Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms
Abstract
:1. Introduction
2. Business Model and Biopharmaceutical Industry
2.1. Strategy and Business Model for Latecomers
2.2. Business Models of Biopharmaceutical Industry
3. Data and Methods
3.1. Data
3.2. Analytical Method
4. Results and Discussions
4.1. The Groups of Korean Biopharmaceutical Firms
4.2. The Characteristics and Performances of Each Cluster
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Casadesus-Masanell, R.; Ricart, J.E. From strategy to business models and onto tactics. Long Range Plan. 2010, 43, 195–215. [Google Scholar] [CrossRef]
- Boni, A.A. Emerging business models and strategies to accelerate innovation in the biopharmaceutical industry. J. Commerc. Biotechnol. 2016, 22, 53–59. [Google Scholar] [CrossRef]
- Gautam, A.; Pan, X. The changing model of big pharma: Impact of key trends. Drug Discov. Today 2016, 21, 379–384. [Google Scholar] [CrossRef]
- Pisano, G.P. Science Business: The Promise, the Reality, and the Future of Biotech; Harvard Business School Press: Boston, MA, USA, 2006. [Google Scholar]
- Sabatier, V.; Mangematin, V.; Rousselle, T. From recipe to dinner: Business model portfolios in the European biopharmaceutical industry. Long Range Plan. 2010, 43, 431–447. [Google Scholar] [CrossRef]
- Niosi, J.; McKelvey, M. Relating business model innovations and innovation cascades: The case of biotechnology. J. Evol. Econ. 2018, 28, 1081–1109. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Park, G.; Choi, J.Y.; Choy, M. Factors affecting the survival of SMEs: A study of biotechnology firms in Korea. Sustainability 2017, 9, 108. [Google Scholar] [CrossRef]
- Malerba, F.; Orsenigo, L. The evolution of the pharmaceutical industry. Bus. Hist. 2015, 57, 664–687. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Sindakis, S.; Walter, C. Business model innovation as lever of organizational sustainability. J. Technol. Transf. 2015, 40, 85–104. [Google Scholar] [CrossRef]
- Cheah, S.; Ho, Y.P. Coworking and sustainable business model innovation in young firms. Sustainability 2019, 11, 2959. [Google Scholar] [CrossRef]
- Evans, S.; Vladimirova, D.; Holgado, M.; Van Fossen, K.; Yang, M.; Silva, E.A.; Barlow, C.Y. Business model innovation for sustainability: Towards a unified perspective for creation of sustainable business model. Bus. Strat. Environ. 2017, 26, 597–608. [Google Scholar] [CrossRef]
- Teece, D.J. Business models, business strategy and innovation. Long Range Plan. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R. Business model design: An activity system perspective. Long Range Plan. 2010, 43, 216–226. [Google Scholar] [CrossRef]
- Lehoux, P.; Daudelin, G.; Williams-Jones, B.; Denis, J.L.; Longo, C. How do business model and health technology design influence each other? Insights from a longitudinal case study of three academic spin-offs. Res. Policy 2014, 43, 1025–1038. [Google Scholar] [CrossRef]
- Afuah, A.; Tucci, C.L. Internet Business Models and Strategies: Text and Cases; McGraw-Hill/Irwin: Boston, MA, USA, 2001. [Google Scholar]
- Afuah, A. Business Models: A Strategic Management Approach, 1st ed.; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
- Chesbrough, H.; Rosenbloom, R.S. The role of the business model in capturing value from innovation: Evidence from Xerox Corporation’s technology spin-off companies. Ind. Corp. Chang. 2002, 11, 529–555. [Google Scholar] [CrossRef]
- Shafer, S.M.; Smith, H.J.; Linder, J.C. The power of business models. Bus. Horizons 2005, 48, 199–207. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R.; Massa, L. The business model: Recent developments and future research. J. Manag. 2011, 37, 1019–1042. [Google Scholar]
