Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Experimental Design
2.3. Calculation Method
2.4. Statistical Analyses
3. Results
3.1. The Effects of Different Treatments on Plant Growth
3.2. The Effects of Different Treatments on Sunflower Yield
3.3. The Effects of Different Treatments on Soil Water Storage (SWS)
3.4. The Effects of Different Treatments on ET and WUE
4. Discussion
4.1. The Film-Mulched Treatments Can Improve the Growth of Sunflower Significantly Due to the Higher SWS
4.2. The Output of Sunflower Is Determined by Precipitation and Ridge–Furrow Ratio
4.3. The Optimum Ridge–Furrow Ratio for Stable Sunflower Yield
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Gong, J.; Wei, X. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. J. Arid Environ. 2000, 46, 371–382. [Google Scholar] [CrossRef]
- Gong, D.; Shi, P.; Wang, J. Daily precipitation changes in the semi-arid region over northern China. J. Arid Environ. 2004, 59, 771–784. [Google Scholar] [CrossRef]
- Ren, X.; Chen, X.; Jia, Z. Effect of Rainfall Collecting with Ridge and Furrow on Soil Moisture and Root Growth of Corn in Semiarid Northwest China. J. Agron. Crop Sci. 2010, 196, 109–122. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, P.; Chen, X.; Guo, J.; Jia, Z. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau. Sci. Rep. 2016, 6, 19019. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Wen, X.; Fang, G.; Qi, H.; Zhou, L.; Gao, Y. Changes of temperature and precipitation extremes in China: Past and future. Theor. Appl. Climatol. 2016, 126, 369–383. [Google Scholar] [CrossRef]
- Ju, H.; van der Velde, M.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Chang. 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Deng, L.; Wang, W.; Cai, Y.; Hu, A.; Tan, L. Groundwater Diffuse Recharge and its Response to Climate Changes in Semi-Arid Northwestern China. Terr. Atmos. Ocean. Sci. 2015, 26, 451–461. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. [Google Scholar] [CrossRef]
- Zhang, J.; An, P.; Pan, Z.; Hao, B.; Wang, L.; Dong, Z.; Pan, X.; Xue, Q. Adaptation to a Warming-Drying Trend Through Cropping System Adjustment over Three Decades: A Case Study in the Northern Agro-Pastural Ecotone of China. J. Meteorol. Res. 2015, 29, 496–514. [Google Scholar] [CrossRef]
- Turner, N.C.; Molyneux, N.; Yang, S.; Xiong, Y.; Siddique, K.H.M. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop Pasture Sci. 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Eldoma, I.M.; Li, M.; Zhang, F.; Li, F. Alternate or equal ridge–furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China? Field Crop. Res. 2016, 191, 131–138. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nagarajan, S.; Aggarwal, P.; Gupta, V.K.; Tomar, R.K.; Garg, R.N.; Sahoo, R.N.; Sarkar, A.; Chopra, U.K.; Sarma Sundara, K.S.; et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (triticum aestivum l.) in a semi-arid environment. Agric. Water Manag. 2008, 95, 1323–1334. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.; Ma, B.; Xiong, Y.; Qiang, S.; Wang, C.; Liu, C.; Li, F. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Gu, Y.J.; Han, C.L.; Fan, J.W.; Shi, X.P.; Kong, M.; Shi, X.Y.; Siddique, K.H.M.; Zhao, Y.Y.; Li, F.M. Alfalfa forage yield, soil water and p availability in response to plastic film mulch and p fertilization in a semiarid environment. Field Crop. Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Carter, D.C.; Miller, S. Three years’ experience with an on-farm macro-catchment water harvesting system in Botswana. Agric. Water Manag. 1991, 19, 191–203. [Google Scholar] [CrossRef]
