Sources of Economic Growth: A Global Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
- The first group involved variables that describe the condition of the region at the beginning of the research period. They describe the initial condition of a given country. These variables were derived from the literature on economic growth, in particular from a broad range of studies based on the neoclassical model of economic growth, assuming that the initial conditions determine the subsequent growth rate.
- Another group of factors involved variables presented as averages for the analyzed period. Taking these determinants into account is justified by the necessity of examining the correlations between the rate of economic growth and other processes that occurred in the analyzed period. The data required to calculate the averages for selected years were not always available. In the case of stock of immigrants, only the data from 2013 were available. Nevertheless, this variable was included in the dataset due to its current importance.
- The last group consisted of dummy variables. In this study, we examined the potential factors influencing the dynamics of economic growth related to the geographical location and the religious denomination of the majority of citizens of a given country.
2.2. Bayesian Methods Used in Study
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BMA | Bayesian Model Averaging |
BACE | Bayesian Averaging of Classical Estimates |
PIP | Posterior Inclusion Probability |
GDP | Gross Domestic Product |
MC | Markov Chain Monte Carlo Model Composition |
References
- Barro, R.J.; Sala-i-Martin, X. Technological Diffusion, Convergence, and Growth. J. Econ. Growth 1997, 2, 1–26. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Polit. Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef] [Green Version]
- Sala-i-Martin, X. I Just Ran Two Million Regressions. Am. Econ. Rev. 1997, 87, 178–183. [Google Scholar]
- Sala-i-Martin, X. The World Distribution of Income: Falling Poverty and … Convergence, Period. Q. J. Econ. 2006, 121, 351–397. [Google Scholar] [CrossRef]
- Sala-i-Martin, X.; Snowdon, B. The Enduring Elixir of Economic Growth. World Econ. 2006, 7, 73–130. [Google Scholar]
- Armeanu, D.S.; Vintilă, G.; Gherghina, Ş. Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries. Sustainability 2018, 10, 4. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Tarkhanova, E.; Durglishvili, N. Sustainable economic growth and innovative development of educational systems. J. Int. Stud. 2018, 11, 248–256. [Google Scholar] [CrossRef]
- Manso, J.R.P.; de Matos, A.J.F.; Carvalho, C.C.M. Determinants of Regional Growth in Portugal: An Empirical Analysis. Econ. Sociol. 2015, 8, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Brock, W.A.; Durlauf, S.N.; West, K.D. Policy Evaluation in Uncertain Economic Environments. Brook. Pap. Econ. Act. 2003, 2003, 235–301. [Google Scholar] [CrossRef]
- Kraay, A.; Tawara, N. Can specific policy indicators identify reform priorities? J. Econ. Growth 2013, 18, 253–283. [Google Scholar] [CrossRef]
- Musai, M.; Mehrara, M. Economic Growth and Government Size. J. Empir. Econ. 2014, 2, 19–28. [Google Scholar]
- Bergh, A.; Henrekson, M. Government size and growth: A survey and interpretation of the evidence. J. Econ. Surv. 2011, 25, 872–897. [Google Scholar] [CrossRef]
- Milczarek, A. Africa as a new potential of the global economy. J. Int. Stud. 2014, 7, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Brycz, M. Nigeria vision 20: 2020 can dream become reality? Evidence from national accounts. J. Int. Stud. 2014, 7, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Comes, C.A.; Bunduchi, E.; Vasile, V.; Stefan, D. The Impact of Foreign Direct Investments and Remittances on Economic Growth: A Case Study in Central and Eastern Europe. Sustainability 2018, 10, 238. [Google Scholar] [CrossRef]
- Sala-i-Martin, X. Global inequality fades as the global economy grows. In 2007 Index of Economic Freedom: The Link between Economic Opportunity and Prosperity, 13rd ed.; Kane, T., Holmes, K., O’Grady, M.A., Eds.; The Heritage Foundation: Washington, DC, USA, 2007; pp. 15–25. [Google Scholar]
- Fernández, C.; Ley, E.; Steel, M.F.J. Benchmark Priors for Bayesian Model Averaging. J. Econom. 2001, 100, 381–427. [Google Scholar] [CrossRef]
- Fernández, C.; Ley, E.; Steel, M.F.J. Model Uncertainty in Cross-Country Growth Regressions. J. Appl. Econom. 2001, 16, 563–576. [Google Scholar] [CrossRef]
