Analyst Following, Group Affiliation, and Labor Investment Efficiency: Evidence from Korea
Abstract
:1. Introduction
2. Key Variable Definition and Research Design
2.1. Specification of Labor Investment Efficiency
2.2. Specification of Analysts’ Group Affiliation
2.3. Control Variables
2.4. Main Regression Model
3. Empirical Results
3.1. Samples and Data
3.2. Descriptive Statistics and Correlations
3.3. Regression Results
4. Additional Tests
4.1. The Impact of Inside Fund on Labor Investment Efficiency
4.2. Sensitivity Test—Endogeneity
4.3. Sensitivity Test—Matching Firm Size
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable Name | Variable Definition |
---|---|
Dependent Variables | |
NET_HIRE | The percentage change in the number of employees |
AB_NET_HIRE | Abnormal net hiring, defined as residuals from the following model: |
|AB_NET_HIRE| | The absolute value of abnormal net hiring |
Analyst Following Variables | |
Analyst Following | The number of analysts covering a firm |
GAGF | The number of affiliated analysts following within-group firms |
GANGF | The number of affiliated analysts following unaffiliated firms |
NGAGF | The number of unaffiliated analysts following group firms |
NGANGF | The number of unaffiliated analysts following nongroup firms |
residual(GAGF) | The residual coverage of affiliated analysts on within-group firms, defined as residuals from the following model: |
residual(GANGF) | The residual coverage of affiliated analysts on unaffiliated firms, defined as residuals from the following model: |
residual(NGAGF) | The residual coverage of unaffiliated analysts on group firms, defined as residuals from the following model: |
residual(NGANGF) | The residual coverage of unaffiliated analysts on nongroup firms, defined as residuals from the following model: |
Control Variables of Regression Model (1) | |
SALES_GROWTH | The percentage change in sales revenue |
ROA | Return on assets, calculated by net income divided by the beginning balance of total assets |
∆ROA | The change in ROA |
RETURN | Total annual stock returns |
SIZE_R | The natural logarithm of the market value of equity at the beginning of the year |
Quick | Quick ratio, calculated by the sum of cash and cash equivalents, short-term investments, and receivables divided by current liabilities |
∆Quick | The change in the quick ratio |
LEV | Debt ratio, calculated by long-term liabilities divided by the beginning balance of total assets |
LOSSBIN1 | Indicator variable that equals one if a firm’s ROA in the prior year is in between −0.005 and 0, and zero otherwise |
LOSSBIN2 | Indicator variable that equals one if a firm’s ROA in the prior year is in between −0.01 and −0.005, and zero otherwise |
LOSSBIN3 | Indicator variable that equals one if a firm’s ROA in the prior year is in between −0.015 and −0.01, and zero otherwise |
LOSSBIN4 | Indicator variable that equals one if a firm’s ROA in the prior year is in between −0.02 and −0.015, and zero otherwise |
LOSSBIN5 | Indicator variable that equals one if a firm’s ROA in the prior year is in between −0.025 and −0.02, and zero otherwise |
Control Variables of Regression Model (2) | |
MTB | Market-to-book ratio, calculated from market value of equity divided by book value of equity |
SIZE | The natural log of the market value of equity. |
DIVDUM | Indicator variable that equals one if a firm pays a dividend, and zero otherwise |
STD_CFO | The standard deviation of cash flows from operations over the recent 5 years |
STD_SALE | The standard deviation of sales revenue from operations over the recent 5 years |
TANGIBLE | The ratio of long-term assets to the beginning balance of total assets |
LOSS | Indicator variable that equals one if a firm has a net loss, and zero otherwise |
INSTI | The percentage of shares owned by institutional investors |
STD_NET_HIRE | The standard deviation of net hiring |
Variables Used in Additional Tests | |
High (Low) Fund | A firm is considered to have a high (low) level of inside fund when its cash and cash equivalents scaled by total assets is above (below) the yearly median |
MKV | Market value |
GROWTH | The growth rate of total assets |
EXFINACT | Net cash proceeds from external financing scaled by total assets |
CFVolatility | The standard deviation of cash flow scaled by last year’s total assets |
References
- Brown, L.D.; Call, A.C.; Clement, M.B.; Sharp, N.Y. Inside the “black box” of sell-side financial analysts. J. Account. Res. 2015, 53, 1–47. [Google Scholar] [CrossRef]
- Graham, J.R.; Harvey, C.R.; Rajgopal, S. The economic implications of corporate financial reporting. J. Account. Econ. 2005, 40, 3–73. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.F. Analyst coverage and earnings management. J. Financ. Econ. 2008, 88, 245–271. [Google Scholar] [CrossRef]
- Chen, T.; Harford, J.; Lin, C. Do analysts matter for governance? Evidence from natural experiments. J. Financ. Econ. 2015, 115, 383–410. [Google Scholar] [CrossRef]
- Keitz, A.; Terrarosa, T. Ford CEO Jim Hackett’s Restructuring Plans Provoke Skepticism as Shares Slide. Available online: https://www.thestreet.com/investing/ford-restructuring-plans-receives-mixed-reviews-14663958 (accessed on 29 May 2019).
