A Transit Route Network Design Problem Considering Equity
Abstract
1. Introduction
2. Literature Review
2.1. Equity in Public Transportation
2.2. Indexes for Public Transportation
3. Model Specifications
3.1. Model Framework
3.2. Application of Equity Indexes
3.3. Route Network Decision-Making Process
3.4. Frequency Setting by Bi-Level Modeling
4. Numerical Example
4.1. Basic Unit Input
4.2. Transit Route Network Decision-Making
4.3. Frequency Setting
5. Discussion
6. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Johnston, R.A. Indicators for Sustainable Transportation Planning. Transp. Res. Rec. J. Transp. Res. Board 2008, 2067, 146–154. [Google Scholar] [CrossRef]
- López, E.; Monzón, A. Integration of Sustainability Issues in Strategic Transportation Planning: A Multi-criteria Model for the Assessment of Transport Infrastructure Plans. Comput. Civ. Infrastruct. Eng. 2010, 25, 440–451. [Google Scholar] [CrossRef]
- Manaugh, K.; Badami, M.G.; El-Geneidy, A.M. Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America. Transp. Policy 2015, 37, 167–176. [Google Scholar] [CrossRef]
- Hahn, J.-S.; Kho, S.-Y.; Choi, K.; Kim, D.-K. Sustainability Evaluation of Rapid Routes for Buses with a Network DEA Model. Int. J. Sustain. Transp. 2017, 5, 659–669. [Google Scholar] [CrossRef]
- Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331. [Google Scholar] [CrossRef]
- Mandl, C.E. Evaluation and optimization of urban public transportation networks. Eur. J. Oper. Res. 1980, 5, 396–404. [Google Scholar] [CrossRef]
- Kain, J.F.; Meyer, J.R. Transportation and Poverty. Public Interest 1970, 18, 75–87. [Google Scholar]
- Hodge, D.C. Fiscal Equity in Urban Mass Transit Systems: A Geographic Analysis. Ann. Assoc. Am. Geogr. 1988, 78, 288–306. [Google Scholar] [CrossRef]
- Viegas, J.M. Making urban road pricing acceptable and effective: searching for quality and equity in urban mobility. Transp. Policy 2001, 8, 289–294. [Google Scholar] [CrossRef]
- Levinson, D. Equity Effects of Road Pricing: A Review. Transp. Rev. 2010, 30, 33–57. [Google Scholar] [CrossRef]
- Golub, A.; Martens, K. Using principles of justice to assess the modal equity of regional transportation plans. J. Transp. Geogr. 2014, 41, 10–20. [Google Scholar] [CrossRef]
- Weinstein, A.; Sciara, G.-C. Unraveling Equity in Hot Lane Planning a View from Practice. J. Plan. Educ. Res. 2006, 26, 174–184. [Google Scholar] [CrossRef]
- Mollanejad, M.; Zhang, L. Incorporating spatial equity into interurban road network design. J. Transp. Geogr. 2014, 39, 156–164. [Google Scholar] [CrossRef]
- Antunes, A.; Seco, Á.; Pinto, N. An Accessibility-Maximization Approach to Road Network Planning. Comput. Civ. Infrastruct. Eng. 2003, 18, 224–240. [Google Scholar] [CrossRef]
- Chen, A.; Yang, C. Stochastic Transportation Network Design Problem with Spatial Equity Constraint. Transp. Res. Rec. J. Transp. Res. Board 2004, 1882, 97–104. [Google Scholar] [CrossRef]
- Duthie, J.; Waller, S. Incorporating Environmental Justice Measures into Equilibrium-Based Network Design. Transp. Res. Rec. 2008, 2089, 58–65. [Google Scholar] [CrossRef]
