Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Research
2.1.1. Big Data Analytics
2.1.2. Eco-Innovation
2.1.3. Overview on the State of Big Data Analytics and Eco-Innovation
2.1.4. Resource-Based View
2.1.5. Information Technology Capability
2.1.6. Personnel Expertise Capability
2.1.7. Management Capability
2.2. Methodology
2.2.1. Data Collection and Sample
2.2.2. Measures
2.3. Data Analysis
2.4. Model Validation
3. Results
3.1. Correlation Analysis
3.2. Hypothesis Testing
4. Discussion
4.1. Capabilities and Process-Eco-Innovation
4.2. Implications for Theory
4.3. Implications for Managers
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Factor | Mean | SD |
---|---|---|---|
Information Technology Capability [126] | Analytics systems: better than competitors | 5.03 | 1.49 |
α = 0.950 | Data sharing intraorganizational: branch office connection to main office | 5.58 | 1.29 |
Network connectivity: utilization of open systems. | 5.10 | 1.01 | |
Intraorganizational communication: removal of communication barriers in sharing analytics results | 4.93 | 1.27 | |
Data integrity: security and firewalls | 5.03 | 1.42 | |
Ease of distribution of software (apps) for multiple analytics platforms | 4.89 | 1.44 | |
Transparency and ease of access: interface of applications and platforms | 5.03 | 1.37 | |
Intraorganizational communication: ease of sharing of analytics driven information | 5.03 | 1.34 | |
External end-users of big data: provision of points of entry | 4.96 | 1.20 | |
External end-users of big data: allow creation of external analytics apps through object-oriented modules | 5.51 | 1.27 | |
Analytics software: utilization of reusable modules. | 4.96 | 1.17 | |
Analytics software: usage of object-oriented technologies. | 5.20 | 0.94 | |
Analytics software: adaptability of applications | 5.75 | 1.12 | |
Management Capability [126] | Usage of big data analytics: strategic innovation | 5.48 | 1.21 |
α = 0.964 | Usage of big data analytics: planning | 5.34 | 1.14 |
Usage of big data analytics: systematic organizational processes | 5.06 | 1.30 | |
Usage of big data analytics: adaptability to dynamic conditions | 5.13 | 1.32 | |
Usage of big data analytics: organizational investment decisions | 5.00 | 0.92 | |
Usage of big data analytics: organizational human resource impact | 5.31 | 1.28 | |
Usage of big data analytics: end-user decision making | 5.48 | 1.05 | |
Usage of big data analytics: end user training requirements | 4.89 | 1.17 | |
Intraorganizational usage: line and analysts’ interaction frequency | 5.10 | 1.01 | |
Intraorganizational usage: cross-functional meetings frequency | 5.24 | 1.09 | |
Intraorganizational usage: line and analysts co-ordination | 5.17 | 1.10 | |
Intraorganizational usage: information sharing and ease of access between line and analysts | 5.31 | 1.00 | |
External communication: outperform competitors | 5.17 | 1.10 | |
Competitiveness: we are more cost effective than competitors | 5.20 | 1.28 | |
Competitiveness: we boast more advanced analytical methods than competitors | 5.06 | 1.06 | |
Competitiveness: we are better at information gathering than competition | 5.31 | 0.92 | |
Personnel Expertise [126,127] | Big data experience: analytics personnel capability | 4.96 | 1.32 |
α = 0.974 | Programming skills: analytics personnel capability | 5.31 | 1.16 |
Management of project lifecycle: analytics personnel capability | 5.41 | 0.98 | |
Network management and maintenance: analytics personnel capability | 5.13 | 1.15 | |
Decision support systems: analytics personnel capability | 5.13 | 1.15 | |
Technological development trends: analytics personnel ability to understand trends | 5.06 | 1.13 | |
Technological development trends: Analytics personnel learning ability of new technologies | 5.24 | 1.15 | |
Organizational assimilation: analytics personnel knowledge levels of critical factors for the success of organization | 4.96 | 1.37 | |
Organizational assimilation: analytics personnel knowledgeable about the role of big data analytics | 5.37 | 1.11 | |
Organizational assimilation: Analytics personnel’s understand of organizational policies and plans | 5.51 | 1.24 | |
Technical solutions: analytics personnel capability | 5.41 | 1.11 | |
Business functions: analytics personnel knowledge | 5.24 | 1.18 | |
Business environment: analytics personnel knowledge | 5.13 | 1.12 | |
Project planning, leading, organizing, and controlling: analytics personnel capability | 5.24 | 1.21 | |
Execution of work: analytics personnel capability | 5.17 | 1.19 | |
Teaching others: capability of analytics personnel | 5.24 | 1.12 | |
Customer relationship: ability of analytics personnel to maintain productive relationships with users and clients | 5.37 | 1.01 | |
Process Eco-Innovation [135] | Lowering consumption of energy during production | 4.48 | 1.29 |
