. Transp. Geogr. 2005, 13, 59–69. [Google Scholar] [CrossRef]
- Jha, M.K.; Ogallo, H.G.; Owolabi, O. A quantitative analysis of sustainability and green transportation initiatives in highway design and maintenance. Proc.-Soc. Behav. Sci. 2014, 111, 1185–1194. [Google Scholar] [CrossRef]
- Richardson, B.C. Sustainable transport: analysis frameworks. J. Transp. Geogr. 2005, 13, 29–39. [Google Scholar] [CrossRef]
- Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Gudmundsson, H. Indicators and Performance Measures for Transportation, Environment and Sustainability in North America: Report from a German Marshall Fund Fellowship 2000 Individual Study Tour October 2000; National Environmental Research Institute: Nagpur, India, 2001. [Google Scholar]
- Hansson, L.; Nerhagen, L. Regulatory Measurements in Policy Coordinated Practices: The Case of Promoting Renewable Energy and Cleaner Transport in Sweden. Sustainability 2019, 11, 1687. [Google Scholar] [CrossRef]
- Wang, K.; Yu, S.; Zhang, W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Chu, J.; Liu, H.; Liang, L. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transp. Res. Part D Transp. Environ. 2016, 48, 460–472. [Google Scholar] [CrossRef]
- Ning, D.; Wang, R.; Zhang, C. Numerical simulation of a dual-chamber oscillating water column wave energy converter. Sustainability 2017, 9, 1599. [Google Scholar] [CrossRef]
- Hendrickson, C.; Cicas, G.; Matthews, S.H. Transportation sector and supply chain performance and sustainability. Transp. Res. Rec. 2006, 1983, 151–157. [Google Scholar] [CrossRef]
- Bilan, Y.; Streimikiene, D.; Vasylieva, T.; Lyulyov, O.; Pimonenko, T.; Pavlyk, A. Linking between Renewable Energy, CO2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership. Sustainability 2019, 11, 1528. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Li, Q.; Li, Y. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement. Appl. Energy 2018, 229, 18–30. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, S.-J.; Yang, C.-J. Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter. Appl. Energy 2016, 164, 620–627. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63. [Google Scholar] [CrossRef]
- McKinley, I.M.; Lee, F.Y.; Pilon, L. A novel thermomechanical energy conversion cycle. Appl. Energy 2014, 126, 78–89. [Google Scholar] [CrossRef]
- Zhoy, Z.-Y.; Ren, L.W.; Yang, H.Y.; Liu, J.Z.; Chu, K.D.; Weng, J.P.; Yu, Z.W. Effect of short-term acumagnetotherapy on diabetic kidney disease in patients with type II diabetes and study on the molecular mechanism. World J. Acupunct. Moxib. 2015, 25, 1–10. [Google Scholar] [CrossRef]
- Guldentops, G.; Nejad, A.M.; Vuye, C.; Rahbar, N. Performance of a pavement solar energy collector: Model development and validation. Appl. Energy 2016, 163, 180–189. [Google Scholar] [CrossRef]
- Vocca, H.; Neri, I.; Travasso, F.; Gammaitoni, L. Kinetic energy harvesting with bistable oscillators. Appl. Energy 2012, 97, 771–776. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Vasquez Padilla, R.; Sedighi, M.; Novak, J.P. Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations. Energies 2019, 12, 2770. [Google Scholar] [CrossRef]
- Tao, K.; Yi, H.; Tang, L.; Wu, J.; Wang, P.; Wang, N.; Hu, L.; Fu, J.; Miao, J.; Chang, H. Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surf. Coat. Technol. 2019, 359, 289–295. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Tang, L.; Padilla, R.V.; Tang, Z.S.; Sedighi, M. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manag. 2019, 184, 559–570. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; He, Y.C.; Chan, P.W. Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications. Appl. Energy 2016, 169, 150–163. [Google Scholar] [CrossRef]
- Orrego, S.; Shoele, K.; Ruas, A.; Doran, K.; Caggiano, B.; Mittal, R.; Kang, S.H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 2017, 194, 212–222. [Google Scholar] [CrossRef]
- Roshani, H.; Jagtap, P.; Dessouky, S.; Montoya, A.; Papagiannakis, A.T. Theoretical and Experimental Evaluation of Two Roadway Piezoelectric-Based Energy Harvesting Prototypes. J. Mater. Civ. Eng. 2017, 30, 04017264. [Google Scholar] [CrossRef]