- Feng, C.; Wu, J. Using Multi-Objective Fuzzy De Novo Programming and GIS in Highway Network Investment Planning. J. East. Asia Soc. Transp. Stud. 1999, 3, 81–90. [Google Scholar]
- Feng, C.-M.; Wu, J.Y.-J. Highway Investment Planning Model for Equity Issues. J. Urban Plan. Dev. 2003, 129, 161–176. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, H. Benefit distribution and equity in road network design. Transp. Res. Part B: Methodol. 2002, 36, 19–35. [Google Scholar] [CrossRef]
- Santos, B.F.; Antunes, A.; Miller, E.J. Integrating Equity Objectives in a Road Network Design Model. Transp. Res. Rec. J. Transp. Res. Board 2008, 2089, 35–42. [Google Scholar] [CrossRef]
- Yang, H.; Bell, M.G.H. Models and Algorithms for Road Network Design: A Review and Some New Developments. Transp. Rev. 1998, 18, 257–278. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M. Facing equity in transportation Network Design Problem: A flexible constraints based model. Transp. Policy 2017, 55, 9–17. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Binetti, M.; Ottomanelli, M. A road network design model considering horizontal and vertical equity: Evidences from an empirical study. Case Stud. Transp. Policy 2017, 5, 392–399. [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Ottomanelli, M. Modeling horizontal and vertical equity in the public transport design problem: A case study. Transp. Res. Part A Policy Pract. 2018. (In Press) [CrossRef]
- Camporeale, R.; Caggiani, L.; Fonzone, A.; Ottomanelli, M. Quantifying the Impacts of Horizontal and Vertical Equity in Transit Route Planning. Transp. Plan. Technol. 2017, 40, 28–44. [Google Scholar] [CrossRef]
- Duthie, J.; CervenKa, K.; Waller, S. Environmental Justice Analysis: Challenges for Metropolitan Transportation Planning. Transp. Res. Rec. 2008, 2013, 8–12. [Google Scholar] [CrossRef]
- Lee, Y.-J. Comparative Measures for Transit Network Performance Analysis. J. Transp. Res. Forum 2008, 47, 149–170. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.-J.; Choi, J.; Yu, J.; Choi, K. Geographical Applications of Performance Measures for Transit Network Directness. J. Public Transp. 2015, 18, 89–110. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Duthie, J.; Unnikrishnan, A.; Waller, S.T. Incorporating equity into the transit frequency-setting problem. Transp. Res. Part A: Policy Pr. 2012, 46, 190–199. [Google Scholar] [CrossRef]
- Currie, G. Quantifying spatial gaps in public transport supply based on social needs. J. Transp. Geogr. 2010, 18, 31–41. [Google Scholar] [CrossRef]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Mishra, S.; Welch, T.F.; Jha, M.K. Performance indicators for public transit connectivity in multi-modal transportation networks. Transp. Res. Part A: Policy Pr. 2012, 46, 1066–1085. [Google Scholar] [CrossRef]
- Park, J.-S.; Gang, S.-C. A Model for Evaluating the Connectivity of Multimodal Transit Networks. J. Korean Soc. Transp. 2010, 28, 85–98. [Google Scholar]
- Ryus, P.; Connor, M.; Corbett, S.; Rodenstein, A.; Wargelin, L.; Ferreira, L.; Nakanishi, Y.; Blume, K. A Guidebook for Developing a Transit Performance-Measurement System, TCRP Report 88; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