- Sala-i-Martin, X.; Doppelhofer, G.; Miller, R.I. Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. Am. Econ. Rev. 2004, 94, 813–835. [Google Scholar] [CrossRef]
- Eicher, T.S.; Papageorgiou, C.; Roehn, O. Unraveling the fortunes of the fortunate: An Iterative Bayesian Model Averaging (IBMA) approach. J. Macroecon. 2007, 29, 494–514. [Google Scholar] [CrossRef] [Green Version]
- Ley, E.; Steel, M.F.J. Jointness in Bayesian Variable Selection with Applications to Growth Regression. J. Macroecon. 2007, 29, 476–493. [Google Scholar] [CrossRef]
- Doppelhofer, G.; Weeks, M. Jointness of Growth Determinants. J. Appl. Econom. 2009, 24, 209–244. [Google Scholar] [CrossRef]
- Ley, E.; Steel, M.F.J. On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression. J. Appl. Econom. 2009, 24, 651–674. [Google Scholar] [CrossRef]
- Eicher, T.S.; Papageorgiou, C.; Raftery, A.E. Default priors and predictive performance in Bayesian model averaging, with application to growth determinants. J. Appl. Econom. 2011, 26, 30–55. [Google Scholar] [CrossRef]
- Ley, E.; Steel, M.F. Mixtures of g-priors for Bayesian model averaging with economic applications. J. Econom. 2012, 171, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, A.; Jarociński, M. Determinants of Economic Growth: Will Data Tell? Am. Econ. J.-Macroecon. 2010, 2, 222–246. [Google Scholar] [CrossRef] [Green Version]
- Feldkircher, M.; Zeugner, S. The impact of data revisions on the robustness of growth determinants—A note on ‘Determinants of Economic Growth: Will Data Tell?’. J. Appl. Econom. 2012, 27, 686–694. [Google Scholar] [CrossRef]
- Dobra, A.; Eicher, T.S.; Lenkoski, A. Modeling uncertainty in macroeconomic growth determinants using Gaussian graphical models. Stat. Methodol. 2010, 7, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Magnus, J.R.; Powell, O.; Prüfer, P. A comparison of two model averaging techniques with an application to growth empirics. J. Econom. 2010, 154, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Horvath, R. Research & development and growth: A Bayesian model averaging analysis. Econ. Model. 2011, 28, 2669–2673. [Google Scholar] [CrossRef]
- Moral-Benito, E. Determinants of Economic Growth: A Bayesian Panel Data Approach. Rev. Econ. Stat. 2012, 94, 566–579. [Google Scholar] [CrossRef]
- Masanjala, W.H.; Papageorgiou, C. Rough and lonely road to prosperity: A reexamination of the sources of growth in Africa using Bayesian model averaging. J. Appl. Econom. 2008, 23, 671–682. [Google Scholar] [CrossRef]
- Crespo-Cuaresma, J. How different is Africa? A comment on Masanjala and Papageorgiou. J. Appl. Econom. 2011, 26, 1041–1047. [Google Scholar] [CrossRef]
- Papageorgiou, C. How to use interaction terms in BMA: Reply to Crespo Cuaresma’s comment on Masanjala and Papageorgiou (2008). J. Appl. Econom. 2011, 26, 1048–1050. [Google Scholar] [CrossRef]
- Moser, M.; Hofmarcher, P. Model Priors Revisited: Interaction Terms In BMA Growth Applications. J. Appl. Econom. 2014, 29, 344–347. [Google Scholar] [CrossRef]
- Crespo-Cuaresma, J.; Foster, N.; Stehrer, R. Determinants of Regional Economic Growth by Quantile. Reg. Stud. 2011, 45, 809–826. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, J.; Błażejowski, M.; Gazda, J. The Application of Bayesian Methods in Studies on Economic Growth in Regions. In Stages of the Convergence in the Developed European Economies; Kokocińska, M., Ed.; Poznan University of Economics Press: Poznań, Poland, 2012; pp. 94–106. [Google Scholar]
- Cuaresma, J.C.; Doppelhofer, G.; Feldkircher, M. The Determinants of Economic Growth in European Regions. Reg. Stud. 2014, 48, 44–67. [Google Scholar] [CrossRef]
- Błażejowski, M.; Gazda, J.; Kwiatkowski, J. Bayesian Model Averaging in the Studies on Economic Growth in the EU Regions—Application of the gretl BMA Package. Econ. Sociol. 2016, 9, 168–175. [Google Scholar] [CrossRef]
- León-González, R.; Montolio, D. Growth, convergence and public investment. A Bayesian model averaging approach. Appl. Econ. 2004, 36, 1925–1936. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Egbetokun, A.; Memon, M.H. Human capital, social capabilities and economic growth. Economies 2018, 6, 2. [Google Scholar] [CrossRef]
- Osiewalski, J.; Wróblewska, J.; Makieła, K. Bayesian comparison of production function-based and time-series GDP models. Empir. Econ. 2018. [Google Scholar] [CrossRef]