α = 0.956 | Reuse of material | 4.68 | 1.10 |
Adoption of cleaner technology | 4.58 | 1.11 | |
Reduction in emissions and waste generation | 4.93 | 1.09 | |
Reduction in raw material usage | 4.62 | 1.14 | |
Energy saving technology adoption | 4.72 | 1.16 |
References
- Barbera, A.C.; Vymazal, J.; Maucieri, C. Greenhouse Gases Formation and Emission. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2019; pp. 329–333. [Google Scholar]
- Huang, J.-B.; Wang, S.-W.; Luo, Y.; Zhao, Z.-C.; Wen, X.-Y. Debates on the Causes of Global Warming. Adv. Clim. Chang. Res. 2012, 3, 38–44. [Google Scholar]
- Shukla, J.B.; Verma, M.; Misra, A.K. Effect of global warming on sea level rise: A modeling study. Ecol. Complex. 2017, 32, 99–110. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Galeotti, M.; Hasanov, F.J. The impact of economic growth on CO2 emissions in Azerbaijan. J. Clean. Prod. 2018, 197, 1558–1572. [Google Scholar] [CrossRef]
- Fraile, I.; Arrizabalaga, H.; Groeneveld, J.; Kölling, M.; Santos, M.N.; Macías, D.; Addis, P.; Dettman, D.L.; Karakulak, S.; Deguara, S.; et al. The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths. J. Mar. Syst. 2016, 158, 26–33. [Google Scholar] [CrossRef]
- Kumar, M.K.; Shiva Nagendra, S.M. Quantification of anthropogenic CO2 emissions in a tropical urban environment. Atmos. Environ. 2016, 125, 272–282. [Google Scholar] [CrossRef]
- Princiotta, F.T. Global climate change the CO2 per capita challenge. In Air and Waste Management Association—Addressing Climate Change: Emerging Policies, Strategies, and Technological Solutions; Air and Waste Management Association: Oak Brook, IL, USA, 2016; pp. 101–105. [Google Scholar]
- Yii, K.-J.; Geetha, C. The Nexus between Technology Innovation and CO2 Emissions in Malaysia: Evidence from Granger Causality Test. Energy Procedia 2017, 105, 3118–3124. [Google Scholar] [CrossRef]
- Hannan, M.A.; Begum, R.A.; Abdolrasol, M.G.; Hossain Lipu, M.S.; Mohamed, A.; Rashid, M.M. Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development. Renew. Sustain. Energy Rev. 2018, 94, 551–564. [Google Scholar] [CrossRef]
- Tsai, B.-H.; Chang, C.-J.; Chang, C.-H. Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka-Volterra models. Energy 2016, 100, 416–424. [Google Scholar] [CrossRef]
- Mundaca, G. How much can CO2 emissions be reduced if fossil fuel subsidies are removed? Energy Econ. 2017, 64, 91–104. [Google Scholar] [CrossRef]
- Doraisami, A. Has Malaysia really escaped the resource curse? A closer look at the political economy of oil revenue management and expenditures. Resour. Policy 2015, 45, 98–108. [Google Scholar] [CrossRef]
- Park, S.-Y.; Yoo, S.-H. The dynamics of oil consumption and economic growth in Malaysia. Energy Policy 2014, 66, 218–223. [Google Scholar] [CrossRef]
- Lean, H.H.; Smyth, R. Disaggregated energy demand by fuel type and economic growth in Malaysia. Appl. Energy 2014, 132, 168–177. [Google Scholar] [CrossRef]
- Bello, M.O.; Solarin, S.A.; Yen, Y.Y. Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia. Energy 2018, 151, 966–983. [Google Scholar] [CrossRef]
- Rahman, M.S.; Noman, A.H.M.; Shahari, F. Does economic growth in Malaysia depend on disaggregate energy? Renew. Sustain. Energy Rev. 2017, 78, 640–647. [Google Scholar] [CrossRef]
- Fernando, Y.; Hor, W.L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms. Resour. Conserv. Recycl. 2017, 126, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Mudin, D.K.D.; How, S.E.; Rahman, M.M.; Ibrahim, P.; Jopony, M. Industrial revolution 4.0: Universiti Malaysia Sabah perspective. In Proceedings of the 4th International Workshop on UI GreenMetric World University Rankings, IWGM 2018, Semarang, Indonesia, 8–10 April 2018; Suwartha, N., Hadiyanto, H., Sari, R.F., Eds.; EDP Sciences: Kuala Lumpur, Malaysia, 2018. [Google Scholar]
- Newell, D.; Twohig, R.; Duffy, M. Effect of energy management circuitry on optimum energy harvesting source configuration for small form-factor autonomous sensing applications. J. Ind. Inf. Integr. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Liu, W.J.; Chi, M.; Liu, Z.W.; Guan, Z.H.; Chen, J.; Xiao, J.W. Distributed optimal active power dispatch with energy storage units and power flow limits in smart grids. Int. J. Electr. Power Energy Syst. 2019, 105, 420–428. [Google Scholar] [CrossRef]
- Pasteris, S.; Wang, S.; Makaya, C.; Chan, K.; Herbster, M. Data distribution and scheduling for distributed analytics tasks. In Proceedings of the 2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, San Francisco, CA, USA, 4–8 August 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Micheli, G.; Soda, E.; Vespucci, M.T.; Gobbi, M.; Bertani, A. Big data analytics: An aid to detection of non-technical losses in power utilities. Comput. Manag. Sci. 2019, 16, 329–343. [Google Scholar] [CrossRef]