- Yu, B.; Sombatpanit, S.; Rose, C.W.; Ciesiolka, C.; Coughlan, K.J. Characteristics and modeling of runoff hydrographs for different tillage treatments. Soil Sci. Soc. Am. J. 2000, 64, 1763–1770. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.; Qiang, C. Ridge–furrow mulching systems—An innovative technique for boostingcrop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar] [CrossRef]
- Li, X.; Gong, J. Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agric. Water Manag. 2002, 54, 243–254. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C. Suitability of Mulch and Ridge-furrow Techniques for Maize across the Precipitation Gradient on the Chinese Loess Plateau. J. Agric. Sci. 2012, 4, 182. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Wan, X.; Liu, Y.; Han, J.; Liao, Y.; Wu, W. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crop. Res. 2016, 188, 62–73. [Google Scholar] [CrossRef]
- Chen, X.; Wu, P.; Zhao, X.; Persaud, N. Effect of Different Mulches on Harvested Rainfall Use Efficiency for Corn (Zea mays L.) in Semi-Arid Regions of Northwest China. Arid Land Res. Manag. 2013, 27, 272–285. [Google Scholar] [CrossRef]
- Wang, L.; Shangguan, Z. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Sci. Rep. 2015, 5, 12225. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Yeboah, S.; Wang, D.; Zhang, J. Effects of ridge-furrow and plastic mulching planting patterns on microflora and potato tuber yield in continuous cropping soil. Soil Use Manag. 2016, 32, 465–473. [Google Scholar] [CrossRef]
- Ren, X.; Cai, T.; Chen, X.; Zhang, P.; Jia, Z. Effect of rainfall concentration with different ridge widths on winter wheat production under semiarid climate. Eur. J. Agron. 2016, 77, 20–27. [Google Scholar] [CrossRef]
- Wang, Q.; Song, X.; Li, F.; Hu, G.; Liu, Q.; Zhang, E.; Wang, H.; Davies, R. Optimum ridge–furrow ratio and suitable ridge-mulching material for Alfalfa production in rainwater harvesting in semi-arid regions of China. Field Crop. Res. 2015, 180, 186–196. [Google Scholar] [CrossRef]
- Mo, F.; Zhou, H.; Wang, J.; Zhao, H.; Zhang, H.; Wu, S.; Chen, Y.; Yang, T.; Deng, H.; Asfa, B.; et al. Development and application of micro-field rain-harvesting technologies. Trans. Chin. Soc. Agric. Eng. 2013, 8, 1–17. [Google Scholar] [CrossRef]
- Gammoh, I.A. An improved wide furrow micro-catchment for large-scale implementation of water-harvesting systems in arid areas. J. Arid Environ. 2013, 88, 50–56. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, X.; Song, X.; Hu, G.; Zhang, E.; Wang, H.; Maureen, M.V. The optimum ridge–furrow ratio and suitable ridge-covering material in rainwater harvesting for oats production in semiarid regions of China. Field Crop. Res. 2015, 172, 106–118. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Yang, N.; Pan, Z.; Zhao, P.; Tuo, D. Effects of a ridge-furrow micro-field rainwater-harvesting system on potato yield in a semi-arid region. Field Crop. Res. 2014, 166, 92–101. [Google Scholar] [CrossRef]
