Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet
Abstract
:1. Introduction
2. Experimental Works
3. Results and Discussions
3.1. Failure Mechanisms
3.2. Cracking and Deformation Behaviour
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, W.L.; Liu, C.C.; Shiau, Y.C.; Lin, W.C. Discussion on the Reinforcement of Reinforced Concrete Slab Structures. Sustainability 2019, 11, 1756. [Google Scholar] [CrossRef]
- Groli, G.; Caldentey, A.P. Improving cracking behaviour with recycled steel fibres targeting specific applications–analysis according to fib Model Code 2010. Struct. Concr. 2017, 18, 29–39. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, Y.; Zhang, J.; Xu, S.; Zhou, X.; Zhang, Y. Time-dependent corrosion process and non-uniform corrosion of reinforcement in RC flexural members in a tidal environment. Constr. Build. Mater. 2019, 213, 79–90. [Google Scholar] [CrossRef]
- Tahershamsi, M.; Fernandez, I.; Lundgren, K.; Zandi, K. Investigating correlations between crack width, corrosion level and anchorage capacity. Struct. Infrastruct. Eng. 2017, 13, 1294–1307. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Cunha, V.M.C.F.; Ribeiro, A.F.; Antunes, J.A.B. Post-cracking behaviour of steel fibre reinforced concrete. Mater. Struct. 2005, 38, 47–56. [Google Scholar] [CrossRef]
- Di Prisco, M.; Plizzari, G.; Vandewalle, L. Fibre reinforced concrete: New design perspectives. Mater. Struct. 2009, 42, 1261–1281. [Google Scholar] [CrossRef]
- Chao, S.-H.; Pareek, T.; Sahoo, D.R. Effect of fiber reinforced concrete in members with highly complex stress fields. In High Performance Fiber Reinforced Cement Composites 6, RILEM State of the Art Reports; Parra-Montesinos, G.J., Reinhardt, H.W., Naaman, A.E., Eds.; RILEM Publications S.A.R.L.: Paris, France, 2012; Volume 2, pp. 213–220. [Google Scholar]
- Chu, S.H.; Kwan, A.K.H. A new method for pull out test of reinforcing bars in plain and fibre reinforced concrete. Eng. Struct. 2018, 164, 82–91. [Google Scholar] [CrossRef]
- Aoude, H.; Belghiti, M.; Cook, W.D.; Mitchell, D. Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups. Aci Struct. J. 2012, 109, 359–367. [Google Scholar]
- Zhou, Y.; Xiao, Y.; Gu, A.; Lu, Z. Dispersion, workability and mechanical properties of different steel-microfiber-reinforced concretes with low fiber content. Sustainability 2018, 10, 2335. [Google Scholar] [CrossRef]
- Deluce, J.R.; Vecchio, F.J. Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement. Aci Struct. J. 2013, 110, 481–490. [Google Scholar]
- Amin, A.; Foster, S.J.; Watts, M. Modelling the tension stiffening effect in SFR-RC. Mag. Concr. Res. 2016, 68, 339–352. [Google Scholar] [CrossRef]
- Bernardi, P.; Michelini, E.; Minelli, F.; Tiberti, G. Experimental and numerical study on cracking process in RC and R/FRC ties. Mater. Struct. 2016, 49, 261–277. [Google Scholar] [CrossRef]
- Yin, J.; Wu, Z.S. Structural performances of short steel-fiber reinforced concrete beams with externally bonded FRP sheets. Constr. Build. Mater. 2003, 17, 463–470. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Liu, F. Test analysis of FRC beams strengthened with externally bonded FRP sheets. Constr. Build. Mater. 2008, 22, 315–323. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Kosmidou, P.-M.K.; Karayannis, C.G. Cyclic response of steel fiber reinforced concrete slender beams: An experimental study. Materials 2019, 12, 1398. [Google Scholar] [CrossRef]
- De Rivaz, B. Steel fiber reinforced concrete (SFRC): The use of SFRC in precast segment for tunnel lining. Water Energy Int. 2009, 66, 75–84. [Google Scholar]
- International Tunnelling and Underground Space Association. Twenty Years of FRC Tunnel Segments Practice: Lessons Learnt and Proposed Design Principles; ITA Report No. 16; ITA-AITES: Lausanne, Switzerland, 2016; p. 71. ISBN 978-2-970-1013-5-2. [Google Scholar]
- ACI Committee 544. Report on Design and Construction of Fiber Reinforced Precast Concrete Tunnel Segments; ACI 544.7R-16; American Concrete Institute: Farmington Hills, MI, USA, 2016; 36p. [Google Scholar]
- Gribniak, V.; Arnautov, A.K.; Norkus, A.; Tamulenas, V.; Gudonis, E.; Sokolov, A. Experimental investigation of the capacity of steel fibers to ensure the structural integrity of reinforced concrete specimens coated with CFRP sheets. Mech. Compos. Mater. 2016, 52, 401–410. [Google Scholar] [CrossRef]