- Faheem, M.; Shah, S.B.H.; Butt, R.A.; Raza, B.; Anwar, M.; Ashraf, M.W.; Ngadi, M.A.; Gungor, V.C. Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [Google Scholar] [CrossRef]
- Fong, S.; Li, J.; Song, W.; Tian, Y.; Wong, R.K.; Dey, N. Predicting unusual energy consumption events from smart home sensor network by data stream mining with misclassified recall. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1197–1221. [Google Scholar] [CrossRef]
- Reddy, D.V.S.; Mehta, R.V.K. Study on computational intelligence approaches and big data analytics in smart transportation system. In SpringerBriefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–102. [Google Scholar]
- Gobbo, J.A.; Busso, C.M.; Gobbo, S.C.O.; Carreão, H. Making the links among environmental protection, process safety, and industry 4.0. Process Saf. Environ. Prot. 2018, 117, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.-C.; Smith, S. A systematic review of technologies involving eco-innovation for enterprises moving towards sustainability. J. Clean. Prod. 2018, 192, 207–220. [Google Scholar] [CrossRef]
- Munodawafa, R.T.; Johl, S.K. Eco-Innovation and Industry 4.0: A Big Data Usage Conceptual Model. In Proceedings of the International Conference on Leadership and Management (ICLM 2018), Kuala Lumpur, Malaysia, 13–14 August 2018; Ghazali, Z.B., Ed.; EDP Sciences: Kuala Lumpur, Malaysia, 2018; Volume 56, p. 20. [Google Scholar]
- Pialot, O.; Millet, D. Towards Operable Criteria of Eco-Innovation and Eco-Ideation Tools for the Early Design Phases. Procedia CIRP 2018, 69, 692–697. [Google Scholar] [CrossRef]
- Machiba, T. Understanding eco-innovation for enabling a green industry transformation. In Strategies for Sustainable Technologies and Innovations; Edward Elgar Publishing: Northampton, MA, USA, 2013; pp. 21–50. [Google Scholar] [Green Version]
- Bossle, M.B.; Dutra de Barcellos, M.; Vieira, L.M.; Sauvée, L. The drivers for adoption of eco-innovation. J. Clean. Prod. 2016, 113, 861–872. [Google Scholar] [CrossRef]
- Diaz-Rainey, I.; Ashton, J.K. Investment inefficiency and the adoption of eco-innovations: The case of household energy efficiency technologies. Energy Policy 2015, 82, 105–117. [Google Scholar] [CrossRef]
- Horbach, J. Empirical determinants of eco-innovation in European countries using the community innovation survey. Environ. Innov. Soc. Transit. 2016, 19, 1–14. [Google Scholar] [CrossRef]
- Stock, T.; Obenaus, M.; Kunz, S.; Kohl, H. Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process Saf. Environ. Prot. 2018, 118, 254–267. [Google Scholar] [CrossRef]
- Florescu, M.S.; Ceptureanu, E.G.; Cruceru, A.F.; Ceptureanu, S.I. Sustainable Supply Chain Management Strategy Influence on Supply Chain Management Functions in the Oil and Gas Distribution Industry. Energies 2019, 12, 1632. [Google Scholar] [CrossRef]
- Liu, L. Computing infrastructure for big data processing. Front. Comput. Sci. 2013, 7, 165–170. [Google Scholar] [CrossRef]
- Sagiroglu, S.; Sinanc, D. Big data: A review. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar]
- Dutta, S.; Shen, H.; Chen, J. In Situ Prediction Driven Feature Analysis in Jet Engine Simulations. In Proceedings of the 2018 IEEE Pacific Visualization Symposium (PacificVis), Kobe, Japan, 10–13 April 2018; pp. 66–75. [Google Scholar]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Deif, S.; Daneshmand, M. Wireless passive RFID sensor for pipeline integrity monitoring. Sens. Actuators A Phys. 2017, 261, 24–29. [Google Scholar] [CrossRef]
- Campos, J.; Sharma, P.; Gabiria, U.G.; Jantunen, E.; Baglee, D. A Big Data Analytical Architecture for the Asset Management. Procedia CIRP 2017, 64, 369–374. [Google Scholar] [CrossRef]
- Lin, Y.; Jun, Z.; Hongyan, M.; Zhongwei, Z.; Zhanfang, F. A Method of Extracting the Semi-Structured Data Implication Rules. Procedia Comput. Sci. 2018, 131, 706–716. [Google Scholar] [CrossRef]
- Boyd, D.; Crawford, K. Critical Questions for Big Data Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Hu, H.; Wen, Y.G.; Chua, T.S.; Li, X.L. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access 2014, 2, 652–687. [Google Scholar]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Qin, S.J.; Chiang, L.H. Advances and opportunities in machine learning for process data analytics. Comput. Chem. Eng. 2019, 126, 465–473. [Google Scholar] [CrossRef]
- Ramaswamy, S.; DeClerck, N. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput. Sci. 2018, 140, 170–178. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Dahle, K. Toward governance for future generations: How do we change course? Futures 1998, 30, 277–292. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Antonioli, D.; Mancinelli, S.; Mazzanti, M. Is environmental innovation embedded within high-performance organisational changes? The role of human resource management and complementarity in green business strategies. Res. Policy 2013, 42, 975–988. [Google Scholar] [CrossRef]