- Welch, T.F. Equity in transport: The distribution of transit access and connectivity among affordable housing units. Transp. Policy 2013, 30, 283–293. [Google Scholar] [CrossRef]
- Welch, T.F.; Mishra, S. A measure of equity for public transit connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Karner, A. Assessing public transit service equity using route-level accessibility measures and public data. J. Transp. Geogr. 2018, 67, 24–32. [Google Scholar] [CrossRef]
- Ben-Elia, E.; Benenson, I. A spatially-explicit method for analyzing the equity of transit commuters’ accessibility. Transp. Res. Part A: Policy Pr. 2019, 120, 31–42. [Google Scholar] [CrossRef]
- Wu, J.; Liu, M.; Sun, H.; Li, T.; Gao, Z.; Wang, D.Z.W. Equity-based timetable synchronization optimization in urban subway network. Transp. Res. Part C: Emerg. Technol. 2015, 51, 1–18. [Google Scholar] [CrossRef]
- Sheffi, Y. Urban Transportation Networks; Prentice-Hall, INC.: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Spiess, H.; Florian, M. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B: Methodol. 1989, 23, 83–102. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Pattnaik, S.B.; Mohan, S.; Tom, V.M. Urban Bus Transit Route Network Design Using Genetic Algorithm. J. Transp. Eng. 1998, 124, 368–375. [Google Scholar] [CrossRef]
- Bielli, M.; Caramia, M.; Carotenuto, P. Genetic algorithms in bus network optimization. Transp. Res. Part C: Emerg. Technol. 2002, 10, 19–34. [Google Scholar] [CrossRef]
- Tom, V.M.; Mohan, S. Transit Route Network Design Using Frequency Coded Genetic Algorithm. J. Transp. Eng. 2003, 129, 186–195. [Google Scholar] [CrossRef]
- Ngamchai, S.; Lovell, D.J. Optimal Time Transfer in Bus Transit Route Network Design Using a Genetic Algorithm. J. Transp. Eng. 2003, 129, 510–521. [Google Scholar] [CrossRef]
- Szeto, W.; Wu, Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. Eur. J. Oper. Res. 2011, 209, 141–155. [Google Scholar] [CrossRef]
- Arbex, R.O.; Da Cunha, C.B. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp. Res. Part B: Methodol. 2015, 81, 355–376. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, D.-K.; Kho, S.-Y.; Lee, Y.-G. Integrated Decision Model of Mode, Line, and Frequency for a New Transit Line to Improve the Performance of the Transportation Network. KSCE J. Civ. Eng. 2016, 20, 393–400. [Google Scholar] [CrossRef]
- Kim, G.S.; Woo, J.W.; Lee, S.H.; Kim, J.Y.; Yang, I.S.; Yu, J.K.; Kim, S.H.; Kim, K.M.; Baek, S.H. Feasibility Manual of Korea; Korea Development Institute: Seoul, Korea, 2008. [Google Scholar]
- INRO. EMME Prompt Manual Release 3.3; INRO Consultants INC.: Montreal, QC, Canada, 2010. [Google Scholar]
Procedure | Considerations |
---|---|
Assessment of existing network and target line selection (1) | Target line selection by (A railroad line cannot be selected) |
Target node selection (2) | Target node selection by |
Alternative line determination (3) | Alternative lines via target node Min. and max. line length Circuity Redundancy with the existing line Alternative line selection by |
Frequency setting (4) | Min. and max frequency of lines |
Iteration | No. of Lines | Target Node | ||
---|---|---|---|---|
1 | 4 | 111 | 2.337 | 4.222 |
2 | 4 | 105 | 2.049 | 4.863 |