- Gribniak, V.; Arnautov, A.K.; Norkus, A.; Kliukas, R.; Tamulenas, V.; Gudonis, E.; Sokolov, A. Steel fibres: Effective way to prevent failure of the concrete bonded with FRP sheets. Adv. Mater. Sci. Eng. 2016, 2016, 4913536. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction–state-of-the-art review. J. Compos. Constr. Asce 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Zaman, A.; Gutub, S.A.; Wafa, M.A. A review on FRP composites applications and durability concerns in the construction sector. J. Reinf. Plast. Compos. 2013, 32, 1966–1988. [Google Scholar] [CrossRef]
- Hollaway, L.; Teng, J.G. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites; Woodhead Publishing: Cambridge, UK, 2008; p. 398. [Google Scholar]
- Rasheed, R.A. Strengthening Design of Reinforced Concrete with FRP; CRC Press: Boca Raton, FL, USA, 2015; p. 230. [Google Scholar]
- Grelle, S.V.; Sneed, L.H. Review of anchorage systems for externally bonded FRP laminates. Int. J. Concr. Struct. Mater. 2013, 7, 17–33. [Google Scholar] [CrossRef]
- Ali, A.; Abdalla, J.; Hawileh, R.; Galal, K. CFRP mechanical anchorage for externally strengthened RC beams under flexure. Phys. Procedia 2014, 55, 10–16. [Google Scholar] [CrossRef]
- Gribniak, V.; Arnautov, A.K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E. Deformation analysis of RC ties externally strengthened with FRP sheets. Mech. Compos. Mater. 2014, 50, 669–676. [Google Scholar] [CrossRef]
- Gribniak, V.; Tamulenas, V.; Ng, P.-L.; Arnautov, A.; Gudonis, E.; Misiunaite, I. Mechanical behavior of steel fiber-reinforced concrete beams bonded with external carbon fiber sheets. Materials 2017, 10, 666. [Google Scholar] [CrossRef]
- Arnautov, A.K.; Nasibullins, A.; Gribniak, V.; Blumbergs, I.; Hauka, M. Experimental characterization of the properties of double-lap needled and hybrid joints of carbon/epoxy composites. Materials 2015, 8, 7578–7586. [Google Scholar] [CrossRef]
- Arnautov, A.K.; Kulakov, V.; Andersons, J.; Gribniak, V.; Juozapaitis, A. Experimental investigation on stiffness and strength of single-lap joints in a laminated CFRP stress-ribbon strip. Balt. J. Road Bridge Eng. 2016, 11, 120–126. [Google Scholar] [CrossRef]
- Gribniak, V.; Arnautov, A.K.; Kaklauskas, G.; Tamulenas, V.; Timinskas, E.; Sokolov, A. Investigation on application of basalt materials as reinforcement for flexural elements of concrete bridges. Balt. J. Road Bridge Eng. 2015, 10, 201–206. [Google Scholar] [CrossRef]
Series | I | II | III |
---|---|---|---|
Notation | I-B1-nm I-B2-C I-B3-C-nm | II-B1-F (*) II-B2-F-C (*) II-B3-F-C-nm | III-B1-F (*) III-B2-F-C (**) III-B3-F-C-A12 (*) III-B4-F-C-A20 (*) |
Tension reinforcement | 8 mm steel or GFRP bars | 8 mm steel bars | |
Concrete mix | Mix I | Mix II | Mix III |
Age of testing, days | 1377–1431 | 1442–1472 | 68–88 |
Compressive strength, MPa | 50.6 | 31.6 | 58.6 |
Mixture proportions, kg/m3 | |||
Cement CEM I 42.5 N | 415 ± 1% | 400 ± 0.5% | |
Cement CEM II 52.5 R | 300 ± 0.5% | ||
Sand 0/4 mm | 910 ± 2% | 905 ± 2% | 865 ± 1% |
Coarse aggregate 5/8 mm | 389 ± 2% | 388 ± 2% | 404 ± 2% |
Coarse aggregate 8/11 mm | 606 ± 2% | ||
Coarse aggregate 11/16 mm | 551 ± 2% | 548 ± 1% | |
Water | 124 ± 5% | 174 ± 5% | 150 ± 3% |
Superplasticizer | Stachement 2067 3.3 ± 2% | MuraPlast FK 63.30 2.0 ± 2% | MC-PowerFlow 3100 4.0 ± 1% |
Steel fibre | Mechel Nemunas 60 ± 5% | Krampe Harex 65 ± 1% |
Beam | Layout of Pins | Slip Initiation Moment (kNm) | Failure Moment (kNm) | Maximum Slip (mm) |
---|---|---|---|---|
III-B1-F | 14.40 | |||
13.83 | ||||
III-B2-F-C | 8.79 | 22.71 | 0.43 | |
8.01 | 21.87 | 0.23 | ||
3.62 | 19.69 | 1.00 | ||
25.72 | ||||
III-B3-F-C-A12 | 2 × 6 | 11.44 | 22.46 | 0.36 |
2 × 6 | 13.09 | 25.61 | 2.32 | |
III-B4-F-C-A20 | 2 × 10 | 16.06 | 24.60 | 1.50 |
2 × 10 | 10.70 | 24.46 | 1.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gribniak, V.; Ng, P.-L.; Tamulenas, V.; Misiūnaitė, I.; Norkus, A.; Šapalas, A. Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet. Sustainability 2019, 11, 4456. https://doi.org/10.3390/su11164456
Gribniak V, Ng P-L, Tamulenas V, Misiūnaitė I, Norkus A, Šapalas A. Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet. Sustainability. 2019; 11(16):4456. https://doi.org/10.3390/su11164456
Chicago/Turabian StyleGribniak, Viktor, Pui-Lam Ng, Vytautas Tamulenas, Ieva Misiūnaitė, Arnoldas Norkus, and Antanas Šapalas. 2019. "Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet" Sustainability 11, no. 16: 4456. https://doi.org/10.3390/su11164456
APA StyleGribniak, V., Ng, P.-L., Tamulenas, V., Misiūnaitė, I., Norkus, A., & Šapalas, A. (2019). Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet. Sustainability, 11(16), 4456. https://doi.org/10.3390/su11164456