- Bigliardi, B.; Nosella, A.; Verbano, C. Business models in Italian biotechnology industry: A quantitative analysis. Technovation 2005, 25, 1299–1306. [Google Scholar] [CrossRef]
- Willemstein, L.; van der Valk, T.; Meeus, M.T. Dynamics in business models: An empirical analysis of medical biotechnology firms in the Netherlands. Technovation 2007, 27, 221–232. [Google Scholar] [CrossRef]
- Konde, V. Biotechnology business models: An Indian perspective. J. Commer. Biotechnol. 2009, 15, 215–226. [Google Scholar] [CrossRef]
- Lambert, S.C. The importance of classification to business model research. J. Bus. Models 2015, 3, 49–61. [Google Scholar]
- Li, X.; Qiao, H.; Wang, S. Exploring evolution and emerging trends in business model study: A co-citation analysis. Scientometrics 2017, 111, 869–887. [Google Scholar] [CrossRef]
- Markides, C.; Charitou, C.D. Competing with dual business models: A contingency approach. Acad. Manag. Perspect. 2004, 18, 22–36. [Google Scholar] [CrossRef]
- Smith, W.K.; Binns, A.; Tushman, M.L. Complex business models: Managing strategic paradoxes simultaneously. Long Range Plan. 2010, 43, 448–461. [Google Scholar] [CrossRef]
- Calia, R.C.; Guerrini, F.M.; Moura, G.L. Innovation networks: From technological development to business model reconfiguration. Technovation 2007, 27, 426–432. [Google Scholar] [CrossRef]
- Doganova, L.; Eyquem-Renault, M. What do business models do? Innovation devices in technology entrepreneurship. Res. Policy 2009, 38, 1559–1570. [Google Scholar] [CrossRef]
- Mathews, J.A. Competitive advantages of the latecomer firm: A resource-based account of industrial catch-up strategies. Asia Pac. J. Manag. 2002, 19, 467–488. [Google Scholar] [CrossRef]
- Hobday, M.; Rush, H.; Bessant, J. Approaching the innovation frontier in Korea: The transition phase to leadership. Res. Policy 2004, 33, 1433–1457. [Google Scholar] [CrossRef]
- Hu, M.; Hsu, W.; Wu, C. Why is growth more difficult to achieve for biopharmaceutical latecomer firms? Evidence from Taiwan. Sci. Technol. Soc. 2018, 23, 388–417. [Google Scholar] [CrossRef]
- Hwang, S.W. Middle-ground players in dynamic imitative markets: Global entry strategies of Korean firms in the biosimilars market. Technol. Anal. Strateg. 2017, 29, 325–338. [Google Scholar] [CrossRef]
- Lazonick, W.; Tulum, Ö. US biopharmaceutical finance and the sustainability of the biotech business model. Res. Policy 2011, 40, 1170–1187. [Google Scholar] [CrossRef]
- Spieth, P.; Schneider, S. Business model innovativeness: Designing a formative measure for business model innovation. J. Business Econ. 2016, 86, 671–696. [Google Scholar] [CrossRef]
- Nosella, A.; Petroni, G.; Verbano, C. How do Italian biotech startups survive? J. Bus. Chem. 2006, 3, 7–14. [Google Scholar]
- March-Chordà, I.; Yagüe-Perales, R.M. Biopharma business models in Canada. Drug Discov. Today 2011, 16, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Suurna, M. The developments in the business models of biotechnology in the Central and Eastern European countries: The example of Estonia. J. Commer. Biotechnol. 2011, 17, 84–108. [Google Scholar] [CrossRef]
- McKelvey, M. Health biotechnology: Emerging business models and institutional drivers. In The Bioeconomy to 2030: Designing a Policy Agenda; OECD International Futures Programmes: Paris, France, 2008. [Google Scholar]
- Burns, L.R. The Business of Healthcare Innovation; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Casper, S. Institutional adaptiveness, technology policy, and the diffusion of new business models: The case of German biotechnology. Organ. Stud. 2000, 21, 887–914. [Google Scholar] [CrossRef]