- Gong, D.; Shi, P. Variability of summer rainfall over northern China and its association with thermal condition at early stage underlying surface. J. Nat. Resour. 2001, 16, 211–215, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, C.; Tian, X.; Li, S. Effects of ridge-mulching with plastic sheets for rainwater-harvesting cultivation on WUE and yield of winter wheat. Agric. Sci. China 2004, 3, 14–23. [Google Scholar]
- Huang, Y.; Chen, L.; Fu, B.; Huang, Z.; Gong, J. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects. Agric. Water Manag. 2005, 72, 209–222. [Google Scholar] [CrossRef]
- Pan, X.; Long, B.; Wei, Y. Analysis on the Rainfall Regular and Potential of Collecting and Utilizing Rain in Loess Plateau of Inner Mongolia. J. Arid Land Resour. Environ. 2014, 21, 65–71. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, E.; Li, F.; Li, F. Runoff efficiency and the technique of micro-water harvesting with ridges and furrows, for potato production in semi-arid areas. Water Resour. Manag. 2008, 22, 1431–1443. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.; Xiong, Y.; Nguluu, S.N.; Li, F. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Ali, S.; Jan, A.; Zhang, P.; Khan, M.N.; Cai, T.; Wei, T.; Ren, X.; Jia, Q.; Han, Q.; Jia, Z. Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China. Agric. Water Manag. 2016, 178, 1–11. [Google Scholar] [CrossRef]
- Tian, Y.; Su, D.; Li, F.; Li, X. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crop. Res. 2003, 84, 385–391. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Berliner, P.R. Inter-row mulch increase the water use efficiency of furrow-irrigated maize in an arid environment. J. Agron. Crop Sci. 2011, 197, 237–248. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, J.; Dai, H.; Wang, D.; Li, D. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 2014, 131, 87–94. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Du, Y. Continuous ridges with film mulching improve soil water content, root growth, seed yield and water use efficiency of winter oilseed rape. Ind. Crop. Prod. 2016, 85, 139–148. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, S.; Liu, C.; Xiong, Y.; Si, J.; Li, X.; Gan, Y.; Li, F. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crop. Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, P.; Chen, X.; Jia, Z. Impacts of ridge-furrow rainfall concentration systems and mulches on corn growth and yield in the semiarid region of China. J. Sci. Food Agric. 2016, 96, 3882–3889. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, E.H.; Li, F.M.; Li, F.R.; Xu, C.L. Runoff generation characters of mini-size water collection by ridges and furrow in semiarid area of Loess Plateau and related potato-planting techniques. Chin. J. Ecol. 2005, 24, 1283–1286, (In Chinese with English Abstract). [Google Scholar]
- Jia, Y.; Li, F.; Wang, X.; Yang, S. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment. Field Crop. Res. 2006, 97, 167–175. [Google Scholar] [CrossRef]
- Bouma, J.A.; Hegde, S.S.; Lasage, R. Assessing the returns to water harvesting: A meta-analysis. Agric. Water Manag. 2016, 163, 100–109. [Google Scholar] [CrossRef]
- Shan, Y.; Wang, L.; Ma, Y.; Song, C. Effect of different water deficit on yield, water use efficiency and economic benifit of sunflower. J. Northeast Agric. Univ. 2010, 7, 70–73, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Duan, P.; Qin, L. Study on Water Requirement of Sunflower Under Different Precipitation Years in Changling County. Chin. Agric. Sci. Bull. 2014, 30, 135–139. [Google Scholar] [CrossRef]