- Ghita, S.I.; Saseanu, A.S.; Gogonea, R.M.; Huidumac-Petrescu, C.E. Perspectives of ecological footprint in European context under the impact of information society and sustainable development. Sustainability 2018, 10, 3224. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Jaca, C.; Ormazabal, M. Towards a consensus on the circular economy. J. Clean. Prod. 2018, 179, 605–615. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Freidenfelds, D.; Kalnins, S.N.; Gusca, J. What does environmentally sustainable higher education institution mean? Energy Procedia 2018, 147, 42–47. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Short, S.W.; Rana, P.; Evans, S. A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Y.; Li, G. The Relationship between Corporation’s Profitability and Eco-Innovation: Empirical Evidence from China. In Proceedings of the 2018 International Conference on Construction and Real Estate Management: Sustainable Construction and Prefabrication, ICCREM 2018, Charleston, SC, USA, 9–10 August 2018; Al-Hussein, M., Shen, G.Q.P., Zhu, Y., Wang, Y., Eds.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2018; pp. 14–20. [Google Scholar]
- Ciobanu, G.; Ghinăraru, C.; Teodor, C. Eco-innovation and the development of new new opportunities on SMEs. Qual. Access Success 2018, 19, 154–159. [Google Scholar]
- Zeng, R.; Grøgaard, B.; Steel, P. Complements or substitutes? A meta-analysis of the role of integration mechanisms for knowledge transfer in the MNE network. J. World Bus. 2018, 53, 415–432. [Google Scholar] [CrossRef]
- Huarng, K.-H.; Mas-Tur, A.; Calabuig Moreno, F. Innovation, knowledge, judgment, and decision-making as virtuous cycles. J. Bus. Res. 2018, 88, 278–281. [Google Scholar] [CrossRef]
- Mardani, A.; Nikoosokhan, S.; Moradi, M.; Doustar, M. The Relationship between Knowledge Management and Innovation Performance. J. High Technol. Manag. Res. 2018, 29, 12–26. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.O.; da Silva, M.T.; Gonçalves, R.F.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, J.; Dai, S. Regional eco-innovation in China: An analysis of eco-innovation levels and influencing factors. J. Clean. Prod. 2017, 153, 1–14. [Google Scholar] [CrossRef]
- De Jesus Pacheco, D.A.; ten Caten, C.S.; Jung, C.F.; Navas, H.V.G.; Cruz-Machado, V.A.; Tonetto, L.M. State of the Art on the Role of the Theory of Inventive Problem Solving in Sustainable Product-Service Systems: Past, Present, and Future. J. Clean. Prod. 2019, 212, 489–504. [Google Scholar] [CrossRef]
- Opazo-Basáez, M.; Vendrell-Herrero, F.; Bustinza, O.F. Uncovering productivity gains of digital and green servitization: Implications from the automotive industry. Sustainability 2018, 10, 1524. [Google Scholar] [CrossRef]
- Janssen, M.; van der Voort, H.; Wahyudi, A. Factors influencing big data decision-making quality. J. Bus. Res. 2017, 70, 338–345. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S. How can big data complement expert analysis? A value chain case study. Sustainability 2018, 10, 709. [Google Scholar] [CrossRef]
- Müller, J.M.; Kiel, D.; Voigt, K.-I. What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C. Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy 2018, 121, 404–414. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Sanni, M. Drivers of eco-innovation in the manufacturing sector of Nigeria. Technol. Forecast. Soc. Chang. 2018, 131, 303–314. [Google Scholar] [CrossRef]
- Aloise, P.G.; Macke, J. Eco-innovations in developing countries: The case of Manaus Free Trade Zone (Brazil). J. Clean. Prod. 2017, 168, 30–38. [Google Scholar] [CrossRef]
- Tumelero, C.; Sbragia, R.; Evans, S. Cooperation in R & D and eco-innovations: The role on the companies’ socioeconomic performance. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
- Santos, M.Y.; Oliveira e Sá, J.; Costa, C.; Galvão, J.; Andrade, C.; Martinho, B.; Lima, F.V.; Costa, E. A big data analytics architecture for industry 4.0. In Proceedings of the 5th World Conference on Information Systems and Technologies, WorldCIST, Porto Santo Island, Madeira, Portugal, 11–13 April 2017; Adeli, H., Correia, A.M., Costanzo, S., Reis, L.P., Rocha, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 570, pp. 175–184. [Google Scholar]
- Lee, J.; Kao, H.A.; Yang, S. Service innovation and smart analytics for Industry 4.0 and big data environment. In Proceedings of the 6th CIRP Conference on Industrial Product Service Systems, IPSS 2014, Windsor, ON, Canada, 1–2 May 2014; Elsevier: Windsor, ON, Canada, 2014; pp. 3–8. [Google Scholar]