- Hiller, J. Occidental to Sell Parts of Anadarko after Debt-Fueled Acquisition. Available online: https://www.reuters.com/article/us-occidental-divestitures/occidental-to-sell-parts-of-anadarko-after-debt-fueled-acquisition-idUSKCN1SY0XW (accessed on 29 May 2019).
- Wells, J. Retail Labor Cuts are Hurting In-Store Experience, Analysts Say. Available online: https://www.grocerydive.com/news/grocery--retail-labor-cuts-are-hurting-in-store-experience-analysts-say/535045/ (accessed on 2 May 2019).
- Finkle, J. Cisco Braces for Biggest Layoffs in Its History. Available online: https://www.reuters.com/article/us-cisco/cisco-braces-for-biggest-layoffs-in-its-history-idUSTRE74A78K20110513 (accessed on 2 May 2019).
- Xu, J.; Sim, J.W. Characteristics of corporate RD investment in emerging markets: Evidence from manufacturing industry in China and South Korea. Sustainability 2018, 10, 3002. [Google Scholar]
- Oh, H.; Kim, W. The effect of analyst coverage on the relationship between seasoned equity offerings and investment efficiency from Korea. Sustainability 2018, 10, 2704. [Google Scholar] [CrossRef]
- Huyghebaert, N.; Xu, W. Bias in the post-IPO earnings forecasts of affiliated analysts: Evidence from a Chinese natural experiment. J. Account. Econ. 2016, 61, 486–505. [Google Scholar] [CrossRef]
- Pae, P. South Korea’s Chaebol. Available online: https://www.washingtonpost.com/business/south-koreas-chaebol/2018/10/05/e27095ac-c871-11e8-9c0f-2ffaf6d422aa_story.html?noredirect=onutm_term=.872e52026fe3 (accessed on 2 May 2019).
- Lim, Y.; Jung, K. Conflict of interest or information sharing? Evidence from affiliated analyst performance in Korea. Contemp. Account. Res. 2012, 29, 505–537. [Google Scholar] [CrossRef]
- Lee, C. A Company that Is ‘Jumping’ to An Analyst. Available online: https://translate.google.com/translate?hl=ensl=kou=http://biz.chosun.com/site/data/html_dir/2016/04/18/2016041802246.htmlprev=search (accessed on 2 May 2019).
- Kwak, B.; Mo, K. Group-affiliated analysts’ strategic forecasts during a year: Evidence from Korea. Emerg. Mark. Financ. Trade 2019, 55, 59–77. [Google Scholar] [CrossRef]
- Mantecon, T.; Altintig, Z.A. Chaebol-affiliated analysts: Conflicts of interest and market responses. J. Bank. Financ. 2012, 36, 584–596. [Google Scholar]
- Jung, B.; Lee, W.J.; Weber, D.P. Financial reporting quality and labor investment efficiency. Contemp. Account. Res. 2014, 31, 1047–1076. [Google Scholar] [CrossRef]
- Pinnuck, M.; Lillis, A.M. Profits versus losses: Does reporting an accounting loss act as a heuristic trigger to exercise the abandonment option and divest employees? Account. Rev. 2007, 82, 1031–1053. [Google Scholar] [CrossRef]
- Biddle, G.C.; Hilary, G.; Verdi, R.S. How does financial reporting quality relate to investment efficiency? J. Account. Econ. 2009, 48, 112–131. [Google Scholar] [CrossRef]
- Biddle, G.C.; Hilary, G. Accounting quality and firm-level capital investment. Account. Rev. 2006, 81, 963–982. [Google Scholar] [CrossRef]