- Demil, B.; Lecocq, X. Business model evolution: In search of dynamic consistency. Long Range Plan. 2010, 43, 227–246. [Google Scholar] [CrossRef]
- Fisken, J.; Rutherford, J. Business models and investment trends in the biotechnology industry in Europe. J. Commer. Biotechnol. 2002, 8, 191–199. [Google Scholar] [CrossRef]
- Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 2011, 10, 428–438. [Google Scholar]
- Hunter, J.; Stephens, S. Is open innovation the way forward for big pharma? Nat. Rev. Drug Discov. 2010, 9, 87. [Google Scholar] [CrossRef]
- Rusu, A.; Kuokkanen, K.; Heier, A. Current trends in the pharmaceutical industry-A case study approach. Eur. J. Pharm. Sci. 2011, 44, 437–440. [Google Scholar] [CrossRef]
- Downs, J.B.; Velamuri, V.K. Business model innovation opportunities for the biopharmaceutical industry: A systematic review. J. Commerc. Biotechnol. 2016, 22, 19–63. [Google Scholar] [CrossRef]
- Piachaud, B. Outsourcing technology. Res. Technol. Manag. 2005, 48, 40–46. [Google Scholar] [CrossRef]
- Michelino, F.; Lamberti, E.; Cammarano, A.; Caputo, M. Measuring open innovation in the bio-pharmaceutical industry. Creat. Innov. Manag. 2015, 24, 4–28. [Google Scholar] [CrossRef]
- Allarakhia, M. The successes and challenges of open-source biopharmaceutical innovation. Expert Opin. Drug Dis. 2014, 9, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzola, E.; Bruccoleri, M.; Perrone, G. Open innovation and firms’ performance: State of the art and empirical evidences from the bio-pharmaceutical industry. Int. J. Technol. Manag. 2016, 70, 109–134. [Google Scholar] [CrossRef]
- Ren, S.; Su, P. Open innovation and intellectual property strategy: The catch-up processes of two Chinese pharmaceutical firms. Technol. Anal. Strateg. 2015, 27, 1159–1175. [Google Scholar] [CrossRef]
- Science and Technology Policy Institute. 20 Years of Korean Biotech Venture: Past, Present and Challenges for Future; JeongIn I&D Press: Seoul, Korea, 2013. (In Korean) [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method. J. Classif. 2005, 22, 151–183. [Google Scholar] [CrossRef]
- Hermann, B.G.; Patel, M. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: A techno-economic analysis. Appl. Biochem. Biotechnol. 2007, 136, 361–388. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Dubes, R.; Jain, A.K. Clustering methodologies in exploratory data analysis. Adv. Comput. 1980, 19, 113–228. [Google Scholar]
- Kleinknecht, A.; Van Montfort, K.; Brouwer, E. The non-trivial choice between innovation indicators. Econ. Innov. New Technol. 2002, 11, 109–121. [Google Scholar] [CrossRef]
- Qian, G.; Li, L. Profitability of small-and medium-sized enterprises in high-tech industries: The case of the biotechnology industry. Strateg. Manag. J. 2003, 24, 881–887. [Google Scholar] [CrossRef]
- Winterhalter, S.; Zeschky, M.B.; Gassmann, O. Managing dual business models in emerging markets: An ambidexterity perspective. R&D Manag. 2016, 46, 464–479. [Google Scholar]
Characteristics | Number of Firms | Percentage |
---|---|---|
Firm size (number of employees) | ||
Small (<50) | 270 | 86.3 |
Medium (51–100) | 43 | 13.7 |
Large (>100) | 0 | 0 |
Firm age (years since foundation) | ||
Young (<10) | 162 | 51.8 |
Established (>10) | 151 | 48.2 |
Type of main product and service | ||
Bio-medicine | 169 | 54.0 |
Diagnostics kit and Reagent | 42 | 13.4 |
Supporting services | 83 | 26.5 |
Measurement and Analysis equipment | 19 | 6.1 |
Total | 313 | 100.0 |