- Mani, V.; Delgado, C.; Hazen, B.T.; Patel, P. Mitigating supply chain risk via sustainability using big data analytics: Evidence from the manufacturing supply chain. Sustainability 2017, 9, 608. [Google Scholar] [CrossRef]
- Babiceanu, R.F.; Seker, R. Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Comput. Ind. 2016, 81, 128–137. [Google Scholar] [CrossRef]
- Yang, C.W.; Yu, M.Z.; Hu, F.; Jiang, Y.Y.; Li, Y. Utilizing Cloud Computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2017, 61, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.M.; Voigt, K.-I. Sustainable Industrial Value Creation in SMEs: A Comparison between Industry 4.0 and Made in China 2025. Int. J. Precis. Eng. Manuf.-Green Technol. 2018, 5, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Maresova, P.; Soukal, I.; Svobodova, L.; Hedvicakova, M.; Javanmardi, E.; Selamat, A.; Krejcar, O. Consequences of Industry 4.0 in Business and Economics. Economies 2018, 6, 46. [Google Scholar] [CrossRef]
- Wernerfelt, B. A resource-based view of the firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Rua, O.L.; Ortiz, R.F.; França, A.; Emeterio, M.C.S. Intangible resources, absorptive capabilities, innovation and export performance: Exploring the linkage. In Proceedings of the 3rd Conference on Innovation, Engineering and Entrepreneurship, Regional HELIX 2018, Guimaraes, Portugal, 27–29 June 2018; Veiga, G., Machado, J., Soares, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 505, pp. 963–970. [Google Scholar]
- Dyer, J.H.; Singh, H. The relational view: Cooperative strategy and sources of interorganizational competitive advantage. Acad. Manag. Rev. 1998, 23, 660–679. [Google Scholar] [CrossRef]
- Helfat, C.E.; Peteraf, M.A. The dynamic resource-based view: Capability lifecycles. Strateg. Manag. J. 2003, 24, 997–1010. [Google Scholar] [CrossRef]
- Knight, G.A.; Cavusgil, S.T. Innovation, organizational capabilities, and the born-global firm. J. Int. Bus. Stud. 2004, 35, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. The strategic analysis of intangible resources. Strateg. Manag. J. 1992, 13, 135–144. [Google Scholar] [CrossRef]
- Lee, C.; Lee, K.; Pennings, J.M. Internal capabilities, external networks, and performance: A study on technology-based ventures. Strateg. Manag. J. 2001, 22, 615–640. [Google Scholar] [CrossRef]
- Kampfner, R.R. The need of compatibility of information processing with the control structure of the organization. In Proceedings of the 50th Annual Meeting of the International Society for the Systems Sciences 2006, ISSS 2006, Rohnert Park, CA, USA, 9–14 July 2006; pp. 743–753. [Google Scholar]
- Li, Y.; Yao, S.; Chia, W.M. Demand uncertainty, information processing ability, and endogenous firm: Another perspective on the impact of ICT. Nankai Bus. Rev. Int. 2011, 2, 447–474. [Google Scholar] [CrossRef]
- Choo, C.W. The Knowing Organization: How Organizations Use Information to Construct Meaning, Create Knowledge, and Make Decisions; Oxford University Press: Oxford, UK, 2007; pp. 1–384. [Google Scholar]
- Järvenpää, E.; Siltala, N.; Hylli, O.; Lanz, M. The development of an ontology for describing the capabilities of manufacturing resources. J. Intell. Manuf. 2019, 30, 959–978. [Google Scholar] [CrossRef]
- Vollmer, T.; Schmitt, R. Integrated shop floor data management for increasing energy and resource efficiency in manufacturing. In Proceedings of the 23rd International Conference for Production Research, ICPR 2015, Manila, Philippines, 2–6 August 2015; International Foundation for Production Research (IFPR): Nantes, France, 2015. [Google Scholar]
- Agarwal, P.; Ahmed, R.; Ahmad, T. Identification and ranking of key persons in a social networking website using hadoop & big data analytics. In Proceedings of the 2016 International Conference on Advances in Information Communication Technology and Computing, AICTC 2016, Bikaner, India, 12–13 August 2016; Kuri, M., Goar, V., Bishnoi, S.K., Eds.; Association for Computing Machinery: New York, NY, USA, 2016. [Google Scholar]
- Lin, T.Y.; Yang, C.; Zhuang, C.; Xiao, Y.; Tao, F.; Shi, G.; Geng, C. Multi-centric management and optimized allocation of manufacturing resource and capability in cloud manufacturing system. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 2159–2172. [Google Scholar] [CrossRef]
- Olszak, C.M.; Mach-Król, M. A Conceptual Framework for Assessing an Organization’s Readiness to Adopt Big Data. Sustainability 2018, 10, 3734. [Google Scholar] [CrossRef]
- Garmaki, M.; Boughzala, I.; Wamba, S.F. The effect of big data analytics capability on firm performance. In Proceedings of the 20th Pacific Asia Conference on Information Systems, PACIS 2016, Chiayi, Taiwan, 27 June–1 July 2016; Pacific Asia Conference on Information Systems: Kaohsiung, Taiwan, 2016. [Google Scholar]