- Zhou, L.; Li, F.; Jin, S.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
Growth Stage | Elongation Stage | Squaring Stage | Flowering and Filling Stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 days after sowing | 46 | 58 | 73 | 90 | ||||||||
M1R1 | 52 | ab | 265 | a | 625 | ab | 922 | bc | ||||
M0R1 | 49 | abc | 189 | b | 593 | ab | 795 | cd | ||||
M1R2 | 44 | bc | 234 | ab | 577 | ab | 909 | bc | ||||
M0R2 | 36 | c | 193 | b | 516 | b | 674 | d | ||||
M1R0.5 | 59 | a | 276 | a | 754 | a | 1178 | a | ||||
M0R0.5 | 46 | ac | 252 | a | 705 | a | 1067 | ab | ||||
CK | 48 | abc | 198 | a | 573 | ab | 893 | bc | ||||
2014 days after sowing | 37 | 51 | 65 | 80 | 95 | 110 | ||||||
M1R1 | 7.6 | b | 80 | bc | 343 | ab | 538 | ab | 832 | ab | 896 | bc |
M0R1 | 6.7 | b | 63 | c | 218 | cd | 454 | bc | 550 | c | 722 | cd |
M1R2 | 6.9 | b | 71 | c | 313 | abc | 593 | ab | 936 | a | 1021 | ac |
M0R2 | 6.5 | b | 48 | c | 160 | d | 309 | c | 505 | c | 618 | d |
M1R0.5 | 13.3 | a | 110 | a | 385 | a | 700 | a | 1012 | a | 1182 | a |
M0R0.5 | 9.5 | ab | 104 | ab | 297 | abc | 472 | bc | 603 | bc | 652 | cd |
CK | 6.0 | b | 77 | bc | 272 | bc | 516 | b | 630 | bc | 696 | cd |
2015 days after sowing | 35 | 50 | 65 | 82 | 96 | 112 | ||||||
M1R1 | 2.9 | b | 31 | ab | 138 | a | 428 | a | 672 | ab | 691 | ab |
M0R1 | 2.1 | c | 13 | c | 75 | b | 232 | b | 305 | c | 380 | c |
M1R2 | 2.7 | b | 28 | b | 142 | a | 474 | a | 756 | a | 733 | a |
M0R2 | 1.5 | d | 12 | c | 57 | b | 198 | b | 286 | c | 344 | c |
M1R0.5 | 3.7 | a | 38 | a | 162 | a | 466 | a | 592 | b | 576 | b |
M0R0.5 | 2.3 | c | 16 | c | 75 | b | 222 | b | 328 | c | 349 | c |
CK | 2.3 | c | 15 | c | 74 | b | 257 | b | 346 | c | 298 | c |
Growth Stage | Elongation Stage | Squaring Stage | Flowering and Filling Stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 days after sowing | 46 | 58 | 73 | 90 | ||||||||
M1R1 | 0.45 | ab | 1.87 | a | 2.41 | ab | 2.56 | a | ||||
M0R1 | 0.41 | abc | 1.51 | a | 2.22 | abc | 2.33 | a | ||||
M1R2 | 0.37 | bc | 1.93 | a | 2.41 | bc | 2.61 | a | ||||
M0R2 | 0.33 | c | 1.65 | a | 1.95 | c | 2.18 | a | ||||
M1R0.5 | 0.50 | a | 1.97 | a | 2.46 | a | 2.69 | a | ||||
M0R0.5 | 0.42 | abc | 1.76 | a | 2.27 | abc | 2.42 | a | ||||
CK | 0.41 | abc | 1.77 | a | 2.40 | abc | 2.52 | a | ||||
2014 days after sowing | 37 | 51 | 65 | 80 | 95 | 110 | ||||||
M1R1 | 0.09 | b | 0.73 | ab | 1.44 | ab | 1.50 | ab | 1.28 | ab | 0.72 | a |
M0R1 | 0.06 | b | 0.59 | ab | 0.87 | cd | 1.17 | bc | 0.84 | c | 0.39 | bc |
M1R2 | 0.07 | b | 0.64 | ab | 1.30 | ab | 1.54 | ab | 1.46 | a | 0.83 | a |
M0R2 | 0.07 | b | 0.40 | b | 0.74 | d | 0.88 | c | 0.78 | c | 0.38 | bc |
M1R0.5 | 0.14 | a | 0.93 | a | 1.55 | a | 1.88 | a | 1.58 | a | 0.62 | ab |
M0R0.5 | 0.09 | b | 0.90 | a | 1.23 | ab | 1.29 | bc | 0.89 | c | 0.36 | bc |
CK | 0.10 | ab | 0.67 | ab | 1.16 | bc | 1.33 | b | 0.98 | bc | 0.31 | c |
2015 days after sowing | 35 | 50 | 65 | 82 | 96 | 112 | ||||||
M1R1 | 0.03 | b | 0.21 | b | 0.65 | a | 1.10 | a | 0.89 | a | 0.60 | ab |
M0R1 | 0.02 | c | 0.09 | c | 0.31 | b | 0.61 | b | 0.42 | b | 0.31 | bc |
M1R2 | 0.03 | b | 0.20 | b | 0.65 | a | 1.09 | a | 1.00 | a | 0.67 | a |
M0R2 | 0.01 | d | 0.09 | c | 0.28 | b | 0.56 | b | 0.42 | b | 0.23 | c |
M1R0.5 | 0.04 | a | 0.27 | a | 0.69 | a | 1.09 | a | 0.88 | a | 0.35 | bc |