- Liu, M.; Wysocki, P. Cross-sectional determinants of information quality proxies and cost of capital measures. Q. J. Financ. 2017, 7, 1650016. [Google Scholar] [CrossRef]
- Cella, C. Institutional investors and corporate investment. Financ. Res. Lett. 2019. [Google Scholar] [CrossRef]
- Mo, K.; Lee, J. IFRS adoption and the choice between public and private debt: Evidence from South Korea. Emerg. Mark. Financ. Trade 2018, 54, 2533–2556. [Google Scholar] [CrossRef]
Panel A: Descriptive Statistics for Variables in Model (1) | ||||||
Variables | N | Mean | Median | Std. | Q1 | Q3 |
NET_HIREit | 25,122 | 0.0261 | 0.0067 | 0.2757 | −0.0612 | 0.0860 |
SALES_GROWTHit−1 | 25,122 | 0.1957 | 0.0597 | 0.7303 | −0.1242 | 0.2884 |
SALES_GROWTHit | 25,122 | 0.1734 | 0.0475 | 0.7381 | −0.1354 | 0.2603 |
∆ROAit−1 | 25,122 | −0.4377 | −0.2573 | 4.4229 | −0.8725 | 0.2989 |
∆ROAit | 25,122 | −0.4552 | −0.2445 | 4.9157 | −0.8843 | 0.3415 |
ROAit | 25,122 | −0.0122 | 0.0253 | 0.1751 | −0.0272 | 0.0672 |
RETURNit | 25,122 | 0.2158 | −0.0022 | 0.9261 | −0.2689 | 0.3737 |
SIZE_Rit−1 | 25,122 | 0.5020 | 0.4900 | 0.2747 | 0.2700 | 0.7400 |
Quickit−1 | 25,122 | 1.1683 | 0.7734 | 1.6862 | 0.4571 | 1.3192 |
∆Quickit−1 | 25,122 | 0.1562 | 0.0002 | 0.8008 | −0.2192 | 0.2690 |
∆Quicktit | 25,122 | 0.1324 | −0.0072 | 0.7760 | −0.2232 | 0.2468 |
LEVit−1 | 25,122 | 0.0338 | 0.0000 | 0.0684 | 0.0000 | 0.0377 |
Panel B: Regression Results (Dependent Variable = NET_HIRE) | ||||||
Independent Variables | Coeff. | (t-Value) | ||||
Intercept | 0.122 | (1.90) | * | |||
SALES_GROWTHit−1 | 0.044 | (18.64) | *** | |||
SALES_GROWTHit | 0.078 | (33.11) | *** | |||
∆ROAit−1 | 0.000 | (0.32) | ||||
∆ROAit | −0.001 | (−2.00) | ** | |||
ROAit | 0.105 | (9.99) | *** | |||
RETURNit | 0.019 | (9.86) | *** | |||
SIZE_Rit−1 | 0.049 | (7.20) | *** | |||
Quickit−1 | 0.007 | (6.31) | *** | |||
∆Quickit−1 | 0.005 | (2.16) | ** | |||
∆Quicktit | −0.021 | (−9.14) | *** | |||
LEVit−1 | −0.074 | (−2.86) | *** | |||
LOSSBIN1it−1 | −0.027 | (−1.89) | * | |||
LOSSBIN2it−1 | −0.007 | (−0.43) | ||||
LOSSBIN3it−1 | −0.002 | (−0.14) | ||||
LOSSBIN4it−1 | 0.000 | (−0.02) | ||||
LOSSBIN5it−1 | 0.012 | (0.72) | ||||
Industry fixed effects | Yes | |||||
[F-value] | [27.48] | *** | ||||
R2 | 0.0779 | |||||
N | 25,122 |
Variables | N | Mean | Median | Std. | Q1 | Q3 |
---|---|---|---|---|---|---|
|AB_NET_HIRE| | 7745 | 0.1147 | 0.0615 | 0.1688 | 0.0276 | 0.1282 |
Analyst coverage | 7745 | 7.4878 | 3.0000 | 8.5643 | 1.0000 | 11.0000 |
GAGF | 7745 | 0.0513 | 0.0000 | 0.2960 | 0.0000 | 0.0000 |
GANGF | 7745 | 3.6820 | 2.0000 | 4.5888 | 1.0000 | 5.0000 |
NGAGF | 7745 | 1.4546 | 0.0000 | 3.8266 | 0.0000 | 0.0000 |
NGANGF | 7745 | 2.2999 | 1.0000 | 3.3781 | 0.0000 | 3.0000 |
MTB | 7745 | 0.0015 | 0.0011 | 0.0056 | 0.0006 | 0.0018 |
SIZE | 7745 | 12.2492 | 11.9876 | 1.6809 | 11.0441 | 13.1880 |
Quick | 7745 | 1.0674 | 0.7648 | 1.3079 | 0.4869 | 1.2317 |
LEV | 7745 | 0.0386 | 0.0000 | 0.0667 | 0.0000 | 0.0602 |
DIVDUM | 7745 | 0.7584 | 1.0000 | 0.4281 | 1.0000 | 1.0000 |
STD_CFO | 7745 | 108,945,561 | 13,449,562 | 436,717,500 | 5,350,999 | 44,152,740 |