- Chatfield, A.T.; Ojo, A.; Puron-Cid, G.; Reddick, C.G. Census big data analytics use: International cross case analysis. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, DG.O 2018, Delft, The Netherlands, 30 May–1 June 2018; Hinnant, C.C., Zuiderwijk, A., Eds.; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Gray, E.A.; Thorpe, J.H. Comparative effectiveness research and big data: Balancing potential with legal and ethical considerations. J. Comp. Eff. Res. 2015, 4, 61–74. [Google Scholar] [CrossRef]
- Bressanelli, G.; Adrodegari, F.; Perona, M.; Saccani, N. Exploring how usage-focused business models enable circular economy through digital technologies. Sustainability 2018, 10, 639. [Google Scholar] [CrossRef]
- Pugna, I.B.; Duțescu, A.; Stănilă, O.G. Corporate Attitudes towards Big Data and Its Impact on Performance Management: A Qualitative Study. Sustainability 2019, 11, 684. [Google Scholar] [CrossRef]
- Feng, L.; Sun, B.; Wang, K.; Tsai, S.B. An empirical study on the design of digital content products from a big data perspective. Sustainability 2018, 10, 3092. [Google Scholar] [CrossRef]
- De Camargo Fiorini, P.; Roman Pais Seles, B.M.; Chiappetta Jabbour, C.J.; Barberio Mariano, E.; de Sousa Jabbour, A.B.L. Management theory and big data literature: From a review to a research agenda. Int. J. Inf. Manag. 2018, 43, 112–129. [Google Scholar] [CrossRef]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Bedeley, R.T.; Nemati, H. Big Data Analytics: A key capability for competitive advantage. In Proceedings of the 20th Americas Conference on Information Systems, AMCIS 2014, Savannah, GA, USA, 7–9 August 2014; Association for Information Systems: Savannah, GA, USA, 2014. [Google Scholar]
- Jun, W.; Honglei, S.; Jiaping, Y. Are big data talents different from business intelligence expertise?: Evidence from text mining using job recruitment advertisements. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017; pp. 1–6. [Google Scholar]
- Hazen, B.T.; Skipper, J.B.; Ezell, J.D.; Boone, C.A. Big data and predictive analytics for supply chain sustainability: A theory-driven research agenda. Comput. Ind. Eng. 2016, 101, 592–598. [Google Scholar] [CrossRef]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.I. Sustainable industrial value creation: Benefits and challenges of industry 4.0. Int. J. Innov. Manag. 2017, 21, 1740015. [Google Scholar] [CrossRef]
- Emmanouilidis, C.; Bertoncelj, L.; Bevilacqua, M.; Tedeschi, S.; Ruiz-Carcel, C. Internet of Things—Enabled Visual Analytics for Linked Maintenance and Product Lifecycle Management. IFAC-PapersOnLine 2018, 51, 435–440. [Google Scholar] [CrossRef]
- Torrecilla, J.L.; Romo, J. Data learning from big data. Stat. Probab. Lett. 2018, 136, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Yau, Y.; Lau, W.K. Big data approach as an institutional innovation to tackle Hong Kong’s illegal subdivided unit problem. Sustainability 2018, 10, 2709. [Google Scholar] [CrossRef]
- Grover, V.; Chiang, R.H.L.; Liang, T.P.; Zhang, D. Creating Strategic Business Value from Big Data Analytics: A Research Framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- Debortoli, S.; Müller, O.; Vom Brocke, J. Comparing business intelligence and big data skills: A text mining study using job advertisements. Bus. Inf. Syst. Eng. 2014, 6, 289–300. [Google Scholar] [CrossRef]
- Mandal, S. An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective. Manag. Res. Rev. 2018, 41, 1201–1219. [Google Scholar] [CrossRef]
- LaDeau, S.L.; Han, B.A.; Rosi-Marshall, E.J.; Weathers, K.C. The Next Decade of Big Data in Ecosystem Science. Ecosystems 2017, 20, 274–283. [Google Scholar] [CrossRef]
- Landon-Murray, M. Big data and intelligence: Applications, human capital, and education. J. Strateg. Secur. 2016, 9, 92–121. [Google Scholar] [CrossRef]
- Meyer, M.A. Healthcare data scientist qualifications, skills, and job focus: A content analysis of job postings. J. Am. Med. Inform. Assoc. 2019, 26, 383–391. [Google Scholar] [CrossRef]
- Quiñones-Gómez, J.C. Moving away from the basic, adopting a new approach to the creative process. In Lecture Notes in Mechanical Engineering; Springer Nature Switzerland AG: Basel, Switzerland, 2019; pp. 670–679. [Google Scholar]
- Hooi, T.K.; Abu, N.H.B.; Rahim, M.K.I.A. Relationship of big data analytics capability and product innovation performance using smartPLS 3.2.6: Hierarchical component modelling in PLS-SEM. Int. J. Supply Chain Manag. 2018, 7, 51–64. [Google Scholar]
- Tan, K.H. Managerial perspectives of big data analytics capability towards product innovation. Strateg. Dir. 2018, 34, 33–35. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. Customer agility and responsiveness through big data analytics for public value creation: A case study of Houston 311 on-demand services. Gov. Inf. Q. 2018, 35, 336–347. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Herman, J.; Herman, H.; Mathews, M.J.; Vosloo, J.C. Using big data for insights into sustainable energy consumption in industrial and mining sectors. J. Clean. Prod. 2018, 197, 1352–1364. [Google Scholar] [CrossRef]