- León-González, R.; Montolio, D. Endogeneity and panel data in growth regressions: A Bayesian model averaging approach. J. Macroecon. 2015, 46, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Schneider, W.J. Intelligence, Human Capital, and Economic Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. J. Econ. Growth 2006, 11, 71–93. [Google Scholar] [CrossRef] [Green Version]
- Deller, S.C.; Lledo, V.; Marcouiller, D.W. Modeling Regional Economic Growth with A Focus On Amenities. Rev. Urban Reg. Dev. 2008, 20, 1–21. [Google Scholar] [CrossRef]
- Man, G. Competition and the growth of nations: International evidence from Bayesian model averaging. Econ. Model. 2015, 51, 491–501. [Google Scholar] [CrossRef]
- León-González, R.; Vinayagathasan, T. Robust determinants of growth in Asian developing economies: A Bayesian panel data model averaging approach. J. Asian Econ. 2015, 36, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Essardi, O.; Razzouk, R. Human Capital and Economic Growth in Morocco: Evidence from Bayesian Model Averaging. Int. Bus. Res. 2017, 10, 167–182. [Google Scholar] [CrossRef]
- Pegkas, P. The Effect of Government Debt and Other Determinants on Economic Growth: The Greek Experience. Economies 2018, 6, 10. [Google Scholar] [CrossRef]
- Puziak, M. Real convergence of new EU members. An experience for Ukraine. J. Int. Stud. 2009, 2, 40–49. [Google Scholar] [CrossRef]
- Soylu, Ö.B.; Çakmak, İ.; Okur, F. Economic growth and unemployment issue: Panel data analysis in Eastern European Countries. J. Int. Stud. 2018, 11, 93–107. [Google Scholar] [CrossRef]
- Capello, R.; Perucca, G. Globalization and Growth Patterns in Eastern European Regions: From the Transition Period to the Economic Crisis; GRINCOH Working Papers 1.11; Politecnico di Milano: Milan, Italy, 2013. [Google Scholar]
- Fazio, G.; Piacentino, D. Testing for Convergence from the Micro-Level; Working Papers 2011_07; Business School—Economics, University of Glasgow: Glasgow, UK, 2011. [Google Scholar]
- Barro, R.J.; Sala-i-Martin, X.; Blanchard, O.J.; Hall, R.E. Convergence Across States and Regions. Brook. Pap. Econ. Activ. 1991, 1991, 107–182. [Google Scholar] [CrossRef]
- Arvanitidis, P.; Petrakos, G.; Pavleas, S. Determinants of Economic Growth: The Experts’ View; Papers DYNREG20; Economic and Social Research Institute (ESRI): Athens, Greece, 2007. [Google Scholar]
- Mankiw, G.; Romer, D.; Weil, D. A Contribution to the Empirics of Economic Growth. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Sala-i-Martin, X. 15 Years of New Growth Economics: What Have we Learnt? J. Econ. Chil. 2002, 5, 5–15. [Google Scholar] [CrossRef]
- Florax, R.J.; De Groot, H.L.; Heijungs, R. The Empirical Economic Growth Literature: Robustness, Significance and Size; Tinbergen Institute Discussion Paper TI 2002-040/3; Faculty of Economics and Statistics, University of Innsbruck: Innsbruck, Austria, 2002. [Google Scholar] [CrossRef]
- Błażejowski, M.; Kwiatkowski, J. Bayesian Model Averaging and Jointness Measures for gretl. J. Stat. Softw. 2015, 68, 1–24. [Google Scholar] [CrossRef]
- Gazda, J.; Puziak, M. The Sources of Economic Growth in the Regions. In Stages of the Convergence in the Developed European Economies; Kokocińska, M., Ed.; Poznan University of Economics Press: Poznań, Poland, 2012; pp. 107–125. [Google Scholar]
- Raftery, A.; Madigan, D.; Hoeting, J. Bayesian Model Averaging for Linear Regression Models. J. Am. Stat. Assoc. 1997, 92, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Zellner, A. An Introduction to Bayesian Inference in Econometrics; John Wiley and Sons: Hoboken, NJ, USA, 1971. [Google Scholar]
- Koop, G. Bayesian Econometrics; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- DeGroot, M.H. Qptimal Statistical Decisions; McGraw Hill: New York, NY, USA, 1970. [Google Scholar]
- Zellner, A. On Assessing Prior Distributions and Bayesian Regression Analysis with g-Prior Distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti; Goel, P., Zellner, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Madigan, D.; York, J.; Allard, D. Bayesian Graphical Models for Discrete Data. Int. Stat. Rev. 1995, 63, 215–232. [Google Scholar] [CrossRef]
- Madigan, D.; Raftery, A.E. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam’s Window. J. Am. Stat. Assoc. 1994, 89, 1535–1546. [Google Scholar] [CrossRef]
- Cottrell, A.; Lucchetti, R. Gretl User’s Guide. 2018. Available online: http://ricardo.ecn.wfu.edu/pub/gretl/manual/PDF/gretl-guide-a4.pdf (accessed on 20 November 2018).