M0R0.5 | 0.02 | c | 0.12 | c | 0.36 | b | 0.59 | b | 0.42 | b | 0.26 | c |
CK | 0.02 | c | 0.11 | c | 0.34 | b | 0.68 | b | 0.50 | b | 0.23 | c |
Treatments | Yield (kg·ha−1) | Variation Compared to CK (%) | 100-Grain Weight (g) | Variation Compared to CK (%) | Blighted Grain Rate (%) | |
---|---|---|---|---|---|---|
2013 | ||||||
M1R1 | —— | —— | 17.1 ± 1.0 a | 0.9 | 15.2 | |
M0R1 | —— | —— | 16.8 ± 1.4 a | –1.2 | 16.1 | |
M1R2 | —— | —— | 18.4 ± 0.8 a | 8.5 | 17.8 | |
M0R2 | —— | —— | 16.8 ± 0.3 a | –0.7 | 22.3 | |
M1R0.5 | —— | —— | 16.8 ± 0.2 a | –0.9 | 15.6 | |
M0R0.5 | —— | —— | 16.8 ± 2.0 a | –0.9 | 20.6 | |
CK | —— | —— | 17.0 ± 1.3 a | —— | 15.8 | |
2014 | ||||||
M1R1 | 2742 ± 101 | bc | 22.9 | 18.1 ± 0.3 ab | 58.3 | 19.5 * |
M0R1 | 2005 ± 423 | d | –10.1 | 13.8 ± 1.2 cd | 20.8 | 22.8 |
M1R2 | 2971 ± 26 | ab | 33.1 | 19.4 ± 1.5 a | 70.2 | 20.0 * |
M0R2 | 2047 ± 181 | d | –8.3 | 14.8 ± 2.4 bc | 29.3 | 25.6 |
M1R0.5 | 3310 ± 154 | a | 48.3 | 15.4 ± 1.3 bc | 34.7 | 21.6 |
M0R0.5 | 2413 ± 84 | bcd | 8.1 | 13.4 ± 0.4 cd | 17.5 | 22.9 |
CK | 2231 ± 233 | cd | —— | 11.4 ± 1.0 d | —— | 26.9 |
2015 | ||||||
M1R1 | 1628 ± 195 | ab | 85.4 | 15.1 ± 0.9 ab | 50.9 | 29.7 |
M0R1 | 1234 ± 369 | abc | 40.6 | 12.7 ± 1.1 cd | 26.8 | 30.8 |
M1R2 | 1822 ± 252 | a | 107.5 | 16.3 ± 0.6 a | 62.8 | 23.3 * |
M0R2 | 1161 ± 324 | abc | 32.2 | 14.8 ± 0.5 bc | 47.3 | 33.2 |
M1R0.5 | 1465 ± 28 | abc | 66.9 | 12.7 ± 0.8 bc | 27.2 | 32.8 |
M0R0.5 | 979 ± 12 | bc | 11.5 | 10.6 ± 1.3 cd | 5.8 | 34.5 |
CK | 878 ± 380 | c | —— | 10.0 ± 0.8 d | — | 31.3 |
Treatments | Precipitation (mm) | ΔW (mm) | ET (mm) | WUE (kg·mm−1·ha−1) |
---|---|---|---|---|
2013 | ||||
M1R1 | 414.9 | 75.1 | 463.9 | —— |
M0R1 | 414.9 | 59.5 | 474.4 | —— |
M1R2 | 414.9 | 57.6 | 444.8 | —— |
M0R2 | 414.9 | 64.2 | 479.1 | —— |
M1R0.5 | 414.9 | 68.8 | 469.9 | —— |
M0R0.5 | 414.9 | 91.0 | 505.9 | —— |
CK | 414.9 | 60.4 | 475.3 | —— |
2014 | ||||
M1R1 | 366.1 | 24.1 | 371.9 * | 7.4 * |
M0R1 | 366.1 | 16.9 | 383.0 ** | 5.2 |
M1R2 | 366.1 | 22.4 | 364.1 | 8.2 ** |
M0R2 | 366.1 | 15.9 | 382.0 ** | 5.4 |
M1R0.5 | 366.1 | –10.3 | 343.6 ** | 9.6 ** |
M0R0.5 | 366.1 | –10.4 | 355.7 | 6.8 |
CK | 366.1 | –6.2 | 360.0 | 6.2 |
2015 | ||||
M1R1 | 307.5 | –10.5 | 281.7 ** | 5.8 * |
M0R1 | 307.5 | –10.1 | 297.4 | 4.2 |
M1R2 | 307.5 | –12.0 | 275.0 ** | 6.6 ** |
M0R2 | 307.5 | –12.1 | 295.4 | 3.9 |
M1R0.5 | 307.5 | –12.3 | 284.9 * | 5.1* |
M0R0.5 | 307.5 | –12.9 | 294.6 | 3.3 |
CK | 307.5 | –14.2 | 293.3 | 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Pan, X.; Zi, T.; Hu, Q.; Wang, J.; Han, G.; Wang, J.; Pan, Z. Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China. Sustainability 2019, 11, 4047. https://doi.org/10.3390/su11154047
Pan Y, Pan X, Zi T, Hu Q, Wang J, Han G, Wang J, Pan Z. Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China. Sustainability. 2019; 11(15):4047. https://doi.org/10.3390/su11154047
Chicago/Turabian StylePan, Yuying, Xuebiao Pan, Tan Zi, Qi Hu, Jing Wang, Guolin Han, Jialin Wang, and Zhihua Pan. 2019. "Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China" Sustainability 11, no. 15: 4047. https://doi.org/10.3390/su11154047
APA StylePan, Y., Pan, X., Zi, T., Hu, Q., Wang, J., Han, G., Wang, J., & Pan, Z. (2019). Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China. Sustainability, 11(15), 4047. https://doi.org/10.3390/su11154047