- Bertoni, A. Role and Challenges of Data-Driven Design in the Product Innovation Process. IFAC-PapersOnLine 2018, 51, 1107–1112. [Google Scholar] [CrossRef]
- Zhan, Y.; Tan, K.H.; Li, Y.; Tse, Y.K. Unlocking the power of big data in new product development. Ann. Oper. Res. 2018, 270, 577–595. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.-F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- You, D.; Zhang, Y.; Yuan, B. Environmental regulation and firm eco-innovation: Evidence of moderating effects of fiscal decentralization and political competition from listed Chinese industrial companies. J. Clean. Prod. 2019, 207, 1072–1083. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Y. How government subsidies promote the growth of entrepreneurial companies in clean energy industry: An empirical study in China. J. Clean. Prod. 2018, 188, 508–520. [Google Scholar] [CrossRef]
- Malaysia, B. Bursa Sectorial Index Series Factsheet; Bursa Malaysia: Kuala Lumpur, Malaysia, 2018. [Google Scholar]
- Cooper, D.; Schindler, P. Business Research Methods, 12th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2013. [Google Scholar]
- Ruel, E.E.; Wagner, W.E.; Gillespie, B.J. The Practice of Survey Research: Theory and Applications; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Khamis, H.; Kepler, M. Sample size in multiple regression: 20 + 5 k. J. Appl. Stat. Sci. 2010, 17, 505–517. [Google Scholar]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Hojnik, J.; Ruzzier, M. The driving forces of process eco-innovation and its impact on performance: Insights from Slovenia. J. Clean. Prod. 2016, 133, 812–825. [Google Scholar] [CrossRef]
- Harpe, S.E. How to analyze Likert and other rating scale data. Curr. Pharm. Teach. Learn. 2015, 7, 836–850. [Google Scholar] [CrossRef]
- Miller, D. The Correlates of Entrepreneurship in Three Types of Firms. Manag. Sci. 1983, 29, 770–791. [Google Scholar] [CrossRef]
- Astivia, O.L.O.; Zumbo, B.D. Heteroskedasticity in multiple regression analysis: What it is, how to detect it and how to solve it with applications in R and SPSS. Pract. Assess. Res. Eval. 2019, 24, 2. [Google Scholar]
- Green, S.B. How Many Subjects Does It Take to Do a Regression Analysis? Multivar. Behav. Res. 1991, 26, 499–510. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2013. [Google Scholar]
- Malkovich, J.F.; Afifi, A.A. On tests for multivariate normality. J. Am. Stat. Assoc. 1973, 68, 176–179. [Google Scholar] [CrossRef]
- Binti Yusoff, S.; Bee Wah, Y. Comparison of conventional measures of skewness and kurtosis for small sample size. In Proceedings of the 2012 International Conference on Statistics in Science, Business and Engineering, ICSSBE 2012, Langkawi, Malaysia, 10–12 September 2012; pp. 518–523. [Google Scholar]
- Goodman, R. Psychometric properties of the strengths and difficulties questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Saleh, L.D.; Wei, M.; Bai, B. Data analysis and updated screening criteria for polymer flooding based on oilfield data. SPE Reserv. Eval. Eng. 2014, 17, 15–25. [Google Scholar] [CrossRef]
- Wan Yen, S.; Morris, S.; Ezra, M.A.G.; Jun Huat, T. Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids. Int. J. Electr. Power Energy Syst. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Kou, T.C.; Chiang, C.T.; Chiang, A.H. Effects of IT-based supply chains on new product development activities and the performance of computer and communication electronics manufacturers. J. Bus. Ind. Mark. 2018, 33, 869–882. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Shao, Z. Energy Internet: The business perspective. Appl. Energy 2016, 178, 212–222. [Google Scholar] [CrossRef]
- Ooi, K.B.; Lee, V.H.; Tan, G.W.H.; Hew, T.S.; Hew, J.J. Cloud computing in manufacturing: The next industrial revolution in Malaysia? Expert Syst. Appl. 2018, 93, 376–394. [Google Scholar] [CrossRef]
- Asamoah, D.A.; Sharda, R.; Hassan Zadeh, A.; Kalgotra, P. Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course. Decis. Sci. J. Innov. Educ. 2017, 15, 161–190. [Google Scholar] [CrossRef]
- Demchenko, Y.; Belloum, A.; Los, W.; Wiktorski, T.; Manieri, A.; Brocks, H.; Becker, J.; Heutelbeck, D.; Hemmje, M.; Brewer, S. EDISON data science framework: A foundation for building data science profession for research and industry. In Proceedings of the 8th IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2016, Luxembourg, 12–15 December 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 620–626. [Google Scholar]