Grouping Variables | Operational Definition |
---|---|
Basic science | 1 if firm has basic research function, 0 otherwise |
Product development | 1 if firm has product development function, 0 otherwise |
Manufacturing and marketing | 1 if firm has manufacturing and marketing function, 0 otherwise |
Level of business diversification | The number of business area |
Level of R&D alliances | The number of R&D alliances from 2005 to 2011 |
Level of M&M 1 alliances | The number of M&M alliances from 2005 to 2011 |
Statistic | Descriptive Statistics | Significant Differences | Mean Differences between Paired Clusters | ||||||
---|---|---|---|---|---|---|---|---|---|
Criteria | 1 (N = 68) | 2 (N = 110) | 3 (N = 135) | Total | χ2 | 2 vs. 1 | 3 vs. 1 | 3 vs. 2 | |
Basic science | 1.00 (0.20) | 1.00 (0.00) | 0.94 (0.24) | 0.97 (0.16) | 0.81 | 0.00 | −0.06 ** | −0.06 ** | |
Product development | 0.00 (0.00) | 0.00 (0.00) | 0.86 (0.55) | 0.37 (0.48) | 169.51 *** | 0.00 | 0.86 *** | 0.86 ** | |
Manufacturing and Marketing | 0.00 (0.00) | 0.00 (0.00) | 0.14 (0.35) | 0.06 (0.24) | 4.55 | 0.00 | 0.14 *** | 0.14 *** | |
Level of business diversification | 2.34 (0.59) | 1.00 (0.00) | 1.54 (1.68) | 1.52 (0.72) | 130.39 *** | −1.34 *** | −0.80 *** | 0.54 *** | |
Level of R&D alliances | 0.00 (0.00) | 0.00 (0.00) | 0.21 (0.52) | 0.09 (0.36) | 7.26 ** | 0.00 | 0.21 *** | 0.21 *** | |
Level of M&M alliances | 0.00 (0.00) | 0.00 (0.00) | 0.26 (0.72) | 0.11 (0.49) | 4.55 | 0.00 | 0.26 *** | 0.26 *** |
Statistic | Descriptive Statistics | Significant Differences | Mean Differences between Paired Clusters | ||||||
---|---|---|---|---|---|---|---|---|---|
Criteria | 1 (N = 68) | 2 (N = 110) | 3 (N = 135) | Total | χ2 | 2 vs. 1 | 3 vs. 1 | 3 vs. 2 | |
Size | 7.56 (16.66) | 17.47 (17.30) | 31.85 (22.49) | 23.69 (20.79) | 47.13 *** | −0.09 *** | 14.29 *** | 14.38 *** | |
Age | 9.07 (4.27) | 8.33 (4.61) | 12.39 (7.37) | 10.24 (6.19) | 35.91 *** | −0.75 *** | 3.32 *** | 4.07 *** | |
Total gov R&D fund | 188.60 (323.12) | 120.50 (210.50) | 411.01 (616.88) | 260.59 (468.16) | 15.60 *** | −68.10 *** | 222.41 *** | 290.51 *** | |
Number of gov R&D project | 0.94 (1.13) | 0.67 (0.94) | 1.21 (1.32) | 0.96 (1.18) | 9.21 *** | −0.27 | 0.27 | 0.54 *** | |
R&D intensity | 57.00 (68.69) | 68.24 (97.72) | 152.24 (451.20) | 102.03 (306.14) | 5.37 * | 61.24 | 95.24 | 84.00 * | |
Patent | 0.28 (0.79) | 0.32 (0.88) | 0.78 (1.76) | 0.51 (1.34) | 3.35 * | 0.04 | 0.50 ** | 0.46 ** | |
Revenue | 6.5 × 106 (2.2 × 107) | 3.1 × 106 (6.5 × 106) | 1.9 × 107 (2.7 × 107) | 1.1 × 107 (2.2 × 107) | 78.38 *** | −3.4 × 106 | 1.2 × 107 *** | 1.5 × 107 *** | |
Operating profit | 2.5 × 107 (1.3 × 106) | 7.4 × 104 (1.0 × 106) | 1.1 × 106 (4.7 × 106) | 5.6 × 105 (3.3 × 106) | 20.36 *** | −1.8 × 105 | 8.5 × 105 | 1.0 × 106 ** | |
Net profit | 1.9 × 105 (9.8 × 105) | 5.5 × 104 (9.8 × 105) | 4.5 × 105 (4.7 × 106) | 2.6 × 105 (3.2 × 106) | 7.95 ** | −1.4 × 105 | 2.6 × 105 | 4.0 × 105 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Shin, K. Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms. Sustainability 2019, 11, 4881. https://doi.org/10.3390/su11184881
Song C, Shin K. Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms. Sustainability. 2019; 11(18):4881. https://doi.org/10.3390/su11184881
Chicago/Turabian StyleSong, Changhyeon, and Kwangsoo Shin. 2019. "Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms" Sustainability 11, no. 18: 4881. https://doi.org/10.3390/su11184881
APA StyleSong, C., & Shin, K. (2019). Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms. Sustainability, 11(18), 4881. https://doi.org/10.3390/su11184881