STD_SALE | 7745 | 484,220,140 | 48,324,906 | 2,144,862,028 | 17,216,405 | 171,754,769 |
TANGIBLE | 7745 | 0.3335 | 0.3278 | 0.1812 | 0.1991 | 0.4556 |
LOSS | 7745 | 0.1434 | 0.0000 | 0.3506 | 0.0000 | 0.0000 |
INSTI | 7745 | 0.0499 | 0.0000 | 0.1404 | 0.0000 | 0.0000 |
STD_NET_HIRE | 7745 | 0.1922 | 0.1000 | 0.3346 | 0.0527 | 0.1925 |
# | Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | |AB_NET_HIRE| | 1.00 | −0.05 | −0.03 | −0.04 | −0.08 | 0.01 | 0.03 | −0.07 | 0.05 | 0.02 | −0.16 | −0.05 | −0.03 | −0.09 | 0.10 | −0.02 | 0.17 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.32) | (0.02) | (0.00) | (0.00) | (0.11) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.12) | (0.00) | |||
2 | Analyst following | −0.05 | 1.00 | 0.32 | 0.94 | 0.70 | 0.43 | 0.03 | 0.68 | −0.12 | 0.25 | 0.13 | 0.41 | 0.33 | 0.13 | −0.08 | 0.18 | −0.06 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.01) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |||
3 | GAGF | −0.03 | 0.32 | 1.00 | 0.28 | 0.42 | −0.12 | 0.00 | 0.26 | −0.06 | 0.10 | 0.04 | 0.30 | 0.24 | 0.02 | −0.02 | 0.11 | −0.04 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.84) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.08) | (0.13) | (0.00) | (0.00) | |||
4 | GANGF | −0.04 | 0.94 | 0.28 | 1.00 | 0.63 | 0.29 | 0.02 | 0.59 | −0.11 | 0.23 | 0.12 | 0.35 | 0.28 | 0.13 | −0.07 | 0.22 | −0.05 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.08) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |||
5 | NGAGF | −0.08 | 0.70 | 0.42 | 0.63 | 1.00 | −0.26 | −0.01 | 0.61 | −0.13 | 0.28 | 0.08 | 0.49 | 0.40 | 0.12 | −0.02 | 0.07 | −0.07 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.54) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.18) | (0.00) | (0.00) | |||
6 | NGANGF | 0.01 | 0.43 | −0.12 | 0.29 | −0.26 | 1.00 | 0.05 | 0.20 | 0.00 | −0.01 | 0.06 | −0.01 | −0.03 | 0.00 | −0.10 | 0.06 | 0.00 |
(0.32) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.67) | (0.29) | (0.00) | (0.64) | (0.01) | (0.81) | (0.00) | (0.00) | (0.79) | |||
7 | MTB | 0.03 | 0.03 | 0.00 | 0.02 | −0.01 | 0.05 | 1.00 | 0.07 | 0.01 | 0.00 | −0.06 | −0.01 | −0.01 | −0.06 | 0.02 | −0.05 | 0.03 |
(0.02) | (0.01) | (0.84) | (0.08) | (0.54) | (0.00) | (0.00) | (0.31) | (0.77) | (0.00) | (0.22) | (0.26) | (0.00) | (0.04) | (0.00) | (0.01) | |||
8 | SIZE | −0.07 | 0.68 | 0.26 | 0.59 | 0.61 | 0.20 | 0.07 | 1.00 | −0.13 | 0.26 | 0.15 | 0.48 | 0.41 | 0.10 | −0.11 | −0.10 | −0.07 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |||
9 | Quick | 0.05 | −0.12 | −0.06 | −0.11 | −0.13 | 0.00 | 0.01 | −0.13 | 1.00 | −0.12 | 0.01 | −0.09 | −0.07 | −0.27 | −0.05 | −0.07 | 0.02 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.67) | (0.31) | (0.00) | (0.00) | (0.60) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.13) | |||
10 | LEV | 0.02 | 0.25 | 0.10 | 0.23 | 0.28 | −0.01 | 0.00 | 0.26 | −0.12 | 1.00 | −0.09 | 0.21 | 0.18 | 0.18 | 0.14 | 0.11 | 0.01 |
(0.11) | (0.00) | (0.00) | (0.00) | (0.00) | (0.29) | (0.77) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.44) | |||