- Walubita, L.; Sohoulande Djebou, D.; Faruk, A.; Lee, S.; Dessouky, S.; Hu, X. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability 2018, 10, 383. [Google Scholar] [CrossRef]
- Pascual-Muñoz, P.; Castro-Fresno, D.; Serrano-Bravo, P.; Alonso-Estébanez, A. Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Appl. Energy 2013, 111, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Datta, U.; Dessouky, S.; Papagiannakis, A. Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. J. Transp. Res. Board 2017, 2628, 12–22. [Google Scholar] [CrossRef]
- Wang, L.; Park, J.; Zhou, W.; Zuo, L. A Large-Scale On-Road Energy Harvester from Highway Vibration. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Efthymiou, C.; Santamouris, M.; Kolokotsa, D.; Koras, A. Development and testing of photovoltaic pavement for heat island mitigation. Sol. Energy 2016, 130, 148–160. [Google Scholar] [CrossRef]
- Lee, K.; Correia, A. Investigation of Novel Methods to Harvest Solar Energy from Asphalt Pavements. A Research Report to Korean Institute of Construction Technology; University of Rhode Island: Kingston, RI, USA, 2010. [Google Scholar]
- Wardlaw, J.L.; Karaman, I.; Karsilayan, A. Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sens. J. 2013, 13, 709–722. [Google Scholar] [CrossRef]
- Duarte, F.; Ferreira, A. Energy harvesting on road pavements: state of the art. Proc. Inst. Civ. Eng. Energy 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Chiarelli, A.; Al-Mohammedawi, A.; Dawson, A.R.; Garcia, A. Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures. Int. J. Therm. Sci. 2017, 112, 242–251. [Google Scholar] [CrossRef]
- Nasir, D.S.; Hughes, B.R.; Calautit, J.K. A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application. Appl. Energy 2017, 186, 436–449. [Google Scholar] [CrossRef]
- Gao, Q.; Huang, Y.; Li, M.; Liu, Y.; Yan, Y.Y. Experimental study of slab solar collection on the hydronic system of road. Sol. Energy 2010, 84, 2096–2102. [Google Scholar] [CrossRef]
- Faisal, F.; Wu, N.; Kapoor, K. Energy harvesting in pavement from passing vehicles with piezoelectric composite plate for ice melting. In Active and Passive Smart Structures and Integrated Systems 2016; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2016. [Google Scholar]
- Han, C.; Wu, G.; Yu, B.X. Performance Analyses of Geothermal and Geothermoelectric Pavement Snow Melting System. J. Energy Eng. 2018, 144, 04018067. [Google Scholar] [CrossRef]
- Chen, M.; Wu, S.; Wang, H.; Zhang, J. Study of ice and snow melting process on conductive asphalt solar collector. Sol. Energy Mater. Sol. Cells 2011, 95, 3241–3250. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D.; Tan, Y.; Zhou, J.; Oeser, M. Investigation of design alternatives for hydronic snow melting pavement systems in China. J. Clean. Prod. 2018, 170, 1413–1422. [Google Scholar] [CrossRef]
- Yu, W.; Wang, D.; Tan, Y.; Zhou, J.; Oeser, M. State of the art and practice of pavement anti-icing and de-icing techniques. Sci. Cold Arid Reg. 2014, 6, 14–21. [Google Scholar]
- Mirzanamadi, R.; Hagentoft, C.-E.; Johansson, P. An analysis of hydronic heating pavement to optimize the required energy for anti-icing. Appl. Therm. Eng. 2018, 144, 278–290. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xu, S.; Hu, H.; Xiao, J.; Sha, A.; Huang, Y. Energy harvesting from asphalt pavement using thermoelectric technology. Appl. Energy 2017, 205, 941–950. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
- Papagiannakis, A.; Kaphle, R.; Khalili, M. Improving Thermal Properties of Asphalt Concretes. In Advances in Materials and Pavement Prediction; CRC Press: Boca Raton, FL, USA, 2018; pp. 557–560. [Google Scholar]
- Mallick, R.B.; Chen, B.-L.; Bhowmick, S. Harvesting energy from asphalt pavements and reducing the heat island effect. Int. J. Sustain. Eng. 2009, 2, 214–228. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Hudak, N.S.; Amatucci, G.G. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Phys. 2008, 103, 5. [Google Scholar] [CrossRef]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Eom, H.J. Faraday’s Law of Induction. In Primary Theory of Electromagnetics; Springer: New York, NY, USA, 2013; pp. 95–111. [Google Scholar]