- Matuzeviciute, K.; Butkus, M. Remittances, development level, and long-run economic growth. Economies 2016, 4, 28. [Google Scholar] [CrossRef]
- Danileviciene, I.; Lace, N. The features of economic growth in the case of Latvia and Lithuania. J. Open Innov. Technol. Mark. Complex. 2017, 3, 21. [Google Scholar] [CrossRef]
- Lv, K.; Yu, A.; Gong, S.; Wu, M.; Xu, X. Impacts of educational factors on economic growth in regions of China: A spatial econometric approach. Technol. Econ. Dev. Econ. 2017, 23, 827–847. [Google Scholar] [CrossRef]
- Błażejowski, M.; Kwiatkowski, J. Bayesian Averaging of Classical Estimates (BACE) for Gretl; Gretl Working Papers 6; Universita’ Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali: Ancona, Italy, 2018. [Google Scholar]
Albania | Czech Republic | Korea | Russia |
Algeria | Denmark | Kuwait | Rwanda |
Angola | Djibouti | Kyrgyz Republic | Săo Tomé and Príncipe |
Antigua and Barbuda | Dominica | Latvia | Saudi Arabia |
Argentina | Dominican Republic | Lebanon | Senegal |
Armenia | Ecuador | Lesotho | Serbia |
Australia | Egypt | Libya | Seychelles |
Austria | El Salvador | Lithuania | Sierra Leone |
Azerbaijan | Equatorial Guinea | Luxembourg | Singapore |
Bahamas | Eritrea | Madagascar | Slovak Republic |
Bahrain | Estonia | Malawi | Slovenia |
Bangladesh | Ethiopia | Malaysia | Solomon Islands |
Barbados | Fiji | Maldives | South Africa |
Belarus | Finland | Mali | Spain |
Belgium | France | Malta | Sri Lanka |
Belize | Gabon | Mauritania | St. Kitts and Nevis |
Benin | Gambia | Mauritius | St. Lucia |
Bhutan | Georgia | Mexico | St. Vincent and the Grenadines |
Bolivia | Germany | Moldova | Sudan |
Bosnia and Herzegovina | Ghana | Mongolia | Swaziland |
Botswana | Greece | Morocco | Sweden |
Brazil | Grenada | Mozambique | Switzerland |
Brunei Darussalam | Guatemala | Myanmar | Tajikistan |
Bulgaria | Guinea | Namibia | Tanzania |
Burkina Faso | Guinea-Bissau | Nepal | Thailand |
Burundi | Guyana | Netherlands | Togo |
Cabo Verde | Haiti | New Zealand | Trinidad and Tobago |
Cambodia | Honduras | Nicaragua | Tunisia |
Cameroon | Hong Kong SAR | Niger | Turkey |
Canada | Hungary | Nigeria | Uganda |
Central African Republic | Iceland | Norway | Ukraine |
Chad | India | Oman | United Arab Emirates |
Chile | Indonesia | Pakistan | United Kingdom |
China | Iran | Panama | United States |
Colombia | Ireland | Papua New Guinea | Uruguay |
Comoros | Israel | Paraguay | Uzbekistan |
Democratic Republic of the Congo | Italy | Peru | Vanuatu |
Republic of Congo | Jamaica | Philippines | Venezuela |
Costa Rica | Japan | Poland | Vietnam |
Côte d’Ivoire | Jordan | Portugal | Yemen |
Croatia | Kazakhstan | Qatar | Zambia |
Cyprus | Kenya | Romania | Zimbabwe |
Variable | Definition |
---|---|
Y | Average growth rate of GDP 2002–2013 |
Total investment (% of GDP). Average 2002–2013 | |
Gross national savings (% of GDP). Average 2002–2013 | |
Military expenditure (% of GDP). Average 2002–2013 | |
Population in 2002 | |
Rate of natural increase in 2002 | |
Infant mortality rate in 2002 | |
Area of countries in 2002 (square miles) | |
Population per square mile in 2002 | |
Natural logarithm of GDP per capita in 2002 | |