11 | DIVDUM | −0.16 | 0.13 | 0.04 | 0.12 | 0.08 | 0.06 | −0.06 | 0.15 | 0.01 | −0.09 | 1.00 | 0.04 | 0.06 | 0.06 | −0.48 | 0.02 | −0.18 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.60) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.14) | (0.00) | |||
12 | STD_CFO | −0.05 | 0.41 | 0.30 | 0.35 | 0.49 | −0.01 | −0.01 | 0.48 | −0.09 | 0.21 | 0.04 | 1.00 | 0.75 | 0.06 | 0.00 | 0.00 | −0.05 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.64) | (0.22) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.78) | (0.77) | (0.00) | |||
13 | STD_SALE | −0.03 | 0.33 | 0.24 | 0.28 | 0.40 | −0.03 | −0.01 | 0.41 | −0.07 | 0.18 | 0.06 | 0.75 | 1.00 | 0.01 | −0.02 | −0.01 | −0.03 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.01) | (0.26) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.32) | (0.14) | (0.61) | (0.03) | |||
14 | TANGIBLE | −0.09 | 0.13 | 0.02 | 0.13 | 0.12 | 0.00 | −0.06 | 0.10 | −0.27 | 0.18 | 0.06 | 0.06 | 0.01 | 1.00 | 0.02 | 0.15 | −0.09 |
(0.00) | (0.00) | (0.08) | (0.00) | (0.00) | (0.81) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.32) | (0.07) | (0.00) | (0.00) | |||
15 | LOSS | 0.10 | −0.08 | −0.02 | −0.07 | −0.02 | −0.10 | 0.02 | −0.11 | −0.05 | 0.14 | −0.48 | 0.00 | −0.02 | 0.02 | 1.00 | 0.03 | 0.08 |
(0.00) | (0.00) | (0.13) | (0.00) | (0.18) | (0.00) | (0.04) | (0.00) | (0.00) | (0.00) | (0.00) | (0.78) | (0.14) | (0.07) | (0.02) | (0.00) | |||
16 | INSTI | −0.02 | 0.18 | 0.11 | 0.22 | 0.07 | 0.06 | −0.05 | −0.10 | −0.07 | 0.11 | 0.02 | 0.00 | −0.01 | 0.15 | 0.03 | 1.00 | −0.02 |
(0.12) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.14) | (0.77) | (0.61) | (0.00) | (0.02) | (0.12) | |||
17 | STD_NET_HIRE | 0.17 | −0.06 | −0.04 | −0.05 | −0.07 | 0.00 | 0.03 | −0.07 | 0.02 | 0.01 | −0.18 | −0.05 | −0.03 | −0.09 | 0.08 | −0.02 | 1.00 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.79) | (0.01) | (0.00) | (0.13) | (0.44) | (0.00) | (0.00) | (0.03) | (0.00) | (0.00) | (0.12) |
Dependent Variable: |AB_NET_HIRE| | ||||||
---|---|---|---|---|---|---|
Full Sample | AB_NET_HIRE 0 | AB_NET_HIRE 0 | ||||
Independent Variables | (1) | (2) | (3) | |||
Intercept | 0.3483 | *** | 0.9784 | *** | 0.1393 | *** |
(8.76) | (13.98) | (3.26) | ||||
GAGF | −0.0033 | −0.0013 | −0.0086 | |||
(−0.61) | (−0.17) | (−1.35) | ||||
GANGF | 0.0006 | −0.0001 | 0.0003 | |||
(0.67) | (−0.06) | (0.27) | ||||
NGAGF | −0.0019 | ** | 0.0002 | −0.0029 | *** | |
(−1.98) | (0.12) | (−2.94) | ||||
NGANGF | −0.0008 | −0.0008 | −0.0011 | |||
(−0.98) | (−0.59) | (−1.27) | ||||
MTB | 0.3882 | 9.7148 | *** | 0.1766 | * | |
(0.98) | (3.33) | (1.75) | ||||
SIZE | −0.0011 | −0.0113 | ** | 0.0056 | ** | |
(−0.44) | (−2.30) | (2.05) | ||||
Quick | 0.0041 | * | 0.0019 | 0.0064 | *** | |
(1.87) | (0.44) | (3.10) | ||||
LEV | 0.0895 | * | 0.1259 | 0.0562 | ||
(1.87) | (1.56) | (1.12) | ||||
DIVDUM | −0.0421 | *** | −0.0375 | *** | −0.0393 | *** |
(−7.12) | (−3.79) | (−6.29) | ||||
STD_CFO | 0.0000 | 0.0000 | 0.0000 | |||
(−0.98) | (1.17) | (−1.49) | ||||