- Xie, J.; Zuo, L. Dynamics and control of ocean wave energy converters. Int. J. Dyn. Control 2013, 1, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Leijon, M.; Danielsson, O.; Eriksson, M.; Thorburn, K.; Bernhoff, H.; Isberg, J.; Sunberg, I.; Ivanova, I.; Sjostedt, E.; Agren, O.; et al. An electrical approach to wave energy conversion. Renew. Energy 2006, 31, 1309–1319. [Google Scholar] [CrossRef]
- Polinder, H.; Damen, M.; Gardner, F. Design, modelling and test results of the AWS PM linear generator. Int. Trans. Electr. Energy Syst. 2005, 15, 245–256. [Google Scholar] [CrossRef]
- Oliveira-Pinto, S.; Rosa-Santos, P.; Taveira-Pinto, F. Electricity supply to offshore oil and gas platforms from renewable ocean wave energy: Overview and case study analysis. Energy Convers. Manag. 2019, 186, 556–569. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, F.U. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers. Manag. 2018, 172, 611–618. [Google Scholar] [CrossRef]
- Rome, L.C.; Flynn, L.; Goldman, E.M.; Yoo, T.D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef]
- Liu, M.; Lin, R.; Zhou, S.; Yu, Y.; Ishida, A.; McGrath, M.; Kennedy, B.; Hajj, M.; Zuo, L. Design, simulation and experiment of a novel high efficiency energy harvesting paver. Appl. Energy 2018, 212, 966–975. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Zhang, N.; Lin, J.; Liao, W.H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Convers. Manag. 2017, 132, 189–197. [Google Scholar] [CrossRef]
- Zhang, L.B.; Dai, H.L.; Yang, Y.W.; Wang, L. Design of high-efficiency electromagnetic energy harvester based on a rolling magnet. Energy Convers. Manag. 2019, 185, 202–210. [Google Scholar] [CrossRef]
- Li, Z.; Zuo, L.; Kuang, J.; Luhrs, G. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct. 2012, 22, 025008. [Google Scholar] [CrossRef]
- Wang, J.; Lin, T.; Zuo, L. High efficiency electromagnetic energy harvester for railroad application. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- Phillips, K.J. Simulation and Control System of a Railroad Track Power Harvesting Device. Master’s Thesis, Faculty of The Graduate College, University of Nebraska–Lincoln, Lincoln, NE, USA, August 2011. [Google Scholar]
- Pourghodrat, A. Energy Harvesting Systems Design for Railroad Safety. Master’s Thesis, Faculty of The Graduate College, University of Nebraska–Lincoln, Lincoln, NE, USA, August 2011. [Google Scholar]
- Zhang, X.; Zhang, Z.; Pan, H.; Salman, W.; Yuan, Y.; Liu, Y. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 2016, 118, 287–294. [Google Scholar] [CrossRef]
- Gholikhani, M.; Tahami, S.A.; Dessouky, S. Harvesting Energy from Pavement–Electromagnetic Approach. In MATEC Web of Conferences; EDP Sciences: Paris, France, 2019. [Google Scholar]
- Garcia-Pozuelo, D.; Gauchia, A.; Olmeda, E.; Diaz, V. Bump modeling and vehicle vertical dynamics prediction. Adv. Mech. Eng. 2014, 6, 736576. [Google Scholar] [CrossRef]
- Kattan, L.; Tay, R.; Acharjee, S. Managing speed at school and playground zones. Accid. Anal. Prev. 2011, 43, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Partodezfoli, M.; Rezaey, A.; Baniasad, Z.; Rezaey, H. A novel speed-breaker for electrical energy generation suitable for elimination of remote parts of power systems where is near to roads. J. Basic Appl. Sci. Res. 2012, 2, 6285–6292. [Google Scholar]
- Wang, L.; Todaria, P.; Pandey, A.; O’Connor, J.; Chernow, B.; Zuo, L. An Electromagnetic Speed Bump Energy Harvester and Its Interactions with Vehicles. IEEE/ASME Trans. Mechatron. 2016, 21, 1985–1994. [Google Scholar] [CrossRef]
- Todaria, P.; Wang, L.; Pandey, A.; O’Connor, J.; McAvoy, D.; Harrigan, T.; Chernow, B.; Zou, L. Design, modeling and test of a novel speed bump energy harvester. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2015. [Google Scholar]
- Gholikhani, M.; Nasouri, R.; Tahami, S.A.; Legette, S.; Dessouky, S.; Montoya, A. Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump. Appl. Energy 2019, 250, 503–511. [Google Scholar] [CrossRef]
- Wang, L.; Ban, J.; Wang, L.; Park, J.; Zhou, W.L. On-Road Energy Harvesting for Traffic Monitoring. 2014. Available online: https://www.utrc2.org/sites/default/files/Final-Report-On-Road-Energy-Harvesting.pdf (accessed on 7 September 2019).