- Hofmann, E.; Rutschmann, E. Big data analytics and demand forecasting in supply chains: A conceptual analysis. Int. J. Logist. Manag. 2018, 29, 739–766. [Google Scholar] [CrossRef]
- Kamsi, N.S.; Radin Firdaus, R.B.; Abdul Razak, F.D.; Ridha Siregar, M. Realizing Industry 4.0 through STEM Education: But Why STEM Is Not Preferred? In Proceedings of the 1st South Aceh International Conference on Engineering and Technology, SAICOET 2018, Aceh Selatan, Indonesia, 8–9 December 2018; Sani, M.S.M., Ed.; Institute of Physics Publishing: Philadelphia, PA, USA, 2019. [Google Scholar]
- Kadar, H.H.B.; Sameon, S.S.B.; Din, M.B.M.; Rafee, P.A.B.A. Malaysia towards Cashless Society. In Proceedings of the 3rd International Symposium of Information and Internet Technology, SYMINTECH 2018, Langkawi, Malaysia, 18–20 December 2018; Othman, M.A., Abd Aziz, M.Z.A., Md Saat, M.S., Misran, M.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 565, pp. 34–42. [Google Scholar]
- Ghani, E.K.; Muhammad, K. Industry 4.0: Employers’ expectations of accounting graduates and its implications on teaching and learning practices. Int. J. Educ. Pract. 2019, 7, 19–29. [Google Scholar] [CrossRef]
- Veerankutty, F.; Ramayah, T.; Ali, N.A. Information technology governance on audit technology performance among Malaysian public sector auditors. Soc. Sci. 2018, 7, 124. [Google Scholar] [CrossRef]
- Asamoah, D.A.; Doran, D.; Schiller, S. Interdisciplinarity in Data Science Pedagogy: A Foundational Design. J. Comput. Inf. Syst. 2018. [Google Scholar] [CrossRef]
- Belloum, A.S.Z.; Koulouzis, S.; Wiktorski, T.; Manieri, A. Bridging the demand and the offer in data science. Concurr. Comput. 2019. [Google Scholar] [CrossRef]
- Mittelmeier, J.; Edwards, R.L.; Davis, S.K.; Nguyen, Q.; Murphy, V.L.; Brummer, L.; Rienties, B. ‘A double-edged sword. This is powerful but it could be used destructively’: Perspectives of early career education researchers on learning analytics. Frontline Learn. Res. 2018, 6, 20–38. [Google Scholar] [CrossRef]
- Stieglitz, N.; Heine, K. Innovations and the role of complementarities in a strategic theory of the firm. Strateg. Manag. J. 2007, 28, 1–15. [Google Scholar] [CrossRef]
- Kyrgidou, L.P.; Spyropoulou, S. Drivers and Performance Outcomes of Innovativeness: An Empirical Study. Br. J. Manag. 2013, 24, 281–298. [Google Scholar] [CrossRef]
- Balachandran, B.M.; Prasad, S. Challenges and Benefits of Deploying Big Data Analytics in the Cloud for Business Intelligence. Procedia Comput. Sci. 2017, 112, 1112–1122. [Google Scholar] [CrossRef]
- Knuth, S. “Breakthroughs” for a green economy? Financialization and clean energy transition. Energy Res. Soc. Sci. 2018, 41, 220–229. [Google Scholar] [CrossRef]
- Salleh, K.A.; Janczewski, L. Technological, Organizational and Environmental Security and Privacy Issues of Big Data: A Literature Review. Procedia Comput. Sci. 2016, 100, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Yebenes, J.; Zorrilla, M. Towards a Data Governance Framework for Third Generation Platforms. Procedia Comput. Sci. 2019, 151, 614–621. [Google Scholar] [CrossRef]
Skewness | Kurtosis | Cronbach’s α | |
---|---|---|---|
Information Technology | −0.353 | 0.048 | 0.929 |
Management | 0.224 | −0.173 | 0.919 |
Personnel Expertise | −0.146 | 0.680 | 0.962 |
Process Eco-innovation | −0.163 | 1.137 | 0.918 |
VIF Score | Process Eco-Innovation | Information Technology | Management | Personnel Expertise | |
---|---|---|---|---|---|
Process Eco-Innovation | 1 | ||||
Information Technology | 2.623 | 0.605 | 1 | ||
Management | 2.234 | 0.428 | 0.666 | 1 | |
Personnel Expertise | 3.056 | 0.538 | 0.771 | 0.723 | 1 |
Process Eco-Innovation | Information Technology | Management | Personnel Expertise | |
---|---|---|---|---|
Process Eco-Innovation | 1 | |||
Information Technology | 0.001 1 | 1 | ||
Management | 0.021 2 | 0.000 1 | 1 | |
Personnel Expertise | 0.003 1 | 0.000 1 | 0.000 1 | 1 |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
R 2 | 0.366 | 0.379 | 0.379 |
ΔR 2 | 0.366 | 0.013 | 0.000 |
ΔF | 15.608 1 | 0.531 2 | 0.015 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munodawafa, R.T.; Johl, S.K. Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies. Sustainability 2019, 11, 4254. https://doi.org/10.3390/su11154254
Munodawafa RT, Johl SK. Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies. Sustainability. 2019; 11(15):4254. https://doi.org/10.3390/su11154254
Chicago/Turabian StyleMunodawafa, Russell Tatenda, and Satirenjit Kaur Johl. 2019. "Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies" Sustainability 11, no. 15: 4254. https://doi.org/10.3390/su11154254
APA StyleMunodawafa, R. T., & Johl, S. K. (2019). Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies. Sustainability, 11(15), 4254. https://doi.org/10.3390/su11154254