STD_SALE | 0.0000 | 0.0000 | ** | 0.0000 | ||
(−0.76) | (−2.14) | (0.87) | ||||
TANGIBLE | −0.0346 | ** | −0.0453 | * | −0.0169 | |
(−2.10) | (−1.73) | (−1.05) | ||||
LOSS | 0.0162 | ** | 0.0204 | 0.0217 | *** | |
(2.29) | (1.57) | (2.91) | ||||
INSTI | −0.0341 | −0.0205 | −0.0298 | |||
(−1.45) | (−0.47) | (−1.27) | ||||
STD_NET_HIRE | 0.0582 | *** | 0.0742 | *** | 0.0390 | *** |
(6.25) | (4.68) | (3.88) | ||||
Year-fixed effect | Yes | Yes | Yes | |||
Industry-fixed effect | Yes | Yes | Yes | |||
[F-value] | [21.47] | *** | [10.09] | *** | [16.63] | *** |
R2 | 0.092 | 0.113 | 0.134 | |||
N | 7745 | 3447 | 4298 |
Dependent Variable: |AB_NET_HIRE| | ||||||||
---|---|---|---|---|---|---|---|---|
Over-Hiring | Under-Firing | Under-Hiring | Over-Firing | |||||
Independent Variables | (1) | (2) | (3) | (4) | ||||
Intercept | 0.9689 | *** | 0.0422 | * | 0.2125 | 0.1232 | * | |
(13.47) | (1.70) | (8.87) | (1.93) | |||||
GAGF | −0.0028 | 0.0055 | 0.0036 | −0.0109 | ||||
(−0.34) | (0.49) | (0.79) | (−1.16) | |||||
GANGF | −0.0002 | 0.0003 | 0.0007 | 0.0003 | ||||
(−0.16) | (0.54) | (1.20) | (0.21) | |||||
NGAGF | −0.0002 | 0.0002 | −0.0005 | −0.0034 | ** | |||
(−0.13) | (0.23) | (−0.83) | (−2.24) | |||||
NGANGF | −0.0010 | 0.0009 | 0.0002 | −0.0008 | ||||
(−0.77) | (1.30) | (0.47) | (−0.59) | |||||
MTB | 9.2717 | *** | 3.2007 | * | 2.6103 | 0.1570 | ||
(3.15) | (1.80) | (2.30) | (1.10) | |||||
SIZE | −0.0104 | ** | −0.0034 | * | −0.0017 | 0.0083 | ** | |
(−2.08) | (−1.96) | (−1.05) | (2.17) | |||||
Quick | 0.0013 | −0.0045 | 0.0050 | 0.0100 | ** | |||
(0.30) | (−0.92) | (2.87) | (2.45) | |||||
LEV | 0.1494 | * | 0.0048 | 0.0581 | 0.0389 | |||
(1.75) | (0.27) | (1.60) | (0.61) | |||||
DIVDUM | −0.0386 | *** | 0.0040 | −0.0188 | −0.0387 | *** | ||
(−3.74) | (0.91) | (−3.73) | (−4.94) | |||||
STD_CFO | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||
(1.40) | (0.61) | (−0.63) | (−0.96) | |||||
STD_SALE | 0.0000 | ** | 0.0000 | 0.0000 | 0.0000 | |||
(−2.31) | (−0.06) | (0.13) | (0.29) | |||||
TANGIBLE | −0.0441 | 0.0003 | −0.0211 | −0.0229 | ||||
(−1.61) | (0.02) | (−2.02) | (−1.02) | |||||
LOSS | 0.0302 | ** | 0.0036 | −0.0056 | 0.0119 | |||
(2.14) | (0.75) | (−0.79) | (1.33) | |||||
INSTI | −0.0052 | −0.0052 | 0.0119 | −0.0313 | ||||
(−0.11) | (−0.41) | (0.88) | (−1.06) | |||||
STD_NET_HIRE | 0.0742 | *** | −0.0002 | 0.0055 | 0.0409 | *** | ||
(4.60) | (−0.07) | (0.82) | (3.09) | |||||
Year-fixed effect | Yes | Yes | Yes | Yes | ||||
Industry-fixed effect | Yes | Yes | Yes | Yes | ||||
[F-value] | [10.55] | *** | [27.18] | *** | [342.62] | *** | [33.35] | *** |
R2 | 0.114 | 0.575 | 0.252 | 0.146 | ||||
N | 3316 | 151 | 1527 | 2891 |
Dependent Variable: |AB_NET_HIRE| | ||||
---|---|---|---|---|
High Fund | Low Fund | |||
Independent Variables | (1) | (2) | ||
Intercept | 0.3563 | *** | 0.3027 | *** |
(6.05) | (6.39) | |||
GAGF | −0.0069 | 0.0008 | ||
(−0.67) | (0.13) | |||
GANGF | 0.0003 | 0.0008 | ||
(0.22) | (0.87) | |||
NGAGF | −0.0026 | * | −0.0013 | |
(−1.76) | (−1.00) | |||
NGANGF | −0.0016 | −0.0015 | ||