- Sarma, B.S.; Jyothi, V.; Sudhir, D. Design of Power Generation Unit Using Roller Mechanism. IOSR J. Electr. Electron. Eng. (IOSR-JEEE) 2014, 9, 55–60. [Google Scholar] [CrossRef]
- Obeid, H.H.; Jaleel, A.K.; Hassan, N.A. Design and Motion Modeling of an Electromagnetic Hydraulic Power Hump Harvester. Adv. Mech. Eng. 2014, 6, 150293. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Rasim, Y.; Wang, C.; Du, B.; Yuan, Y. Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Appl. Energy 2016, 164, 152–161. [Google Scholar] [CrossRef]
- Halim, M.A.; Rantz, R.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S. An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy 2018, 217, 66–74. [Google Scholar] [CrossRef]
- Aswathaman, V.; Priyadharshini, M. Every speed breaker is now a source of power. In Proceedings of the 2010 International Conference on Biology, Environment and Chemistry IPCBEE, Hong Kong, China, 28–30 December 2010. [Google Scholar]
- Goodey, D.; Fidlar, A.; Denawakage Don, V.; Hudnell, D.; Pemberton, R.; Azzouz, M.S.; Brink, J. A Pneumatic Multi-Dome Active Energy Harvesting System. In ASME 2016 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Ullah, K.M.; Ahsan-uz-Zaman, K.M.; Hosen, S.; Khan, R.H.; Parvin, S. Electrical power generation through speed breaker. In Proceedings of the 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Park, P.; Choi, G.S.; Rohani, E.; Song, I. Optimization of Thermoelectric System for Pavement Energy Harvesting; CRC Press: Boca Raton, FL, USA, 2014; pp. 1827–1838. [Google Scholar]
- Papagiannakis, A.T.; Montoya, A.; Dessouky, S.; Helffrich, J. Development and Evaluation of Piezoelectric Prototypes for Roadway Energy Harvesting. J. Energy Eng. 2017, 143, 04017034. [Google Scholar] [CrossRef]
- Lee, R.J.; Sener, I.N. Transportation planning and quality of life: Where do they intersect? Transp. Policy 2016, 48, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Buehler, R.; Pucher, J. Making public transport financially sustainable. Transp. Policy 2011, 18, 126–138. [Google Scholar] [CrossRef]
Area of Change | Suggested Change |
---|---|
Road/Vehicle Operation Improvements | 1. Conventional Traffic Flow Improvements |
a. Traffic Signal Timing | |
b. Ramp Metering | |
c. Flow Metering | |
d. Bottleneck Removal | |
2. Intelligent Transportation System Improvements | |
a. Smart Highways | |
b. Smart Vehicles | |
c. Accident/Incident Management | |
d. Routing and Scheduling Enhancements | |
3. Driver Education | |
4. Improved Logistics and Fleet Management |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholikhani, M.; Tahami, S.A.; Khalili, M.; Dessouky, S. Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems. Sustainability 2019, 11, 4906. https://doi.org/10.3390/su11184906
Gholikhani M, Tahami SA, Khalili M, Dessouky S. Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems. Sustainability. 2019; 11(18):4906. https://doi.org/10.3390/su11184906
Chicago/Turabian StyleGholikhani, Mohammadreza, Seyed Amid Tahami, Mohammadreza Khalili, and Samer Dessouky. 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems" Sustainability 11, no. 18: 4906. https://doi.org/10.3390/su11184906
APA StyleGholikhani, M., Tahami, S. A., Khalili, M., & Dessouky, S. (2019). Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems. Sustainability, 11(18), 4906. https://doi.org/10.3390/su11184906