3 | 4 | 112 | 2.086 | 2.818 |
4 | 5 | 107 | 2.021 | 2.411 |
5 | 6 | 112 | 1.954 | 2.812 |
6 | 6 | 112 | 1.913 | 2.369 |
7 | 6 | 112 | 1.918 | 2.235 |
8 | 7 | 105 | 1.875 | 2.179 |
9 | 8 | 112 | 1.849 | 2.103 |
10 | 9 | 112 | 1.842 | 2.098 |
11 | 10 | 112 | 1.840 | 2.089 |
12 | 11 | 109 | 1.839 | 2.088 |
13 | 12 | 112 | 1.824 | 2.091 |
14 | 12 | 105 | 1.824 | 2.091 |
15 | 13 | 112 | 1.821 | 2.098 |
16 | 13 | 109 | 1.819 | 2.089 |
17 | 14 | 112 | 1.814 | 2.089 |
18 | 14 | 105 | 1.814 | 2.088 |
19 | 15 | 112 | 1.809 | 2.088 |
20 | 15 | 105 | 1.810 | 2.087 |
21 | 16 | 112 | 1.807 | 2.090 |
22 | 16 | 104 | 1.807 | 2.089 |
23 | 17 | 112 | 1.803 | 2.086 |
24 | 17 | 107 | 1.803 | 2.084 |
25 | 18 | 112 | 1.799 | 2.086 |
26 | 18 | 107 | 1.799 | 2.084 |
27 | 19 | 113 | 1.798 | 2.084 |
28 | 20 | 102 | 1.794 | 2.084 |
29 | 21 | 108 | 1.791 | 2.082 |
30 | 22 | 102 | 1.790 | 2.082 |
31 | 23 | 102 | 1.786 | 2.082 |
32 | 24 | 108 | 1.785 | 2.082 |
33 | 25 | 111 | 1.783 | 2.081 |
34 | 26 | - | 1.782 | 2.080 |
Line No. | Length (km) | Mode | Via Node | Frequency (Headway) | Line No. | Length (km) | Mode | Via Node | Frequency (Headway) |
---|---|---|---|---|---|---|---|---|---|
1 | 33 | Subway | 1-2-3-6-8-10-13 | 20(3) | 14 | 29 | Bus | 9-15-6-8-10-14 | 15(4) |
2 | 13 | Bus | 5-4-6-15-7 | 20(3) | 15 | 29 | Bus | 2-5-4-6-8-10-11 | 6(10) |
3 | 27 | Bus | 12-4-6-15-9 | - | 16 | 21 | Bus | 1-2-3-6-4-5 | - |
4 | 15 | Bus | 12-4-2-3 | 12(5) | 17 | 20 | Bus | 1-2-4-6-15-7 | - |
5 | 23 | Bus | 12-11-10-14 | 5(12) | 18 | 17 | Bus | 7-10-14-13 | 15(4) |
6 | 11 | Bus | 8-15-7-10 | 15(4) | 19 | 17 | Bus | 7-10-13 | 12(5) |
7 | 17 | Bus | 12-11-13-14 | - | 20 | 23 | Bus | 4-2-3-6-8-10-11 | - |
8 | 28 | Bus | 5-4-6-8-10-14-13 | - | 21 | 13 | Bus | 4-2-3-6-15-7 | - |
9 | 22 | Bus | 7-10-11-12 | 5(12) | 22 | 11 | Bus | 2-3-6-8-15-7 | - |
10 | 27 | Bus | 11-12-4-6-3 | 2(30) | 23 | 29 | Bus | 2-3-6-8-10-14 | - |
11 | 23 | Bus | 8-10-11-12 | 5(12) | 24 | 14 | Bus | 5-2-3-6-15 | 12(5) |
12 | 16 | Bus | 2-3-6-15-9 | 20(3) | 25 | 20 | Bus | 5-4-6-8-15-9 | - |
13 | 14 | Bus | 1-2-5 | 12(5) | 26 | 12 | Bus | 10-11-13-14 | - |
Network | Number of Lines | Total Cost (Million KRW/hr) | User Cost (Million KRW/hr) | Operator Cost (Million KRW/hr) | Modal Split (Car/Transit) | TDOCO | Max. (DOCOi) |
---|---|---|---|---|---|---|---|
Existing | 4 | 225.6 | 225.1 | 0.5 | 80.3%/19.7% | 2.306 | 4.221 |
Improved | 16 | 204.8 | 203.0 | 1.8 | 72.3%/27.7% | 1.797 | 2.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kho, S.-Y.; Kim, D.-K. A Transit Route Network Design Problem Considering Equity. Sustainability 2019, 11, 3527. https://doi.org/10.3390/su11133527
Kim M, Kho S-Y, Kim D-K. A Transit Route Network Design Problem Considering Equity. Sustainability. 2019; 11(13):3527. https://doi.org/10.3390/su11133527
Chicago/Turabian StyleKim, Myeonghyeon, Seung-Young Kho, and Dong-Kyu Kim. 2019. "A Transit Route Network Design Problem Considering Equity" Sustainability 11, no. 13: 3527. https://doi.org/10.3390/su11133527
APA StyleKim, M., Kho, S.-Y., & Kim, D.-K. (2019). A Transit Route Network Design Problem Considering Equity. Sustainability, 11(13), 3527. https://doi.org/10.3390/su11133527