(−1.38) | (−1.36) | |||
MTB | 6.8580 | *** | 0.1147 | |
(2.77) | (0.69) | |||
SIZE | −0.0013 | −0.0033 | ||
−0.31) | (−1.10) | |||
Quick | 0.0030 | 0.0053 | ||
(1.04) | (0.87) | |||
LEV | 0.1744 | ** | 0.0522 | |
(2.14) | (0.96) | |||
DIVDUM | −0.0440 | *** | −0.0301 | *** |
(−4.72) | (−3.75) | |||
STD_CFO | 0.0000 | 0.0000 | ||
(0.12) | (−1.07) | |||
STD_SALE | 0.0000 | 0.0000 | ||
(−0.44) | (−0.13) | |||
TANGIBLE | −0.0450 | * | 0.0154 | |
(−1.80) | (0.72) | |||
LOSS | 0.0469 | *** | −0.0039 | |
(3.73) | (−0.57) | |||
INSTI | 0.0044 | −0.0524 | ** | |
(0.09) | (−2.41) | |||
STD_NET_HIRE | 0.0659 | *** | 0.0401 | *** |
(4.36) | (3.97) | |||
Year-fixed effect | Yes | Yes | ||
Industry-fixed effect | Yes | Yes | ||
[F-value] | [13.35] | *** | [153.16] | *** |
R2 | 0.122 | 0.088 | ||
N | 3873 | 3872 |
First Stage: Regression to Estimate Expected Level of Analyst Coverage | ||||||||
Dependent Variable: | ||||||||
Independent Variables | GAGF (1) | GANGF (2) | NGAGF (3) | NGANGF (4) | ||||
Intercept | −0.027 | * | −0.809 | *** | −0.455 | ** | 5.120 | *** |
(−1.74) | (−3.57) | (−2.38) | (29.68) | |||||
MKV | 0.000 | *** | 0.000 | *** | 0.000 | *** | 0.000 | *** |
(24.15) | (26.42) | (33.97) | (3.89) | |||||
ROA | −0.020 | 2.653 | *** | −0.770 | ** | 3.424 | *** | |
(−0.75) | (6.90) | (−2.37) | (11.69) | |||||
GROWTH | 0.002 | 0.018 | 0.051 | 0.002 | ||||
(0.31) | (0.16) | (0.54) | (0.02) | |||||
EXFINACT | 0.015 | −3.211 | *** | −0.485 | −2.877 | *** | ||
(0.42) | (−6.04) | −1.08) | −7.11) | |||||
CFVolatility | −0.058 | ** | −1.504 | *** | −2.051 | *** | 0.581 | ** |
(−2.36) | (−4.14) | (−6.69) | (2.10) | |||||
Year fixed effects | Yes | Yes | Yes | Yes | ||||
[F-value] | [31.85] | *** | [71.38] | *** | [64.75] | *** | [41.54] | *** |
R2 | 0.0818 | 0.1664 | 0.1533 | 0.104 | ||||
N | 7533 | 7533 | 7533 | 7533 | ||||
Second Stage: Regression Using Residual Analyst Coverage | ||||||||
Dependent Variable: |AB_NET_HIRE| | ||||||||
Full Sample | AB_NET_HIRE 0 | AB_NET_HIRE 0 | ||||||
Independent Variables | (1) | (2) | (3) | |||||
Intercept | 0.3500 | *** | 0.3500 | *** | 0.1518 | *** | ||
(9.07) | (9.07) | (3.59) | ||||||
residual(GAGF) | −0.0037 | −0.0037 | −0.0081 | |||||
(−0.69) | (−0.69) | (−1.27) | ||||||
residual(GANGF) | 0.0007 | 0.0007 | 0.0007 | |||||
(0.85) | (0.85) | (0.76) | ||||||
residual(NGAGF) | −0.0017 | * | −0.0017 | * | −0.0029 | *** | ||
(−1.75) | (−1.75) | (−3.12) | ||||||
residual(NGANGF) | −0.0015 | * | −0.0015 | * | −0.0015 | * | ||
(−1.96) | (−1.96) | (−1.80) | ||||||
MTB | 0.3766 | 0.3766 | 0.1657 | * | ||||
(0.98) | (0.98) | (1.78) | ||||||
SIZE | −0.0014 | −0.0014 | 0.0044 | * | ||||
(−0.60) | (−0.60) | (1.70) | ||||||
Quick | 0.0041 | * | 0.0041 | * | 0.0062 | ** | ||
(1.68) | (1.68) | (2.26) | ||||||
LEV | 0.0964 | * | 0.0964 | * | 0.0631 | |||
(1.95) | (1.95) | (1.21) | ||||||
DIVDUM | −0.0434 | *** | −0.0434 | *** | −0.0395 | *** | ||
(−7.10) | (−7.10) | (−6.07) | ||||||
STD_CFO | 0.0000 | * | 0.0000 | * | 0.0000 | *** | ||
(−1.78) | −1.78) | (−2.67) | ||||||
STD_SALE | 0.0000 | 0.0000 | 0.0000 | |||||