General government revenue (% of GDP). Average 2002–2013 | |
Current account balance (% of GDP). Average 2002–2013 | |
Gross fixed capital formation (% of GDP). Average 2005–2012 | |
General government final consumption expenditure. (% of GDP). Average 2005–2012 | |
Shares of agriculture, hunting, forestry, and fisheries (% of GDP) in 2012 | |
Unemployment rate (15 years and older). Average 2002–2013 | |
Homicide rate (per 100,000). Average 2008–2011 | |
Stock of immigrants (% of population) in 2013 | |
Years of schooling. Female. Average 2002–2013 | |
Years of schooling. Male. Average 2002–2013 | |
Pre-primary education (% of children of pre-school age). Average 2003–2012 | |
Primary education (% of primary school-age population). Average 2003–2012 | |
Secondary education (% of primary school-age population). Average 2003–2012 | |
Tertiary education (% of primary school-age population). Average 2003–2012 | |
Expenditure on education (% of GDP). Average 2005–2013 | |
Country located in Europe | |
Country located in South America | |
Country located in North America | |
Country located in Asia and Oceania | |
Islamic majority | |
Majority other than Islamic or Christian |
Variable | PIP | Mean | Standard Deviation |
---|---|---|---|
0.999972 | 0.164274 | ||
0.962024 | 0.069984 | 0.020736 | |
0.817661 | 0.956173 | 0.557132 | |
0.931593 | 0.064148 | 0.025899 | |
0.390386 | 0.013865 | 0.019658 | |
0.190910 | 0.073117 | ||
0.106176 | 0.012986 | 0.048070 | |
0.082089 | 0.003369 | 0.01532 | |
0.075268 | 0.003317 | 0.016843 | |
0.062444 | 0.039613 | 0.205555 | |
0.058103 | 0.012122 | 0.071737 | |
0.051441 | 0.000318 | 0.002283 | |
0.050491 | 0.141528 | ||
0.050038 | 0.001313 | 0.029461 | |
0.043789 | 0.000178 | 0.001445 | |
0.043468 | 0.004884 | ||
0.043003 | 0.000318 | 0.002522 | |
0.042943 | 0.000298 | ||
0.042026 | 0.089532 | ||
0.041857 | 0.121322 | ||
0.040749 | 0.002885 | ||
0.038122 | 0.004428 | ||
0.038027 | 0.003546 | ||
0.037664 | 0.001608 | ||
0.036988 | |||
0.036591 | 0.097756 | ||
0.035887 | 2.110139 | ||
0.035264 | 0.001776 | 0.042313 | |
0.034702 | |||
0.034011 | 0.001728 |
Model j: | |||||
---|---|---|---|---|---|
Variable | |||||
0.0728331 | 0.0696883 | 0.0723425 | 0.0790534 | 0.0771949 | |
0.0663038 | 0.0670735 | 0.0697037 | 0.0698610 | 0.0735666 | |
0.0292134 | 0.0429118 | 0.0397535 | |||
1.26420 | 1.00520 | 1.13430 |
Strong Substitutes | Strong Complements | ||
---|---|---|---|
Variables | J Value | Variables | J Value |
3.231319 | |||
2.610985 | |||
2.263495 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażejowski, M.; Kwiatkowski, J.; Gazda, J. Sources of Economic Growth: A Global Perspective. Sustainability 2019, 11, 275. https://doi.org/10.3390/su11010275
Błażejowski M, Kwiatkowski J, Gazda J. Sources of Economic Growth: A Global Perspective. Sustainability. 2019; 11(1):275. https://doi.org/10.3390/su11010275
Chicago/Turabian StyleBłażejowski, Marcin, Jacek Kwiatkowski, and Jakub Gazda. 2019. "Sources of Economic Growth: A Global Perspective" Sustainability 11, no. 1: 275. https://doi.org/10.3390/su11010275
APA StyleBłażejowski, M., Kwiatkowski, J., & Gazda, J. (2019). Sources of Economic Growth: A Global Perspective. Sustainability, 11(1), 275. https://doi.org/10.3390/su11010275