(−0.95) | (−0.95) | (0.80) | ||||||
TANGIBLE | −0.0355 | ** | −0.0355 | ** | −0.0206 | |||
(−2.11) | (−2.11) | (−1.25) | ||||||
LOSS | 0.0152 | ** | 0.0152 | ** | 0.0224 | *** | ||
(2.10) | (2.10) | (2.91) | ||||||
INSTI | −0.0358 | −0.0358 | −0.0309 | |||||
(−1.49) | (−1.49) | (−1.28) | ||||||
STD_NET_HIRE | 0.0589 | *** | 0.0589 | *** | 0.0404 | *** | ||
(6.14) | (6.14) | (3.83) | ||||||
Year-fixed effect | Yes | Yes | Yes | |||||
Industry-fixed effect | Yes | Yes | Yes | |||||
[F-value] | [17.08] | *** | [17.08] | *** | [16.65] | *** | ||
R2 | 0.093 | 0.093 | 0.132 | |||||
N | 7533 | 7533 | 7533 |
Dependent Variable: |AB_NET_HIRE| | ||||||
---|---|---|---|---|---|---|
Full Sample | AB_NET_HIRE 0 | AB_NET_HIRE 0 | ||||
Independent Variables | (1) | (2) | (3) | |||
Intercept | −0.0595 | 0.4423 | ** | −0.0622 | ||
(−0.54) | (2.39) | (−0.62) | ||||
GAGF | −0.0655 | - | −0.0862 | * | ||
(−1.14) | (−1.90) | |||||
GANGF | 0.0154 | 0.0202 | −0.0051 | |||
(1.51) | (1.22) | (−0.57) | ||||
NGAGF | 0.0134 | 0.0767 | * | −0.0093 | * | |
(0.72) | (1.88) | (−1.77) | ||||
NGANGF | −0.0043 | −0.0103 | 0.0015 | |||
(−1.14) | (−1.62) | (0.30) | ||||
MTB | 6.3553 | 9.0011 | 1.2786 | |||
(1.37) | (1.02) | (0.23) | ||||
SIZE | 0.0044 | −0.0070 | 0.0144 | * | ||
(0.55) | (−0.44) | (1.92) | ||||
Quick | 0.0004 | −0.0072 | 0.0072 | |||
(0.07) | (−0.52) | (1.46) | ||||
LEV | −0.0308 | −0.0381 | 0.0243 | |||
(−0.28) | (−0.20) | (0.15) | ||||
DIVDUM | −0.0262 | 0.0114 | −0.0563 | *** | ||
(−1.57) | (0.41) | (−2.88) | ||||
STD_CFO | 0.0000 | 0.0000 | 0.0000 | |||
(0.27) | (0.19) | (0.14) | ||||
STD_SALE | 0.0000 | 0.0000 | 0.0000 | |||
(−1.39) | (−1.07) | (0.59) | ||||
TANGIBLE | −0.0988 | *** | −0.1287 | * | −0.0597 | * |
(−2.65) | (−1.93) | (−1.67) | ||||
LOSS | 0.0472 | ** | 0.0430 | 0.0398 | ** | |
(2.30) | (1.21) | (2.01) | ||||
INSTI | −0.0909 | *** | −0.1063 | −0.1185 | ** | |
(−2.70) | (−1.54) | (−2.10) | ||||
STD_NET_HIRE | 0.0557 | *** | 0.1058 | *** | 0.0231 | |
(2.93) | (3.05) | (1.05) | ||||
Year-fixed effect | Yes | Yes | Yes | |||
Industry-fixed effect | Yes | Yes | Yes | |||
[F-value] | [59.08] | *** | [79.99] | *** | [4.72] | *** |
R2 | 0.186 | 0.321 | 0.311 | |||
N | 1710 | 1054 | 656 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, K.; Lee, K.Y. Analyst Following, Group Affiliation, and Labor Investment Efficiency: Evidence from Korea. Sustainability 2019, 11, 3152. https://doi.org/10.3390/su11113152
Mo K, Lee KY. Analyst Following, Group Affiliation, and Labor Investment Efficiency: Evidence from Korea. Sustainability. 2019; 11(11):3152. https://doi.org/10.3390/su11113152
Chicago/Turabian StyleMo, Kyoungwon, and Kyung Yun (Kailey) Lee. 2019. "Analyst Following, Group Affiliation, and Labor Investment Efficiency: Evidence from Korea" Sustainability 11, no. 11: 3152. https://doi.org/10.3390/su11113152
APA StyleMo, K., & Lee, K. Y. (2019). Analyst Following, Group Affiliation, and Labor Investment Efficiency: Evidence from Korea. Sustainability, 11(11), 3152. https://doi.org/10.3390/su11113152